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Cauchy problem in spacetimes with closed timelike curves
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The laws of physics might permit the existence, in the real Universe, of closed timelike curves
(CTC's). Macroscopic CTC's might be a semiclassical consequence of Planck-scale, quantum gravi-

tational, Lorentzian foam, if such foam exists. If CTC s are permitted, then the semiclassical laws

of physics (the laws with gravity classical and other fields quantized or classical) should be augment-

ed by a principle of self-consistency, which states that a local solution to the equations of physics
can occur in the real Universe only if it can be extended to be part of a global solution, one which is

well defined throughout the (nonsingular regions of) classical spacetime. The consequences of this

principle are explored for the Cauchy problem of the evolution of a classical, massless scalar field 4
(satisfying 04=0) in several model spacetimes with CTC s. In general, self-consistency constrains
the initial data for the field 4. For a family of spacetimes with traversible wormholes, which initial-

ly possess no CTC's and then evolve them to the future of a stable Cauchy horizon %, self-

consistency seems to place no constraints on initial data for 4 that are posed on past null infinity,
and none on data posed on spacelike slices which precede A. By contrast, initial data posed in the
future of %, where the CTC's reside, aie constrained; but the constraints appear to be mild in the
sense that in some neighborhood of every event one is free to specify initial data arbitrarily, with the
initial data elsewhere being adjusted to guarantee self-consistent evolution. A spacetime whose

self-consistency constraints have this property is defined to be "benign with respect to the scalar
field 4." The question is posed as to whether benign spacetimes in some sense form a generic subset
of all spacetimes with CTC's. It is shown that in the set of flat, spatially and temporally closed, 2-

dimensional spacetimes the benign ones are not generic. However, it seems likely that every 4-
dimensional, asymptotically flat space-time that is stable and has a topology of the form
R X(S—one point), where S is a closed 3-manifold, is benign. Wormhole spacetimes are of this

type, with S =S' XS . We suspect that these types of self-consistency behavior of the scalar field 4
are typical for noninteracting (linearly superposing), classical fields. However, interacting classical
systems can behave quite differently, as is demonstrated by a study of the motion of a hard-sphere
billiard ball in a wormhole spacetime with closed timelike curves: If the ball is classical, then some
choices of initial data (some values of the ball*s initial position and velocity) give rise to unique,
self-consistent motions of the ball; other choices produce two different self-consistent motions; and
others might (but we are not yet sure) produce no self-consistent motions whatsoever. By contrast,
in a path-integral formulation of the nonrelativistic quantum mechanics of such a billiard ball, there
appears to be a unique, self-consistent set of probabilities for the outcomes of all measurements.
This paper's conclusion, that CTC's may not be as nasty as people have assumed, is reinforced by
the fact that they do not affect Gauss's theorem and thus do not affect the derivation of global con-
servation laws from differential ones. The standard conservation laws remain valid globally, and in
asymptotically flat, wormhole spacetimes they retain a natural, quasilocal interpretation.

I. INTRODUCTION AND OVERVIEW

Physicists typically have been reluctant to consider the
possibility that our universe might possess closed timelike
curves (CTC's). The science-fiction spectre of a human

going back in time and killing his younger self has made
it seem that CTC's necessarily entail unacceptable viola-
tions of causality, and thus must be forbidden by the laws
of physics.

Recently three of the authors (Morris, Thorne, and
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Yurtsever') discovered that, in order to forbid CTC's, the
laws might also have to forbid the existence of traversible
wormholes. This is because by moving one mouth of
such a wormhole at high speed away from the other and
then bringing it back ("twins-paradox motion"), one can
change the manner in which time hooks up through the
wormhole and thereby create CTC's. ' In fact, generic
relative motions of the wormhole mouths will produce
CTC's, ' as will generic gravitational redshifts at the
wormhole mouths due to generic external gravitational
fields. At least this is so if the Cauchy horizon at which
the CTC's arise is stable.

It seems highly likely that the Cauchy horizon is stable
against classical perturbations, ' but stability against
quantum-field perturbations is less certain: it might turn
out that vacuum fluctuations of quantum fields generical-
ly produce a divergent renormalized stress-energy at the
Cauchy horizon, thereby preventing the creation of
CTC's. However, in this paper we shall not attempt to
treat quantum fields. Instead, we shall focus attention on
classical physics and first-quantized quantum physics in
spacetimes with CTC's.

The conventional reaction to the possibility that gener-
ic motions of traversible wormholes produce CTC's is to
assert that the laws of physics must forbid traversible
wormholes. We consider this a definite possibility, and
elsewhere' we have discussed two ways in which it might
come about: (i) Quantum field theory in a wormhole
spacetime might enforce either the averaged weak ener-

gy condition (a condition which, we have shown, must be
violated in or near the throat of any traversible
wormhole), or perhaps some other "weaker" energy con-
dition (which also might necessarily be violated in a
traversible wormhole); (ii) our Universe might have been
created without any traversible wormholes, and the laws
of physics might prevent the topology change that ac-
companies the construction of such wormholes when ini-
tially there are none.

It is far from clear whether either of these possibilities
is true, and to find out is likely to involve extensive, long
research efforts. Accordingly, we think it appropriate to
explore the consequences of an alternative possibility:
that the laws of physics do not rule out traversible
wormholes, and that the Cauchy horizons which form as
a result of such wormholes' motions are stable against
vacuum fluctuations and therefore give rise to CTC's.

This possibility is made all the more intriguing by the
fact that some of the current efforts to understand quan-
tum gravity involve nontrivial topologies, i.e., "quantum
foam, " on scales of the Planck length. In its present in-
carnation, this quantum foam entails finite probability
amplitudes for Planck-scale, "Euclidean wormholes, " i.e.,
worrnholes with positive-definite four-dimensional
metrics, which link widely separated regions of space. By
contrast, when originally conceived by Wheeler in the
1950s, quantum foam entailed finite probability ampli-
tudes for Planck-scale *'Lorentzian wormholes, " i.e., sub-
microscopic versions of the classical, spacetime
wormholes treated in this paper. The change from
Lorentzian to Euclidean foam was motivated by the be-
lief that a Lorentzian path integral would not converge,

as well as by an aversion to the closed timelike curves
that accompany topology change in Lorentzian space-
times.

The manner in which the Euclidean quantum foam
gives rise to classical spacetime on scales large compared
to the Planck length is not yet fully understood. An im-
portant aspect of this is the fate of the foam's Euclidean
wormholes. Are they wholly an artifact of the quantum
regime, an artifact that goes away completely in the clas-
sical limit? Or can they give rise to Lorentzian
wormholes with CTC's when the quantum-to-classical
transition is made? Even before the transition, can the
quantum foam itself be regarded in any meaningful sense
as made from Lorentzian wormholes as well as or instead
of from Euclidean wormholes?

It is tempting to believe that the semiclassical laws of
physics inherit their attitude toward traversible
wormholes and CTC's from quantum gravity*s answers to
these questions. If quantum gravity allows Lorentzian
foam and Lorentzian wormholes in its quantum-to-
classical transition, then it thereby might force on the
semiclassical laws a positive attitude toward traversible
wormholes and CTC's. If quantum wormholes are en-
tirely an artifact of Euclidean quantum gravity and disap-
pear entirely when one enters the Lorentzian domain,
then quantum gravity might force the semiclassical laws
to forbid the existence of macroscopic, traversible
wormholes with CTC's. As its means of enforcement, (i)
quantum gravity might insist that all nongravitational
quantum fields in a classical wormhole spacetime obey
some energy condition (e.g. , the averaged weak energy
condition) that forbids the wormhole to be traversible, or
(ii) quantum gravity might cause vacuum fluctuations of
quantum fields to produce divergent stress-energy when-
ever a classical traversible wormhole tries to generate
CTC's.

These speculations suggest that by exploring the possi-
bility of incorporating traversible wormholes and CTC's
into semiclassical physics, we might be probing quantum
gravity's attitudes toward Lorentzian foam and Lorentzi-
an wormholes.

One way to explore semiclassical physics' attitude to-
ward CTC's is to inquire whether CTC's can be incor-
porated into the semiclassical laws of physics without
producing unacceptable causality violations. The answer
to this question depends, of course, on one's definition of
"unacceptable. "

The only type of causality violation that the authors
would find unacceptable is that embodied in the science-
fiction concept of going backward in time and killing
one's younger self ("changing the past"). Some years ago
one of us (Novikov' ) briefly considered the possibility
that CTC's might exist and argued that they cannot en-
tail this type of causality violation: Events on a CTC are
already guaranteed to be self-consistent, Novikov argued;
they influence each other around the closed curve in a
self-adjusted, cyclical, self-consistent way. The other au-
thors recently have arrived at the same viewpoint.

We shall embody this viewpoint in a principle of self
consistency, which states that the only solutions to the
laws of physics that can occur locally in the real Universe
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are those which are globally self co-nsistent. This principle
allows one to build a local solution to the equations of
physics only if that local solution can be extended to be
part of a (not necessarily unique) global solution, which is
well defined throughout the nonsingular regions of the
spacetime.

This principle is a conjectured property of the serni-
classical limit (classical gravity; other fields classical or
quantum) of the ultiinate "theory of everything. " In ap-
plying the principle, one is expected, at least conceptual-
ly, to allow for the gravitational back action of the
nongravitational fields on the spacetime's curvature via
the semiclassical Einstein field equations. The back ac-
tion will become especially important if the CTC's cause
the (renormalized expectation value of the nongravita-
tional fields') stress-energy tensor to grow large. Other-
wise one may be able to ignore back action —and in this
paper we shall do so.

That the principle of self-consistency is not totally tau-
tological becomes clear when one considers the following
alternative: The laws of physics might permit CTC's;
and when CTC's occur, they might trigger new kinds of
local physics which we have not previously met. For ex-
ample, a quantum-mechanical system, propagating
around CTC's, might return to where it started with
values for its wave function 4 that are inconsistent with
the initial values; and it might then continue propagating
and return once again with a third set of values, then a
fourth, then a fifth, . . . . The result would be a many-
valued wave function (which, of course, is forbidden by
standard local physics); and the wave function's many
values might participate, through some new and as-yet-
unknown physical law, in determining the outcomes of
physical measurements. The principle of self-consistency
is intended to rule out such behavior. It insists that local
physics is governed by the same types of physical laws as
we deal with in the absence of CTC's: laws that entail
self-consistent single valuedness for the fields. In essence,
the principle of self-consistency is a principle of no new
physics. If one is inclined from the outset to ignore or
discount the possibility of new physics, then one will re-
gard self-consistency as a trivial principle.

The principle of self-consistency by fiat forbids chang-
ing the past. However, it does so at the price of con-
straining the inital data for the Cauchy problem. The
main goal of this paper is to study those constraints.

For simplicity, we shall focus attention primarily on
the Cauchy problem for a massless, classical scalar field
+ which satisfies the wave equation without curvature
coupling, 4=0. This is a severe restriction. It is quite
possible that the constraints of self-consistency will have
rather different characters for quantized fields and non-
linear fields from that which we shall meet for the classi-
cal, linear field 4. It will be important, in future
research, to explore the effects of quantization and non-
linearity. As a tool for such exploration, in Secs. IIG
and II H we shall pose and briefly discuss a set of model
problems for colliding billiard balls, both classical and
quantum mechanical.

In this paper we shall study the Cauchy problem for
the field 4 in several model spacetimes with CTC's. Our

chosen spacetimes fall into two classes: asymptotically
flat spacetimes with wormholes (Sec. II); and perfectly
flat spacetimes with toroidal topologies (Sec. III). These
classes are broad enough to exhibit a variety of different
behaviors: In some cases self-consistency seems to place
no constraints whatsoever on initial data for the field 4.
In other cases there will be one simple integral constraint
on the data. In others there will be periodicity con-
straints. And in some cases the constraints will be so
severe that there will exist no nonconstant solutions
whatsoever to 04=0.

Some of our examples involve asymptotically flat
wormhole spacetimes in which there initially are no
CTC's, but which evolve CTC's to the future of a stable
Cauchy horizon %. In these spacetimes we argue (see
Sec. II C below and Ref. 11) that self-consistency places
no constraints whatsoever on initial data that are posed
before %: The standard initial data (values of 4 and
84ldt on an initial spacelike hypersurface of constant t
to the past of % or values of r4 on 2 ) are just what is
needed to produce a unique solution of 4=0
throughout the spacetime, including the future of %.
Two of the authors (Friedman and Morris" ) have actual-
ly proved that this is the case for a simple example of
such a spacetime. We conjecture that this well-posed na-
ture of the initial-value problem is true for initial data on
a spacelike hypersurface (but not necessarily of data on

) not only for our specific wormhole spacetimes, but
also for any 4-dimensional, asymptotically flat, classical
spacetime with topology of the form R X (S —one point),
where S is a closed 3-manifold; and we also conjecture
that in such spacetimes the initial-value problem is well
posed, in the same sense as for 4, for all other nonin-
teracting (linearly superposing) fields, classical and quan-
tum. (Note: wormhole spacetimes are of this type with
s =s' xs'. )

Although initial data posed to the past of & are uncon-
strained in these wormhole spacetimes, those posed on
hypersurfaces in the future of & are significantly con-
strained. It seems to us that these constraints are best
viewed as arising not from the existence of CTC's (after
all, data given freely in the past of % must also deal with
the CTC's), but rather from the nonexistence of reason-
able global spacelike hypersurfaces in the future of % on
which to pose initial data. The character of the con-
straints supports this viewpoint.

The constraints on initial data posed in the future of %
appear to be mild in a sense that was discovered in the
geometric optics limit by Novikov and Thorne (Sec. II E)
and that has been generalized, made precise, and ex-
plored in detail by Yurtsever. ' Roughly speaking, the
constraints are global, but not local. More specifically,
consider any event P to the future of & and any spacelike
hypersurface S through P. Then there exists a neighbor-
hood of P in S in which one can specify freely 4 and
t)@IBt (Here dldt .is the normal to S.) No matter how
these data are chosen, the initial data elsewhere on 4 can
always be adjusted in such a way as to preserve self-
consistency of the evolved field 4.

Yurtsever' terms benign for the fteld 4 any spacetime
in which the self-consistency constraints have this prop-
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erty at all events P. We sketch a proof, in Sec. II E, that
in the geometric optics limit our wormhole spacetimes
are benign for the field 4; and it seems highly likely that
they are also benign when one permits 4 to contain all
wavelengths, not just the short ones of geometric optics.
The structure of our geometric-optics proof makes it
seem plausible that the class of spacetimes in which we
expect the Cauchy problem for W to be well posed before
the Cauchy horizon & [those with topology R
X(S —one point) where 5 is a closed 3-manifold] will
also be benign after &, providing they are stable for the
evolution of 4.

By contrast, we shall see in Sec. III that flat, 2-
dimensional, spatially and temporally closed (i.e.,
toroidal) spacetimes are typically not benign. This is one
more warning (see Ref. I for others) that 2-dimensional
model spacetimes are not good guides to the CTC behav-
iors of 4-dimensional spacetimes.

The implications of the principle of self-consistency for
the field 4 might be strongly influenced by the fact that
@ is a noninteracting (linearly superposing) field. More
likely to produce peculiar results is a system that, after
traveling around a nearly closed timelike world line, can
interact with its younger self (e.g. , a person who tries to
kill his younger self). The simplest such classical system
is a hard-sphere billiard ball. It turns out' (Sec. IIG)
that standard initial data (initial position and velocity) for
such a billiard ball do not necessarily produce a unique,
self-consistent billiard-ball evolution. Rather, some
choices of initial data, posed before the stable Cauchy
horizon of a wormhole spacetime, produce a unique,
self-consistent evolution. Other choices produce two self-
consistent evolutions (e.g. , one with no passage through
the wormhole and thus no self-collision, and one with
wormhole passage and self-collision). And it may be (but
we are not yet sure) that other choices of initial data are
unable to produce any self-consistent, classical evolu-
tions.

If physics were classical at heart, rather than quantum
mechanical, these disturbing results might be enough to
make us hope that the laws of physics forbid CTC's.
However, when treated quantum mechanically the self-
colliding billiard ball may well behave more reasonably
than when treated classically' (Sec. II H).

The simplest way to impose the principle of self-
consistency in quantum mechanics (in a classical space-
time) is by a sum-over-histories formulation in which one
includes all those, and only those, histories that are self-
consistent. It turns out that, ' at least formally (modulo
such issues as the convergence of the sum), for every
choice of the billiard ball's initial, nonrelativistic wave
function before the Cauchy horizon, such a sum over his-
tories produces unique, self-consistent probabilities for
the outcomes of all sets of subsequent measurements.
When the initial wave function is a wave packet that imi-
tates classical initial data for which there are two classi-
cal evolutions, a WKB approximation to the sum over
histories gives unique, finite probability amplitudes for
measurements that test for each of the classical evolu-
tions see Sec. II H.

We suspect, more generally, that for any quantum sys-

tern in a classical wormhole spacetime with a stable Cau-
chy horizon, the sum over all self-consistent histories will
give unique, self-consistent probabilities for the outcomes
of all sets of measurements that one might choose to
make.

A recurring theme in this paper is the conclusion that
CTC's may not be as nasty as people have assumed. This
conclusion is reinforced, in Sec. IIF, by an analysis of
global conservation laws in asymptotically flat wormhole
spacetimes with CTC s. It is shown that, just as without
CTC's so also with them, all differential conservation
laws expressed as the vanishing divergence of a vector
field (e.g. , the conservation of charge and baryons, and in
stationary spacetimes the conservation of energy) give
rise to global conservation laws. When CTC's are
present, these global laws express the constancy of the
the sum of three quantities: (i) the amount of the given
item that is present in the Universe at a specific moment
of tiine, plus (ii) the amount that is temporarily absent by
virtue of time traveling to the future through a
wormhole, minus (iii) the amount that is temporarily dou-
bly present because it time traveled to the past through
the wormhole. It seems reasonable to hope that, in
wormhole spacetimes with CTC's, the sum-over-histories
formulation of quantum mechanics will give rise to this
type of conservation law for probabilities (Sec. IIH).
However, thus far we have not been able to verify that
this is so. '

The remainder of this paper is divided into three sec-
tions: Section II studies the Cauchy problem for 04=0
and for self-colliding billiard balls in asymptotically flat,
wormhole spacetimes; Sec. III studies the Cauchy prob-
lem for 4=0 in flat, 2-dimensional spacetimes with
toroidal topologies; and Sec. IV gives concluding remarks
and a few speculations about whether and how self-
consistency constrains free will.

Throughout this paper we shall use the notational con-
ventions of Misner, Thorne, and Wheeler' (MTW), in-
cluding geometrized units (Newton's gravitation constant
G and speed of light c set equal to unity).

II. ASYMPTOTICALLY FLAT SPACETIMES
WITH WORMHOLES

A. Foundations

In this section we shall study 4-dimensional spacetimes
that are empty and fiat (globally Minkowskian) except for
(i) a single wormhole (Fig. I), (ii) enough additional "ma-
terial" to force the wormhole's mouths to move through
the external spacetime along specified, accelerated world
lines, and (iii) the scalar field 4& whose evolution we shall
study. The demand that the wormhole be traversible
guarantees quite generally (independently of any sym-
metries) that it must be threaded by fields in quantum
states that violate the averaged weak energy condition. '

We shall presume, for simplicity, that our scalar field N
does not interact with those quantum fields (except gravi-
tationally), and that 4& is sufficiently weak that its own
stress-energy does not influence significantly the curva-
ture of spacetime.
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FIG. 1. Embedding diagram for a wormhole connecting two

regions of a flat, Minkowski spacetime.

world
world
line 2

—4)

In the special case of a static, spherical wormhole the
general-relativistic theory of the wormhole structure is
particularly simple; see Ref. 16 for details. In Ref. 1 we
show that the mouths of the wormhole can move through
the external spacetime in arbitrary manners without any
significant change of the wormhole's internal structure,
so long as the accelerations g of the mouths are small
compared to 1/(their radii b): g « 1/b

In this paper, for conceptual and computational ease,
we shall use a particularly simple model in which the
wormhole's length is arbitrarily small. This model
(which is a simple generalization to accelerated motion of
a model previously developed by Friedman et al. '

) can
be constructed as follows; see Fig. 2. In Minkowskii
spacetime choose two timelike world lines (labeled A =1
and A =2) along which the two mouths are to move.
Constrain each of these world lines to satisfy g„«1/b,
where g„ is the magnitude of its 4-acceleration and b is
the radius of the wormhole mouths. Mark off along
world line A proper time ~ as measured by an ideal clock
in the external, Minkowski spacetime [d r =d T
—dX —dY —dZ where (T,X, Y, Z) are Lorentz coordi-
nates of the external spacetime]; and choose the origin of
~ in some arbitrary manner. Through each point ~ on
world line A there passes a unique flat, 3-dimensional
spacelike hypersurface S„(r) that is orthogonal to the
world line —the "slice of simultaneity" as seen by the
wormhole mouth at time ~ On this $. „(z ) cut out a ball
with radius b, centered on the world line, and denote by
S„(w) the surface of that ball. Then identify the surface

9,(~) with the surface %z(w) in such a way that (i) (aside
from unavoidable errors that go to zero as g &b ~0 and

gzb~0) the intrinsic 3-geometries of the world tubes

9,—:I23, (~), —~ &~&+ ~ I and 9z—:tXz(z),
—~ &r &+ ~

I agree; and (ii) parity is preserved for
particles that go through g, =%z —=%. The result is an
orientable wormhole with mouths %&(r) and %z(r) con-
nected by an infinitesimally thin throat.

This wormhole spacetime has the attractive feature
that it is everywhere flat, except on the wormhole's world
tube %. On that tube there is a discontinuity of the ex-

trinsic curvature

and a corresponding delta-function-localized Riemann
curvature of spacetime

R,I„=——y„5(l) .
2

(2)

Here y„, is the intrinsic metric of the 2-spheres of %(~), I

is proper radial distance through 8, and Latin indices
from the early part of the alphabet denote components in
%(r) while the l index denotes a unit radial component.
[In Eqs. (1) and (2) there are errors caused by the ac-
celerations of the wormhole's mouths. When the
wormhole's throat is smoothed so it has a finite length
Al-b')/ gb where g is the maximum of g& and g2, then
for gb~0 those errors become vanishingly small corn-
pared to the terms included in (1) and (2).]

Because spacetime is everywhere fiat except on 8, it is

especially easy to solve 4=0 on this spacetime: One
can solve it using a fiat-space propagator (or separation of
variables or other flat-spacetime technique), together
with appropriate junction conditions across %. The junc-
tion conditions, obtained by integrating 4=0 over the
interior of a thin "pillbox" centered on 8, are

4 and 4&
~ both continuous across 2 . (3)

Note that I increases from —~ to zero as one moves
along $,(~) from spacelike infinity to mouth 1, S,(r); and
it then increases onward from zero to + oo as one moves
from mouth 2, Xz(r), on outward to spacelike infinity; cf.
Fig. 1 (where, however, the throat has finite rather than
infinitesimal length). In practical calculations one may
prefer to work with Euclidean radial coordinates r, and

rz which increase from b to ~ as one moves radially out-
ward from the two mouths, In this case the boundary
conditions (3) become

4 continuous, (3')

FIG. 2. Method for constructing a simple model of a
wormhole with mouths that move along arbitrary, but weakly
accelerated, world lines in flat spacetime.

From these junction conditions one can readily work
out the reflection and transmission coefficients for waves
which impinge on one of the mouths. For example, in
the case of spherical waves (angular momentum quantum
number 0) with angular frequency co which impinge on
mouth 1, the waves P, near mouth, 1 and Pz near 2 are
given by
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l COf'
1 1

+imr

+R i@7e (4a)

l OPf2—7 e IQITe
(4b)

where

—2I a)b ~ —2i cobe, R = e
1 —i cob 1 1C06

(4c)

and ~ has been carried into the 4-dimensional spacetime
region near each mouth using the hypersurfaces S„(~).
(Here, as throughout, there are tiny errors that go to zero
as the mouths' accelerations gz become vanishingly small
compared to 1/b ') T. he transmission and reflection
coefficients (4c) have the usual property that

~ T~ becomes
unity and ~R

~
zero in the geometric optics limit, cob )& I;

and
~ T~ becomes zero and ~R unity in the opposite limit

of waves of very low frequency, cob && 1.
%hen dealing with wavepackets whose transverse sizes

are small compared to b (geometric-optics limit), the
boundary conditions (3') imply that the wormhole acts
precisely like a diverging lens with focal length f=b i2.

B. Speci6c examples of wormhole spacetimes

Correspondingly, the wormhole radii are so small in Fig.
3 that one cannot see them; all one sees is the world lines

Figure 3 shows three specific examples of wormhole
spacetimes constructed in the above manner. In all three

examples the closest the mouths ever come to each other
(distance a as measured in the center-of-mass frame) is
large compared to the wormhole radius b:

(5)

along which the mouths move.
The example in Fig. 3(a) was studied in detail in Ref. l.

The two mouths are initially at rest in the external
Lorentz frame (T,X, Y, Z) with separation a)&b and
with proper times ~=T at both mouths. Then mouth 1

remains inertia1 while mouth 2 undergoes a "twins-
paradox" trip of high-speed outward motion and return
(but with small acceleration). During the return trip
CTC's form; there are no CTC's to the past of the Cau-
chy horizon &, and there exist CTC's through every
point ir. the future of &. The horizon & is generated by
future-directed nu11 geodesics which peel oft' of a unique,
closed null geodesic 8 and then, after many transits
through the wormhole, escape into the external space-
time from mouth 1; see the Appendix for further detail.
As was discussed in Ref. 1, the diverging-lens behavior of
the wormhole protects this Cauchy horizon against the
type of classical instability (classical waves getting
amplified indefinitely as they near it) that characterizes
all Cauchy horizons encountered previously in general re-
lativity. However (as we have only realized since Ref. 1

was written), for this specific example, the wormhole's
diverging-lens behavior seems not to protect the Cauchy
horizon against the analogous quantum instability: there
seems to be a divergent amplification of vacuum ftuctua-
tions as they circulate through the wormhole many times
just before reaching the Cauchy horizon's closed null
geodesic 8, and a corresponding divergent vacuum polar-
ization at C. [See Ref. 19 for this effect in a two-
dimensional spacetime analogous to Fig. 3(a).] Whether
such quantum instabilities occur generically for the Cau-
chy horizons of wormhole spacetimes, and whether they
are all encompassing enough and strong enough to
prevent the formation of CTC's is not yet known. In this
paper we ignore this possibility.

In Fig. 3(b) mouth 1 is always at rest at the origin of

8'&

7ii

vP6I"' / g»4

~

3iI

13

/ /'l~
o/ //g

gN)

=X

mouth i

51 i

4&)

mouth 2

I )2

liP

21) th 2

= al- (c}

FIG. 3. Three examples of wormhole spacetimes constructed in the manner of Fig. 2. (a) The "twins-paradox" example studied in
Ref. 1. The CTC's occur only to the future of the Cauchy horizon &. (b) Both mouths move inertially, with uniform relative veloci-
ty. In this case the CTC's are confined to the region between the two horizons%' and &+. (c) The mouths are at rest with respect
to each other, and there are CTC's throughout the spacetime.
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the (T,X, Y,Z) coordinate system with r=T, while
mouth 2 moves always with uniform velocity —Uez along
the line ( Y =a, Z =0), passing closest to mouth 1 at time
T =0. If, at the point of closest approach, proper time at
mouth 2 reads ~r~ &av'2/(y+1), then this spacetime
never possesses any CTC's. But if mouth 2 reads
~r~ )ai/2/(y+1) at closest approach, then there will be
a bounded region with CTC's. Figure 3(b) shows the case
where mouth 2 reads r & —av'2/(y+1) &0 at closest ap-
proach. In this case the region with CTC's is bounded
between an initial Cauchy horizon % and a final Cau-
chy horizon %+. If the speed of mouth 2 is not too close
to the speed of light, and perhaps also for arbitrarily high
speeds (see Appendix), the initial horizon & is generat-
ed by future-directed null geodesics that peel off a single
closed null curve C and, after many wormhole transits,
escape into the external spacetime from mouth 1. Simi-
larly, the final horizon &+ is generated by past-directed
null geodesics that peel off the closed null curve C+ and
then escape into the external spacetime from mouth 2.

In Fig. 3(c) both mouths are forever at rest in the exter-
nal I.orentz frame ( T,X, Y, Z), with their crossings of the
hypersurface T=O at v=O for mouth 1 and at z= —Td
(the "delay time") for mouth 2. In this case, for

~ Td ~
)a

(the case shown in the figure) the entire spacetime
possesses CTC's, while for

~ Td ~

& a there are no CTC's.
Other interesting examples of worrnholes with CTC's

in flat external spacetimes are discussed in Ref. 2; and
examples in curved spacetimes are discussed in Ref. 3.

C. The Cauchy problem with initial data
at past null infinity

Turn attention, now, to the Cauchy problem for
Cl@=0 in these spacetimes. We shall discuss the Cauchy
problem successively for initial data posed at past null
infinity of Figs. 3(a)—3(c) (this section), on a global space-
like hypersurface before the Cauchy horizons of Figs. 3(a)
and 3(b) (Sec. II D), and on hypersurfaces after the Cau-
chy horizons of Figs. 3(a) and 3(b) and throughout Fig.
3(c) (Sec. II E).

At first one might worry that the data at 2 are not
sufficient to determine the full evolution of 4. This is be-
cause the characteristics along which 4 propagates are
future-directed null geodesics, and not all such geodesics
originate at 2 . For example, for case (a) of Fig. 3 the
future-directed null geodesics that generate the Cauchy
horizon % all enter the spacetime from C rather than
from 2 . However, as was discussed in Ref. 1, no new
field 4 can enter the spacetime from C along with these
null geodesics. From one point of view this is because
these geodesics are a set of measure zero. From another,
more rigorous point of view it is because of the
diverging-lens property of the wormhole: These geo-
desics (which are past incomplete), and any field that
enters the spacetime with them, loop through the
wormhole an infinite number of times as they peel off C.
%'ith each loop the amplitude of the field W goes down by
a factor b /2a, and its frequency goes up by
v (1+v}/(1—v), where v is the speed of mouth 2 as it
passes through &. We insist that ( b2/a) (i/1 +)/v(1 —v)

be small compared to unity. This guarantees (i) that any
field which tries to enter the spacetime from 8 will be
driven to zero amplitude and zero energy before it can
get into the spacetime, and (ii) that any (classical) field
which originates at 2 will evolve through the Cauchy
horizon with finite amplitude and finite stress-energy ten-
sor, and therefore will not destabilize the Cauchy hor-
izon.

There are also future-directed null geodesics that enter
the spacetime at future timelike infinity i + and, propaga-
ting always toward the local future, work their way down
to the vicinity of & via an infinite number of wormhole
traversals. However, again because of the wormhole's
diverging-lens property, no new field 4 can enter the
spacetime by this route.

We note in passing that by inserting a waveguide be-
tween the wormhole mouths and keeping it there forever
into the future, one would be able to counteract the
wormhole's diverging-lens behavior and thereby bring
new field in from future timelike infinity i+. In this case
a full set of initial data would have to include those com-
ing from i+ as well as those from 2 . We shall not dis-
cuss this possibility further.

If there were no CTC's, then the full spacetirne devel-
opment of 4 would be uniquely determined by giving the
value of the field r4 (where r =+X + Y +Z ) every-
where on 2 . Do the existence of CTC's and the princi-
ple of self-consistency constrain these initial data in any
way? Friedman and Morris" have proved that the
answer is no for the simplest of our spacetimes: that of
Fig. 3(c). We thus are sure in this case, and we are al-
most certain also for Figs. 3(a) and 3(b), that even though
there are CTC's, the full development of 4 is everywhere
uniquely determined by the standard initial data on J

To see why this should be so for all three spacetimes in
Fig. 3, imagine solving U@=0 by straightforward local
evolution (e.g. , with Huygens principle, or by numerical
integrations using an arbitrarily fine mesh). The field will
propagate as in any fat spacetirne until it encounters a
wormhole mouth. At the mouth the field is subjected to
the junction conditions (3},which reflect some of the field
and transmit some. It is not important whether, from the
viewpoint of external time T, the transmitted field
emerges from the wormhole before it entered or after-
ward. In either case the transmitted field just continues
to propagate, superposing linearly on field that has fol-
lowed other routes.

To help keep track of this conceptually, denote by 4' '

that field which has never scattered from either
wormhole mouth; by 4'&" that which has scattered just
once and is outgoing from mouth 1 (it is comprised of a
reflection of 4' ' from off of the wormhole at mouth 1

and also a transmission of 4' ' that entered the wormhole
at mouth 2); by 4(2" that which has scattered just once
from the wormhole and is outgoing from mouth 2 (it is
comprised of a reflection of 4' ' from off of the wormhole
at mouth 2 and also a transmission of 4' ' that entered
the wormhole at mouth 1}. That is, each component 4('.")

originates at mouth i where it is fed in by a reflection of
ei(k-)) and by a transmission of C(k-i) (here ij =1,2
and i' ) via the boundary conditions (3), then it propa-
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gates via the flat-space wave equation with some losses
down mouth j (feeding 4~" " and 4' +") and other
losses to future null infinity. At any event P in spacetime
the full field 4 is the sum of all the components 4', '

there, given by 4&=N' '+gk, (4',"'+&bz"'). If this suin

converges for all possible choices of the initial data at
, then we can be quite confident that self-consistency

leaves the initial data unconstrained.
With each scattering from the wormhole and propaga-

tion on out to a typical point in spacetime, the amplitude
of the high-frequency (m ~1/b) parts will go down by a
factor of order b /2a because of the wormhole's
diverging-lens property; and the low-frequency parts
(co (( I /O) will attenuate so much [cf. Eqs. (4c)] that their
scattering and propagation on out to our typical point
will reduce their amplitude even more strongly than by
b/2a. Therefore, it seems reasonable to expect that the
sum over 4'; ' will be a convergent power series in the
small parameter b/2a; and correspondingly, it seems fair-
ly clear that the princip/e of self consiste-ncy places no con
straints on initial data at past null inanity, J' . For every
choice of initial data on 2 there will exist a unique, glo-
bal solution to CIA=0. (That solution typically will not
be smooth at the Cauchy horizon &: Just before A, a
high-frequency field can circulate through the wormhole
indefinitely many times on null geodesics that asymptoti-
cally approach the closed null curve C. With each circuit
the field's amplitude goes down by a factor b/2a and its
frequency goes up by &( 1+v)/(I —v). Correspondingly,
a"e/at" will be finite at & for all

—ln(b /2a)n&
in&(1+ v)/(1 —v)

but it may be infinite for n larger than this critical value. )

The Friedman-Morris proof, " for case (c) of Fig. 3,
that the principle of self-consistency does not constrain
the initial data on J in any way, begins by showing the
existence of generalized eigenfunctions of the operator
V +co in the space of functions that are smooth outside
the wormhole throat 8, obey the boundary conditions (3),
and fall off at large r like 1/r Then t.he self-consistent
evolution for 4 is obtained as a convergent superposition
of the generalized eigenfunctions. The proof shows,
moreover, that not only does there exist a self-consistent
evolution of 4 throughout the spacetime for each asymp-
totically regular choice of initial data at 2; but the evo-
lution in fact is unique. Although the proof does not rely
on the iteration procedure outlined above, Friedman and
Morris also show convergence of the iteration in the
long-wavelength regime [for A. & &2e orb and b /a
(1/(2e)] and in the short-wavelength limit. For inter-
mediate wavelengths, they have verified numerically that
the iteration converges, but a formal proof is not yet in
hand. We fully expect the Cauchy problem for the
scalar-wave equation in cases (a) and (b) to be similarly
well defined.

More generally, we expect that for other classical
zero-rest-mass fields (e.g. , the electromagnetic field) in the
spacetimes (a)—(c), the standard type of initial data at 2
will produce self-consistent evolutions that are unique up
to the addition of fields with topological charge. For ex-

ample, to achieve uniqueness for the electromagnetic
field, one must specify two numbers, the total electric and
magnetic fluxes through the wormhole's throat, in addi-
tion to the initial, radiative data at 2

To make this more clear, we note that for spacetimes
that are asymptotically static in the past, topological
charges are associated with solutions that are stationary
in the past and thus have nonzero data on past timelike
infinity ~' . Scalar fields, by contrast with electromagnet-
ic fields, do not have topological charges for wormhole
spacetimes, and it is easy to see that they have no asymp-
totically static solutions on static spacetimes: The scalar
wave equation takes the form of a 3-dimensional, nega-
tive definite Laplacian

V' 4=0~ 4V 4= — V4 =0, 7

so 4=0 at spatial infinity means that 4 must vanish
everywhere.

Note that in some asymptotically flat spacetimes, even
ones with Euclidean topology, data on 2 can fail to be
complete. One example is a spacetime with an ergo-
sphere and no horizon. Counter-rotating particles in the
ergosphere have negative energy and are therefore
trapped in the past and the future. Corresponding initial
data for fields with negative energy always exist, describ-
ing counter-rotating waves in the ergosphere. When
evolved to the past, such negative-energy fields must have
support at i' as well as at J, because data at J' can
have only positive energy. In fact, such spacetimes have
unstable outgoing normal modes that vanish exponential-
ly as one approaches 2 and i', and thus even data on

Uc' fail to be complete. We do not expect any such
peculiarities in our wormhole spacetimes; rather, because
geodesics that are spatially trapped are a set of measure
zero, we expect that data on J' will be complete in the
sense of the preceding several paragraphs.

D. Initial data posed on a global spacelike hypersurface
preceding the Cauchy horizon

In cases (a) and (b), where there is a Cauchy horizon
before which CTC's do not exist, we can try to pose ini-
tial data in the region preceding the horizon. In this re-
gion there exist global spacelike hypersurfaces which pass
smoothly through the wormhole and intersect spacelike
infinity ~'o in 2-surfaces with 2-sphere topology. Such a
hypersurface, X, is a natural place on which to pose the
initial data. If there were no CTC's to the future of X,
then a complete set of initial data would be the values of
4 and its normal derivative 4 „on X; and to each choice
of [@, 4 „) there would be a unique future evolution of

Can the CTC's in Figs. 3(a) and 3(b) change this? The
answer is almost certainly no. Again, as in the last sec-
tion, we can evolve our arbitrary initial data forward as a
sum of components that have traversed the wormhole in
specific sequences of ways; and as in the last section, it is
reasonable to expect the sum to be a convergent power
series in 6/2a. "
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K. Initial data posed in the region ~ith CTC's

Denote by 7 the region of spacetime with CTC's —i.e.,
the future of & in case (a); the region between A' and
%+ in case (b); the entire spacetime in case (c). The pos-
ing of initial data in this region Y is made complicated by
the complex structure of global spacelike hypersurfaces
there: Any spacelike hypersurface that enters the region
T must inevitably encounter and pass into mouth 1, em-
erging then from mouth 2 at a location which is in the
causal future of its entry; it must then again encounter
mouth 1, and again emerge from mouth 2 at a location
still further in the future, and so forth. As a result the
spacelike hypersurface will have many [and in cases (a)
and (c) an infinite number of] sheets, each extending out
to a 2-surface with 2-sphere topology at spacelike infinity.
Such a hypersurface is ill suited for posing initial data for
the Cauchy problem.

It seems to us that the difficulties of the Cauchy prob-
lem for 0& in the region 7' are best regarded as arising
from this failure of T to have reasonable spacelike hyper-
surfaces, and not from the CTC's themselves. If the
CTC's were the key impediment, then the Cauchy prob-
lem with data posed before T would also encounter
difficulties, which it seems not to (Secs. IIC and IID
above).

It should be evident that the difficulties with posing
data in T are global and not local. The difficulties are
sufficiently nonlocal for it to seem clear intuitively that
the spacetimes of Fig. 3 are benign for the field 4 in the
sense discussed in Sec. I. We give a proof of benignness,
in the geometric optics limit, at the end of this section;
but first we shall lay foundations for that proof.

We have been able fully to understand the Cauchy
problem in the region T only in the geometric optics lim-
it of arbitrarily short wavelengths (propagation of 4
along null rays). We shall describe it in this limit, re-
stricting attention for pedagogical simplicity to case (c) of
Fig. 3—which we redraw with auxiliary information in
Fig. 4.

If the wormholes were absent, we could pose our initial
data, 4 and B4/BT, on the hypersurface X of constant
external time T =0; and those data would propagate for-
ward in time along null rays to produce a unique field 4
throughout the future of X. In the presence of the
wormhole we shall similarly choose as our initial data 4
and d@/dT on X; and then we shall adjust those data and
provide additional data elsewhere so as to preserve ex-
istence and uniqueness of the evolution.

The data on X are not sufficient to determine the evolu-
tion uniquely because there are many rays which never
pass through X. An example is the ray a in Fig. 4.
Fields can propagate along such rays, transiting from the
past of X to its future via the wormhole throat rather
than via X itself. Correspondingly, we must augment our
initia1 data by the field N on such rays as they pass
through the throat. Stated more precisely, we must give,
on the portion S =%( —Td & &0r) of the wormhole's
world tube, the field 4 that is propagating from mouth 1

to mouth 2. Notice that the combined surface4:—X UX, on which we give our full data (and which is

a
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/ g()
mouth 1
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FIG. 4. The Cauchy problem for a classical scalar field 4 in
the geometric optics limit, with the initial data posed in the re-
gion V'of CTC s. The spacetime is that of Fig. 3(c). The initial
data are posed on the stippled region (the spacelike hypersur-
face X cut off at the wormhole throat, i.e., at the 2-spheres la-
beled v =0 and ~= —TD, and the segment %+ of the throat's
timelike world tube, which joins these two spheres). The data
are not fully free; rather, they are constrained so that field
which propagates along rays such as f3 will be fully self-
consistent.

stippled in Fig. 4) is a continuous surface that has as its
only boundary a 2-sphere at spacelike infinity io. It is the
closest thing there is to a Cauchy surface in the region 7
of CTC's: it extends across the entire spacetime, but it is
not everywhere spacelike; rather, it contains a spacelike
piece X and a timelike piece S..

It is easy to convince oneself that the data we have
posed on the surface 4 are sufficient to predict the future.
However, not all such initial data will produce self-
consistent evolution. The reason is that there are rays
such as P (Fig. 4) which, by traversing the wormhole
from mouth 2 to mouth 1 (opposite direction from ray a),
manage to pass through X more than once. The initial
data on such rays must be constrained so as to give self-
consistent evolution; and similarly for rays (if any) that
pass through 8, from mouth 1 to mouth 2 and then, via
multiple wormhole transits in the opposite direction,
manage to get into the past of X, and then cross the stip-
pled region a second time.

To recapitulate, the initial data must be posed on the
stippled region S=XUX„ofFig 4, with 4 and d+IdT
given on X and mouth-1-to-mouth-2 field 4 given on %~;
and those portions of the initial data which propagate
along rays that intersect the stippled region two or more
times must be constrained for self-consistency.

It can be verified as follows that these self-consistency
constraints are benign. Consider, in the spacetime of Fig.
4 (and also in the spacetimes of Fig. 3) the set 9' of all
events 6 with the property that some null geodesic
through Q, when followed forward or backward in local
time, ultimately returns arbitrarily close to Q. Examples
of such events are those which lie on the closed null geo-
desic C in Fig. 3(a); in other words, C C Q. It should be
clear that on any spacelike hypersurface through the
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spacetimes of Figs. 3 and 4, the set 9 has measure zero.
Now, choose an arbitrary event P which is not in the set

and choose an arbitrary spacelike hypersurface
through that event. Then there will be some neighbor-
hood JV of P in I, which (i) can be made part of a (slight-
ly locally deformed) hypersurface that has the same form
as the X of Fig. 4; and (ii) has the property that no null
geodesic intersects JV more than once. The initial data
for evolution of 4 can be posed arbitrarily on this neigh-
borhood JV (see preceding paragraph). Those initial data
determine, through each event in JV, a future directed
null ray along which the field from that event evolves via
geometric optics. By evolving 4 along these null rays,
and adding together (linearly superposing) the resulting
fields at all events in spacetime through which more than
one of these rays pass, and by setting to zero the field 4
at events through which none of these rays pass, we ob-
tain a self-consistent evolution which contains our initial
data on JK Thus, when we ignore the set 9, the space-
time is benign for the field 4. But, since 0 has measure
zero, when we insist that our field be made of nonzero
wavelengths (as any field must), but still contain only tiny
wavelengths (so geometric optics remains a good approxi-
mation), then data posed in neighborhoods of all events
not in 0 will completely determine the evolution of 4.
Thus, the events in 9 cannot prevent the spacetime from
being benign. (See also the second paragraph of Sec. II C,
above, for a different viewpoint on the unimportance of
events like those in Q. )

In this proof of benignness, it is crucial that the set 9
have measure zero. If it did not have measure zero, then
not only would the spacetime fail to be benign, but also
finite-wavelength waves presumably could propagate
around and around the spacetime and pile up an infinite
number of times in the vicinities of events in Q. This
presumably would produce a divergence of 4's stress-
energy tensor, which would act back through the Ein-
stein field equations to change the structure of the space-
time. This leads us to suspect that classical stability of
the evolution of 4 may be a key underpinning for benign-
ness; see the discussion and conjecture in Sec. I.

one can obtain an integral conservation law for the ener-
gy:

S"dX„=O . (9b)

Here BV is the boundary of V.
Although Gauss's law is commonly stated only for

orientable manifolds, when S" is a true vector field (i.e.,
polar, not axial), Eq. (9b) follows from (9a) for nonorient-
able manifolds as well, ' with dX„ the outward directed
volume element normal to BV.

The wormhole spacetime of Fig. 3(c), which has CTC's
throughout, possesses a timelike Killing vector field:
g'=dldT, where T is the Lorentz time coordinate. (The
discontinuity in T across the wormhole throat does not
produce any corresponding discontinuity in g=BIBT;
that g satisfies Killing's equation everywhere, including
at the throat. ) The corresponding density-fiux 4-vector
S"=—T "g has Lorentz components

i.e., the density of conserved energy is just the ordinary
energy density T measured by static observers, and the
flux of conserved energy is the ordinary energy flux T ~

that they measure.
Now, apply the integral conservation law to the 4-

volume V depicted in Fig. 5. The boundary of V in-
cludes two copies of the stippled region 4—:X US. on
which we posed initial data in the last section: one copy
4, with X, the surface T= T, , and the other copy $2
with X2 the surface T= T2 & 'r&. These 4& and $2 are at-
tacked together by a timelike spherical world tube at
spacelike infinity i to form the closed 3-surface BV.
When this BV is used in the energy-conservation law (9b),
and the outward normal is reversed on eV2, and it is
presumed that T"' vanishes at spacelike infinity, then we
obtain

F. Global conservation laws in wormhole spacetimes

Turn attention from the Cauchy problem for the field
C to its law of energy conservation. In any spacetime, in-
cluding one with wormholes and CTC's, the stress-energy
tensor of 4 is given by

Here the semicolons denote covariant derivatives. The
field equation N —= N' . =0 enforces the local law of
energy-momentum conservation T" . =0. If the space-
time has a timelike Killing vector field P, there will be a
corresponding conserved energy E with density-Aux 4-
vector S"= —T4"(; i.e. , this S"will satisfy

(9a)

From this differential conservation law, by integrating
over any closed 4-volume V and applying Gauss's law,

FIG. 5. Region of integration for formulating the law of glo-
bal conservation of energy in a static, asymptotically flat space-
time with a wormhole and closed timelike curves. Each surface

is identical in geometry to the stippled region in Fig. 4, where
initial data are posed. The integral of the energy density-flux 4-
vector over each surface 4 has a value independent of 4, i.e., a
conserved value; that value is the total energy in the spacetime,
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S" X„= S" X„.
In other words, the quantity

E= S"dX„= T dx dy dz+, T "dA dT (12)

G. Nonlinear effects: The billiard ball problems

To what extent is the classical, massless scalar field 4 a
good guide to the Cauchy problem for other fields?
There are two important properties that 4 lacks: In-
teraction with itself or other fields, and quantum-
mechanical behavior. Elsewhere one of the authors (No-
vikov ) discusses a class of complicated classical tnodel
problems with interactions (e.g. , bombs that explode in
response to a trigger signal, and then send explosive
debris through a wormhole and backward in time where
it tries to trigger the explosion before the explosion actu-
ally occurred). In this and the next section we shall pose
and discuss a class of much simpler model problems by
which interaction effects and first-quantization effects can
be studied (but not second-quantization effects, i.e., not
quantum field theory).

Our model problems involve a single, perfectly elastic
"billiard ball" (particle surrounded by a hard-sphere,
two-body potential), which moves relative to the
wormhole mouths with speeds small compared to light so
it can be treated nonrelativistically. By traveling back-
wards in time through a wormhole, the ball can en-
counter and collide with itself. We shall discuss such a

is independent of the time T at which the surface X is
taken. (Here T " is the radial energy fiux fiowing
through the wormhole throat from mouth 1 to mouth 2,
and d A is the element of surface area on the throat S„.)

This conserved quantity, F., is the field's total energy,
and Eq. (12) for it has a simple interpretation: The in-
tegral over X is the total energy measured by static ob-
servers at time T. The integral over S„consists of two
parts: a positive contribution due to energy which flows
from mouth 1 to mouth 2 ("time travel into the future")
thereby avoiding the surface X; and a negative contribu-
tion due to energy which flows from mouth 2 to mouth 1

("time travel into the past") thereby forcing itself to cross
the surface X twice. Equation (12) says that the con-
served total energy is the energy seen by static observers
at time T (i.e., on X), plus the energy which is absent at
time T because it is time traveling into the future to avoid
showing up there, minus the energy that is double count-
ed at time T because it time traveled into the past and
thence flowed through X twice.

The same procedure as we have applied to the con-
served energy density-flux 4-vector S" can be applied to
any other conserved vector field. In other words, just as
in the absence of wormholes and CTC's, so also in their
presence, every differential conservation law that involves
a density-fiux 4-vector (e.g. , charge conservation and
baryon conservation) can be converted into an integral
conservation law. As we remarked in Sec. I, this fact
reinforces the authors' feelings that CTC's are not so nas-
ty as people generally have assumed.

B' A'

~ ~

(b)

FIG. 6. Spatial trajectories of a billiard ball that travels back-
ward in external time by traversing a wormhole, and then col-
lides with itself. The evolution depicted in (a) violates the prin-
ciple of self-consistency; that in (b) does not.

ball classically at first, and then quantum mechanically.
Figure 6(a) shows a "paradox, " pointed out to us by

Polchinski, which started us thinking about billiard-ball
problems: The spacetime is that of Fig. 3(a), and Fig. 6(a)
is a spatial diagram in the final wormhole rest frame,
showing events that occur long after mouth 2 has come
to rest. The initial data (initial position and velocity of
the ball) are posed before the Cauchy horizon in such a
way that the ball moves along the solid trajectory o.. This
trajectory takes the ball into mouth 2 at point A, then out
of mouth 1 at B before it went in, and then along the
dashed trajectory p. The timing is just right for the ball
to hit itself, knocking itself along the dotted trajectory y
and thereby preventing itself from ever reaching mouth
2.

This paradox is an idealized version of "killing one' s
younger self' (changing the past). The principle of self-
consistency says that such evolution is impossible. The
history shown in Fig. 6(a) is not a self-consistent solution
to the evolution equations; in fact, strictly speaking it is
not a solution at all because the world line of the billiard
ball is double valued in a self-inconsistent way. If there
are no globally self-consistent trajectories that start with
the initial world line o., then the principle of self-
consistency will prohibit the initial trajectory n from be-
ing posed in the first place. If there are global solutions,
then the initial trajectory will be permitted.

It is a well-posed (but somewhat algebraically compli-
cated) problem to ask whether there exist any self-
consistent evolutions that begin with the initial trajectory
a—and if so, whether there is only one (uniqueness) or
more than one. Two of the authors (Echeverria and
Klinkhammer") are currently studying this question, and
have demonstrated that for a wide class of initial data
which give paradoxical, self-inconsistent solutions of the
form shown in Fig. 6(a), there in addition are self-
consistent solutions with the qualitative form shown in
Fig. 6(b): The ball starts out on the trajectory a; but be-
fore reaching mouth 1 it is hit by itself moving along a
trajectory p' which is a bit different than the p of Fig.
6(a). The ball on p' strikes itself on a a gentle, glancing
blow, driving itself into a slightly altered trajectory a .
This altered trajectory takes the ball down mouth 1 at a
slightly altered point A', and out at B' before it went
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down, and along the trajectory p' to the event of col-
lision.

Echeverria and Klinkhammer' have reduced the
search for self-consistent evolutions, for given initial data
(initial billiard-ball trajectory), to the solution of a highly
nonlinear set of algebraic equations. There is the same
number of unknowns as equations, so there should be a
discrete number of solutions (evolutions): 0, 1,2, . . . . For
most initial data, Echeverria and Klinkhammer' have
found one or more solutions; but there may well be some
initial data with zero solutions, i.e., no self-consistent
evolutions. An analogous possible absence of self-
consistent evolutions is being analyzed by Novikov and
Petrova for an inelastic billiard ball with friction.

For a perfectly elastic billiard ball, Echeverria and
Klinkhammer' have identified sets of initial data with
nonzero measure that can give rise to more than one
self-consistent evolution. Figure 7 shows a simple exam-
ple (due originally to Thorne): The evolutions in diagrams
(a} and (b) are two self-consistent outcomes from the same
initial data.

The initial data for Fig. 7 are posed before the Cauchy
horizon of Fig. 3(a), but Fig. 7 shows the evolution only
long after that horizon, when the second wormhole
mouth has come to rest. The initial data consist of a sin-
gle billiard ball moving along a trajectory that is aimed
half way between the two wormhole mouths (trajectory
a}. In evolution (a) [henceforth we shall call it classical
history (a)j the ball moves freely between the mouths, nev-
er colliding with anything. In classical history (b) the ball
gets hit by itself and knocked down mouth 2 at point A,
whereupon it emerges from mouth 1 (earlier in external
time) moving along trajectory p, and hits itself. Echever-
ria and Klinkhammer' have shown that the existence of
two classical histories, type (a) and type (b), is stable
against small perturbations of the initial data, and have
identified a variety of other sets of initial data with multi-
ple classical histories.

H. Quantum efFects: The billiard ball problems

This multiplicity of solutions is disturbing. However,
it appears to be an artifact of classical physics that goes
away in a fully self-consistent, quantum mechanical treat-
ment.

The most attractive approach to quantum theory in the
presence of closed timelike curves (but perhaps not the
only viable approach) is Feynman's sum over histories.

One of the authors (Friedman ) has previously advocat-
ed this view. The sum over histories meshes especially
nicely with the principle of self-consistency. To impose
that principle one need only ensure that the sum includes
every self-consistent history, and only self-consistent
ones. Two of the authors (Klinkhammer and Thorne' )

have developed such a sum-over-self-consistent-histories
formulation of nonrelativistic quantum mechanics for the
self-interacting billiard ball and have found, not surpris-
ingly, that it gives a unique, self-consistent set of proba-
bilities for the outcomes of all sets of measurements one
might imagine making; i.e., it removes the classical
theory s multiplicity of solutions —or, at least this is so if
the sum over histories converges. (No attempt has been
made to prove convergence. )

When the billiard ball begins in a nearly classical wave
packet corresponding to the initial conditions of Fig. 7, a
WKB approximation to the sum over histories predicts a
50% probability for the ball's wave packet to emerge
from the wormhole region moving along each of the two
classical trajectories, Fig. 7(a) and Fig. 7(b). '

When the ball begins in a nearly classical wave packet
for which there are no self-consistent classical evolutions,
the WKB approximation must fail, and presumably
(though no proof of this has been given) the existence of
CTC's will cause the probabilities of finding the ball at
various locations to get smeared out rather than remain
highly localized.

III. 2-DIMENSIONAL, FLAT, TOROIDAL SPACETIMES

The two most important features of the Cauchy prob-
lem for a classical massless scalar field 4 in the wormhole
spacetimes of Sec. II are (i) the fact that initial data posed
before the Cauchy horizon are unconstrained by the prin-
ciple of self-consistency; and (ii) the fact that initial data
posed in the region with CTC's are locally un-
constrained —i.e., these spacetimes are benign with
respect to 4—at least in the geometric optics limit.

While we suspect that these properties hold also in oth-
er generic, asymptotically Aat, 4-dimensional spacetimes,
they certainly do not hold in all spacetimes —or, at least,
the benign property does not. Flat, toroidal spacetimes
provide simple counterexamples, which we shall study in
this section:

The spacetimes we shall study all have the Hat, 2-
dimensional metric

ds = —dT +dx (13a)

where T is periodic with period P:

(T,X) is the same event as ( T+P,X) . (13b)

(a)

FIG. 7. Two classical evolutions (histories) for a billiard ball
that result from the same initial data (position and velocity).

Such a spacetime is closed in the time direction. We shall
study the initial value problem for a classical, massless
scalar field + in such a spacetime for the cases where X
runs from —

OD to + ~ (Sec. III A), and where X is
periodic with period L, and P/L is an integer, or is ra-
tional, or is irrational (Sec. III B).
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A. Spatially infinite spacetime

This general solution is made more clear by splitting %2
into a constant piece (call it C) plus a piece whose integral
over the time period P vanishes:

4~(T)=C+4,(T), f t2(T)dT=O . (15)
0

Then the solution (14) becomes

4( T,X)=—[4, ( T —X) +4, ( T +X) ]
1

+—f 0'2(s)ds+ CX .
T+X-

2 T —X
(16)

It is easy to see that the pieces generated by 4', and +2
are strictly periodic in space X with period P (as well as
periodic in T with period P), while the CX is monotonic
increasing in X.

Knowing this general solution to U4=0, we can turn
it around and deduce the free initial data on a spacelike
surface of constant time, say T=O. It should be clear
that those free data are 4 and 4 z subject, however, to
the following self-consistency constraints: (i) 4 r(X}
must be periodic in X with period P and its integral over
any interval (Xo,Xo+P) of length P must vanish; and (ii)
4(X) must consist of a piece that is periodic with period
P, plus a piece that is linear in X. These are relatively
mild constraints; mild enough, in fact, to demonstrate
that the spacetime is benign with respect to the field 4.
We shall call these two constraints P periodicity.

B.Spatially closed spacetime

If the spacetime of Eqs. (13) is spatially periodic with
period L, this periodicity will change the character of the
initial-value problem. In particular, it will force the ini-
tial data 4& r(X) and 4(X) at T=0 to be periodic with
period L. We shall call this constraint, together with an

Xo+L
additional integral constraint, j x 4 r(X)dX=0 for

0

all Xo, strict L periodicity.
If the ratio P/L is an integer, then strict L periodicity

implies P periodicity with the term linear in X vanishing,
i.e., implies strict P periodicity. Stated more precisely, if
P/L is an integer, then the existence of CTC's places
only one minor new constraint on the initial data, beyond
those required by spatial closure: the constraint that the

In the spatially infinite case the easiest place to pose in-
itial data for += —4 ~~+4 ~~ =0 is on a timelike sur-
face of constant X rather than a spacelike surface of con-
stant T. Because the wave equation is insensitive to
which of the two directions is time and which is space, it
should be clear that a complete set of initial data on, say,
X =0, is 4&(T)=—@(T,O) and %'2(T):—@x(T,O), where
both 4, and 4'2 are periodic in T with period P. From
these two functions one can construct a unique solution
to 4=0:

4(T X)=—[4&(T—X) +4&(T +X)] +—f %z(s)ds .
1 1 T+X

2 2 T —X

(14)

integral of 4 r(X) over any interval of length P must
vanish. Of course, in this case as for the spatially infinite
case, the spacetime is benign for N.

If the ratio P/L is rational but nonintegral, then strict
L periodicity does not imply P periodicity. However,
strict L periodicity and P periodicity are perfectly com-
patible: they are both guaranteed by the demand that the
initial data 4 r(X) and 4(X) be strictly S periodic (no
linear term), where S is the largest number such that P/S
and L/S are both integers. This constraint on the initial
data leaves the spacetime benign for 4.

Most interesting is the case where P/L is irrational. In
this case P periodicity and strict L periodicity are mutu-
ally incompatible; and, correspondingly, there are no

self consistent solutions to 4=0 except constants. This
means that the spacetime is not benign. Moreover, with
the obvious measure put on the class of toroidal 2-
dimensional liat spacetimes of the above type [metric (13)
with periodicity in both T and X], all but a set of measure
zero have P/L irrational. This means that all but a set of
measure zero fail to be benign. A similar but slightly
more involved analysis by one of the authors (Yurtsev-
er' } shows that this is true much more generally in two
dimensions: Among alI two-dimensional compact space-
times, those that are benign constitute a subset of mea-
sure zero.

We suspect that the opposite is true for realistic, four-
dimensional wormhole spacetimes: All but a set of mea-
sure zero will turn out to be benign. If so, and if the laws
of physics turn out to permit traversible wormholes with
stable Cauchy horizons, then theoretical physics might
adjust rather easily to the CTC's that wormhole space-
times produce.

A much more detailed discussion of the notion of
benignness in compact spacetimes (including the inter-
connections between benignness and the topology and
geometry of the spacetime) are given in Ref. 12.

IV. CONCLUSIONS AND SPECULATIONS

We conclude with a few remarks and speculations.
Most importantly, we wish to reemphasize that it is far

from obvious whether or not the laws of physics permit
CTC's. ' If it turns out that CTC's are forbidden, then
this paper will become a somewhat irrelevant exercise. If
CTC's are allowed, then the considerations in this paper
may point the way toward an accommodation between
them and theoretical physics. Such an accommodation,
we hope, would someday entail proofs that the properties
we see hinted at in our model wormhole spacetimes and
for our model problems are true quite generally: (i) the
CTC's allowed by physical law leave spacetime benign,
(ii) they leave unconstrained, at least in quantum theory if
not in classical theory, those initial data which are posed
before the region with CTC s, and (iii) they leave unique
the evolution of probability amplitudes as dictated by the
path-integral approach to quantum mechanics.

If CTC's are allowed, and if the above vision of
theoretical physics' accommodation with them turns out
to be more or less correct, then what will this imply
about the philosophical notion of free will for humans
and other intelligent beings? It certainly will imply that



OHN FRIEDM&& et ~~.

ACKNOWLEDGMENTS

s with one or anot er of us weFor ep u
Valery Fro ov,

k J H 1 Lo-
Ed

'
S 1P 1 hinski, Carl Sagan,

u orte in p

at the University o
-8817792 at Caltech), y

ciences of the USSR, and y eof S
or Theoret

APPENDIX: STRUCT URE OF THE CAUCHY HORIZON

Caix w
'

the structure of the u-dix we elucidate e s u-

h 1 t ofF
orizon's structure depen

i. 8): Dri h
rs the etm

pp'"g ' 'g

rd it
Cauc y rh horizon occur,

th moves toward
'

ri-
p g

h
th X [F . 3( )].

ca po
wi

=0' h XZ 1with P= in
8 )on

tee
dp p1 olar coor

'

'rec-
i.e., toward the rig

two mouths wit eh ointson t e wX-Z p lane. T en po' w
are identified.

red byture are obscure
same va

horizon's struc u
as

di 1 h d11 short. Accor g y,infinitesima y s . rd y,
shall give

'
e the throat a ni e

i . 9.
hor-In any asy

h h lifuture region t m imnwit t em

b
properties.

n is a null surface ge enerated yy
no ast endpoints.

acelikee, h the set
ll eodesics with no p

S can be any space
'653 of Ref. 26, in which

h horizon and ex-h persurface that prece esyp

&928

e the pas .h ast. Such changeintelligent beings ca ot g s
ci le of self-consisten y.p p

o ldb tdbg ptne o
g

'1 fro k

a bal character tha
in wou ld be constraine .

n constrain st on free wil
h sics, it is

has a more glo a
dard, local laws of p y

or thh t tto us that t is cnot obvious to u
h sical law.y p y

s eculate about possi ep g p

ler many-wor s
'

eculations toh 11 hHowever, we s amechanics.
the reader.

,tY

w oints on the twoam showing how poinFIG. p g
nnected to eac ohole mouths are conneworm oe

d P re the same.same values of Oan are

sed achronal setnit . This Sis a closeptends o
nd 0+(S) is our aucwi

hion 6.5.3, t e
enera-

cor in
11 d

'
d

h h f S]'ntersecting t e
' on&can eb

os th t t A oa t,mel, ke c rve. (Suppose
- 'rectedent+ on

o
y

11 R
were

. Since is nu,
's to the re-one direction:on

' ':from the region
must enter the g'e re ion wit'th them. Thus, mugion wi

s depicting t e etrs p' h spatial geometry
fi t b tt t}1f the wormhole, w en

lice of simultaneity as m
o e

s are for a s ice o
est to them.

ness. ' g
ervers at rest relative tot ewo e

each other shows up in a
by observers a

hs move toward eac ot that the mout s mThe fac
of the sice

f h}1 b nd }1 left edge o
ared to

mouths, i.e., at e
is small compare

}1

n is tiny;
If the relative spec o

) this nonmeshing is in,
gram.

shown here, i
in be-

d f light (the case
'

ht the nonmeshingif the relative speed is c ose
comes significant.



42 CAUCHY PROBLEM IN SPACETIMES WITH CLOSED. . . 1929

~ ] ~
~ ~

~ I ~
~ ~

~ I ~
~ ~

FIG. 10. Spatial depiction of the null geodesic generators of
the Cauchy horizon. All the generators peel off the closed null
curve C. Notice the two caustics, which are shown as jagged
lines.

CTC's at its starting point A, it cannot ever thereafter
leave that region, and it therefore must arrive at 8 from
the side with CTC's. However, this means that, if pro-
longed slightly beyond 8, R will pass in a future-directed
manner from the region with CTC's to the region
without, which is impossible. )

(3) No two generators can cross each other when fol-
lowed into the past, and a generator cannot cross itself.
[The finite crossing angle in spacetime would permit
points on one generator to be joined to points on the oth-
er generator by timelike curves, in violation of property
(2).]

These three properties permit us to deduce the struc-
ture of the Cauchy horizon % for the spacetime of Fig.
3(a). Because this spacetime is axisymmetric about the
line of centers between the wormhole mouths with
hypersurface-orthogonal Killing vector 8/BP, its Cauchy
horizon % will be axially symmetric and the generators
of % will lie in poloidal 3-surfaces of constant P (where P
is as defined in Fig. 8). This means we can restrict atten-
tion to a representative such 3-surface, say that with

P = 0, the two spatial dimensions of which are depicted
by the embedding diagrams of Fig. 9. The only way that
null geodesic generators, lying in this 3-surface, can ex-
tend indefinitely into the past while never crossing each
other or themselves and never developing timelike sepa-
rations [i.e., the only way they can satisfy the properties
(l), (2), and (3)] is by asymptotically approaching one or
more closed null geodesics (CNG). Figure 9 shows the
spatial trajectories of three such CNG's: curves 8, 2), and
8. With these examples of CNG's as prototypes, one can
readily identify others.

The CNG 6" cannot be an asymptote of generators of
~ because it crosses itself. The two curves C and S can-
not both be asymptotes because they either cross each
other or have events that are timelike separated. [The
event where 2) crosses the X axis lies at the same location
in space as some event on C (as seen in any Lorentz
frame that moves along the X-axis); and those two events
can thus be connected by a timelike curve or are the
same. ] Since the spatial curve C drawn in Fig. 9(a) has a
shorter spatial length than S, as the two wormhole
mouths move toward each other, it will become null (and

'i

~)

~
g

'o)

I ~

g =o -,:ii'
~ ~

:)) Q— =X
FIG. 11. Spacetime depiction of the Cauchy horizon. The

stippled region is excised from the spacetime and its outer edges

are joined together to make the wormhole throat. Along the

stippled region is indicated proper time as measured in the
wormhole throat. Notice the two caustics on the Cauchy hor-

izon.

thus become the CNG C) sooner than does 2). Thus, the
CNG 8 lies to the past of the CNG 2), which means that
C is the candidate for the asymptote of the null genera-
tors, not 2).

By extending this type of argument to the other
CNG's, one can show that C is, indeed, the asymptote;
i.e., all null generators of % emerge from (peel oS C
when followed into the future.

Figures 10 and 11 depict, in a spatial embedding dia-
gram and in spacetime, the null geodesic generators and
the Cauchy horizon they generate. Notice that the Cau-
chy horizon % possesses two caustics at which its null
generators leave & when followed toward the future.
One caustic lies on the X-axis to the right of the right
mouth; the other, on the X-axis to the left of the left
mouth. Aside from these two caustics the Cauchy hor-
izon is everywhere smooth.

For the spacetime of Fig. 3(b), which is not axisym-
metric and whose Cauchy horizon % we have not stud-
ied in detail, there might be two or more spacelike
separated CNG's which act as asyrnptotes for the genera-
tors of & . At least, this might be the case for a
sufficiently large relative velocity of the two mouths.
However, when the relative velocity is sufficiently small,
one of these CNG's, C, will have a shorter spatial
length than the others and thus will occur earlier in time
than the others —sufficiently earlier that the others all
lie in its future, thereby leaving C as the sole asymptote
for the generators of&
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