PHYSICAL REVIEW D

VOLUME 42, NUMBER 5

1 SEPTEMBER 1990

Longitudinal- and transverse-wake-field effects in dielectric structures

M. Rosing and W. Gai
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
(Received 8 March 1990)

A dielectric-loaded circular waveguide structure is a potential high-gradient linear wake-field ac-
celerator. A complete solution is given for the longitudinal electric and magnetic fields excited by a
8 function and a Gaussian charge distribution moving parallel to the guide axis. The fields are then
given in the limit of particle velocity equal to the speed of light. Example calculations are given for
a structure with inner radius of 2 mm, outer radius of 5 mm, dielectric constant of 3, and total
charge of 100 nC. Peak wake fields in excess of 200 MV/m are found. Azimuthal modes 0 and 1
are investigated for the particular interest of acceleration and deflection problems.

The electromagnetic radiation of a charged particle
passing through a structure containing dielectrics"? has
many applications to accelerator physics. The next gen-
eration of electron-positron linear collides will require
high-accelerating-gradient (> 100 MV/m) structures.
Recently a new acceleration scheme, called the dielectric
wake-field accelerator, has been proposed.’ The concept
of dielectric wake-field acceleration is very simple. It is a
dielectric-lined waveguide and because of its slow wave
characteristics it can be used as a wake-field device. In
order to make the dielectric structure a practical wake-
field acceleration device, however, one has to have high
gradients and manageable transverse wake fields. The es-
timation of the transverse wake-field amplitudes in the
dielectric structure is essential because it is directly relat-
ed to the beam instability (or beam break-up mode) prob-
lem.* In this paper we calculate both the longitudinal
and transverse wake fields produced in a dielectric struc-
ture by passing a charged particle. First we give a gen-
eral expression for the wake fields corresponding to any
particle velocity S=v /c including all azimuthal modes
m, then discuss the implication of the results under the
limit of B— 1, in particular for m =0 and 1.

We should point out that in our previous calculation®
of the transverse wake field in the dielectric structure, we
assumed that the vector potential A was proportional to
the scalar potential ¢. The implication of this assump-
tion was that only TM-like wake fields would be excited,
and that no TE-like wake field would exist. The conse-
quence of this was that the higher-order azimuthal-mode
m = 1 wake fields vanish when the electron beam is ul-
trarelativistic. This unexpected result attracted much in-
terest in the community. Since then we continued calcu-
lations without preassumptions, as shown in this paper.
In the meantime many other people®® have also investi-
gated this problem, and the results are that both TE and
TM waves exist in the dielectric structure for m =1
modes. The conclusion of all these works is that the
transverse wake fields do not vanish even in the ultrarela-
tivistic limit.

Consider the configuration of a metallic tube with
inner radius b, partially filled with isotropic material with
dielectric constant €, containing a hole of radius a at the
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center which allows charged particles to pass through as
shown schematically in Fig. 1. This structure is essential-
ly an rf waveguide, having the usual rf waveguide charac-
teristics. In our case we concentrate on the electromag-
netic field radiated by a passing charged-particle beam.
Consider a particle with charge e moving at velocity v
along a line parallel to the axis of the tube at a distance r
as shown in Fig. 1. Because of the presence of the dielec-
tric material, the Cherenkov radiation conditions will be
satisfied when B>¢€~ !/ and the particle will generate
wake fields behind it. The wake fields produced by the
motion of a charged particle are given by Maxwell’s
equations:

vxE=-19B  gp=p,
¢ Ot
1 0D | 4n
V-D=4mp, VXH=——+—j,
TP EY - j (1)

D=¢E, B=uH .

From here on we will assume permeability pu=1.

As a standard way of solving electrodynamic problems
we introduce a scalar and a vector potential ¢ and A,
defined as

1 dA
E=—V¢————, B=VX 2
¢ e o A (2)
and choose the Lorentz condition
v.A+L g 3)
c ot

The Maxwell equations can then be transformed into two
uncoupled inhomogeneous wave equations, one for ¢, one
for A:

c? €

2 2
v%—ﬂi%?‘?:—“—”ﬂ VZA—%a A nj.
@)

For a charged particle moving at velocity v in the cylin-
drical coordinate z direction, the charge and current den-
sities are
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FIG. 1. A schematic dielectric weak-field structure.

ed(r—ry) .
p=———r——8(9)8(z——vt), i=vp. (5)

First we solve for the potential in the vacuum hole. In
this case e=1 and u=1. Expanding the 8 functions
|

XJ,, (kro)k dk , (6)
=1 [ iwmiz—w
sz—u)=——[" ¢ do, (7)

the charge density p(r, 6,z,t) can be written as

p(r,0,z,t)= Y )2 2 ffpm(r,ez tk,w)
Xkdkdo , (8)
it is easy to show that p,, satisfies the wave equation (4):
19
Viom = 530 =M s )

i.e., it is an eigenfunction of the d’Alembertain operator
with eigenvalue A= —[k?+(w/c)1—pB?)]. It is straight-
forward to show that the inhomogeneous solution of the
wave equation is

- kro) i{w/v)(z—vt)
e o
(r,z,0=—- em® dok dk
¢ :2 f f [k + co/c)z(l—ﬁz)]
=_1_ 2 eim@fei(w/v)(zvvt)¢m’inhom(r’w)dm , (10)
v m
|
where Again for simplicity we shall write all the Fourier-
transformed potential and field components f"(r,w) as
b, inhom(r’w):iKm —ai\/l—Bzr> S unless otherwise noted. We find the complete solu-
’ T v tions to Eq. (4) to be, for r <a,
e ’
o — @ =—1,(kr [)K, (kr,)+a,l, (kr)], (17)
—U‘\/l —‘Bzr < (1 1) ™
'"=~ I, (kr K, (kr )+c, 1,(kr)], 18
By the same method we can show that the inhomogene- B[ g ] (18
ous solution for 4, is
. AT=i%p g;,kﬂlm(kr)—e;,,z,;,(kr) (19)
Azr,ninhom = ;‘ﬁm,inhom : (12) T ’
To simplifyzthe notation, we introduce the symbols Ar= % B g1 (kr—e! k—I (kr) ] ’ 20)
K2=(1-p%, (13)
v and, for r > a,
2 o’ 2
sc=—(epB—1), (14)
v ¢m=;e6—[ame(sr)+mem(sr)], 21
koz% : (15)
e
=— +d, N,
The above inhomogeneous solutions are combined with 3 Blemdm(sritdy Ny (s)] @2
the homogeneous solution of the wave equation to form a
complete solution. Any potential and field component gm=;2 m /
f(r,0,z,t) can be expressed in terms of its Fourier trans- ¢ l‘treB Em sr T (sT)F € (57)
form f™(r,w), i.e.,
fnozn=[" T emfmirw)e’ @2 dy . (16) +h, %Nm<sr>+me¥n<sr> , (3
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An="LB g, J. (sr)+e, T, (sr)
mTE sr
+th,’,,(sr)+fm%Nm(sr) , (24)

where a, ,c,. e, .8, and a,,b, c...d,. e, [ 8 N, are
the constants yet to be determined by the boundary con-
ditions.

All the electromagnetic-field components can be ex-
pressed in terms of ¢ and A: i.e.,

kO
Er=i—-(¢, —BA"), (25)
B
E$=—i%¢m—ikoAg’ , (26)
d¢
m ——ﬁ—zkoA,’", 27
aAm m
Hm=—"2 4 2% ;7 ym (28)
ar r r
HT = k"A"’ 04, (29)
0 IB r ar
k
m 0
m— ;M gmy ;=9 4m 30
H; =4, zB 8 (30)

Using boundary conditions E,=E,=0 at r=b,
E,,Ey D,,H, continuous at » =a, and the Lorentz condi-
tion, one can solve for all the unknown coefficients. The
mathematics of solving for the coefficients is straightfor-
ward but very long. We will omit the details here and
only give the results. The details can be found in Ref. 10.
For the longitudinal electric and magnetic fields of any
given mode m, the results are

E]"(r,0,z,)= —8e cos(mB)cos

ko
B
X1, (kr)I,, (kry)

y K, (ka) T(s)
I, (ka) sdC(s)/ds

(31)

b
S'*S)L

H(r,0,z,)= —8e sin(m8)sin —Bgz0

K, (ka)

I_(ka)

X1, (kr)I,, (kry) (
T(s)

x —_—
sdCls)/ds ’ (32)

S:S)\

where
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5s S, (sa) I, (ka)
y sK, (ka) €kR, (sa)
K, (ka) R, (sa)
) 2
m*- e—1
— kg | — | , (33)
a’ b I—Bz]
m3sk? 5| e—1 :
Cls)=
’ a’ g 1—p?
3 | kSp(sa) | sl (ka)
S, (sa) 1, (ka)
><[sI,',,(ka) €kR,, (sa) 34)
1, (ka) R, (sa) |’
and
R, (sr)=N,, (sb)J,, (sr)—J, (sb)N,, (sr) , (35)
R (sr)=N, (sb)J! (sr)—J, (sb)N' (sr) , (36)
S, (sr)=N_.,(sb)J,,(sr)—J., (sb)N,, (sr) , (37)
S, (sr)=N, (sb)J, (sr)—J, (sb)N,, (sr) , (38)

where f'(x)=df(x)/dx and J,, and N,, are mth-order
Bessel functions of the first and second kinds, respective-
ly, and z,=z —uvt is the distance behind the charge. s;
are the zeros of C (s).

The function C(s) is termed the conditional equation.
The radiated electromagnetic field (with phase velocity v)
will satisfy C(s, )=0, which agrees with Chang and
Dawson’s results.!! All the other field components can be
derived from E, and H,.

So far we have solved the complete electromagnetic
fields radiated by a single charged particle, even though
the form of the solutions is very complicated. Next we
will discuss some special cases, especially for m =0, 1 and
under the limit of f—1 or y — .

For m =0 and f—1, Eq. (31) can be simplified as

R(sa)
E(rzy)=2 5 0
R s — TR (sa)
ds 0 2¢ 0 ¢ s=s,
Wy
X cos — %> (39)
H,(r,zy)=0, (40)
where s, satisfies the condition
’ sa —
Ro(sa)—z—eRO(sa)-—O (41)

and z is the distance behind the charge.
The transverse wake fields can be directly calculated
from E, by using the Panofsky-Wenzel theorem'?



1832 M. ROSING AND W. GAI 42

dF,
= =eV,E,, (42)
which gives
JE,
F,=e(E,—BBg)=e [ ~dz 43)
dE,
Fo=e(Ey+BB,)=c [ 592 - (44)

For a Gaussian line charge with rms bunch length o, the
wake fields can be expressed as the integration

N
oV

—[(zg—2)/0)?
EM(r,6,zy)= [(zo=2)/01]

f ° E(r,0,z)e dz ,

(45)

where N is the total number of charges in the driving
bunch and z; is the distance behind the center of the
driving bunch where the field is measured. A discussion
of a few examples is given below.

The axial electric field given by (39) and (45) is of in-
terest for the dielectric wake-field accelerator because it
can indicate a very high acceleration gradient which is
one of the requirements for the next generation of linear
colliders. As an example, an electron bunch with 100 nC
total charge and rms bunch length ¢ of 1 mm passing
through a structure with ¢ =0.2 cm, b=0.5 cm, and
dielectric constant €é=3 produces a peak accelerating gra-
dient E, =240 MeV/m. The complete wake is plotted in
Fig. 2 where the dotted line is the longitudinal distribu-
tion of the driver beam. One should notice that there is
no r dependence of E, in (39) and by applying the
Panofsky-Wenzel theorem, there will be no transverse
focusing force. The transverse beam profile will not be
influenced by the wake fields in the m =0 mode.

For m 21 modes and B— 1, the longitudinal electric
and magnetic fields [Egs. (31) and (32)] become
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FIG. 2. Longitudinal-wake-field effect for m =0. The first
four modes were used in the summation, all the higher modes
do not contribute significantly.

E(r,0,zy)=— —24—e—— r_ozr_ cos(mB)cos(kyzg) ,
a“D(s;) | a
(46)
4e ror . .
H]"(r,0,z,)= —m—) ey sin(m 0)sin(kyz,) ,
47
where
D=5 & (48)

The conditional equation (34) can be rewritten in the
B—1 limit as
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C(s)= 242 P
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FIG. 3. (a) Longitudinal wake field for m =1 at r =r;=a;
the first four modes were used. (b) Transverse wake field F, for
m =1 at r =ry,=a; the first four modes were used.
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FIG. 4. Comparison of experimental data with calculations
for longitudinal and transverse wakes. The dashed line
represents data and the solid line theory (first four modes). (a)
Longitudinal E,. (b) Transverse F,.

The numerical example of the m =1 longitudinal and
transverse wake field for the parameters of Fig. 2 is
shown in Fig. 3. The beam profile is the line distribution.
The wake fields were evaluated at r=r;=a. As seen in
Fig. 3(b), an off-centered electron beam will leave a trans-
verse deflection force behind it. The amplitude of the
longitudinal wake for m =1 is comparable to the m =0,
longitudinal wake field shown in Fig. 2. As seen in Eq.
(46) the magnitude of the transverse field is proportional
to the off-center distance r,. This will imply some re-

strictions on the direct application of the dielectric wake
field as a high-energy accelerator, particularly on beam
alignment. It will be essential and critical to align the
drive beam close to the axis, so that the beam break up*
(BBU) will be controlled and also the accelerated beam
will not be deflected away.

We have compared our calculated results with the re-
cent experiment!? performed at the Advanced Accelera-
tor Test Facility (AATF) at Argonne National Laborato-
ry,'* where the wake fields of a drive beam are sampled
by a separate witness beam. For the experimental setup
we have used b =2.22 cm, a =1.27 cm, and the dielectric
material was Lucite which has dielectric constant of 2.6.
The rms electron bunch length of the driving and witness
beams are 3 mm. Both experimental results and calcula-
tions are normalized to 1 nC charge and 1-m-long struc-
ture. In the experiment, the driving beam was purposely
steered off center for ro=1 mm. Figure 4(a) shows the
comparison of the longitudinal wake field between the ex-
periment and calculation from Eq. (31). Figure 4(b) is the
transverse wake field for m =1 from Egs. (31) and (43).
As seen, our calculated results are in very good agree-
ment with the experiment, both qualitatively and quanti-
tatively. We have also compared the dielectric structure
with an iris-loaded metallic structure. For the given a,b
and same offset 7, the magnitude of transverse wake field
relative to longitudinal wake field is smaller in the dielec-
tric than in the iris-loaded metallic structure.'®

In summary, we have calculated the wake-field effects
in a dielectric structure and a general formula is given for
all composite modes at any charged-particle velocity .
We have investigated the particular cases of m =0 and
m =1. The important conclusion is that the longitudinal
and transverse wake fields excited by a charged-particle
beam passing through a dielectric-lined tube do not van-
ish, even under the limit of 53— 1. An example, given for
a particular high-frequency structure, indicates that care-
ful alignment is required to minimize the transverse
wake-field effects. Direct application of a dielectric wake
field device as a practical accelerator is possible even
though the transverse fields present a problem. Further
study is needed to deal with all the accelerator issues,
both theoretically and experimentally.
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