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A dielectric-loaded circular waveguide structure is a potential high-gradient linear wake-field ac-
celerator. A complete solution is given for the longitudinal electric and magnetic fields excited by a
6 function and a Gaussian charge distribution moving parallel to the guide axis. The fields are then
given in the limit of particle velocity equal to the speed of light. Example calculations are given for
a structure with inner radius of 2 mm, outer radius of 5 mm, dielectric constant of 3, and total
charge of 100 nC. Peak wake fields in excess of 200 MV/m are found. Azimuthal modes 0 and 1

are investigated for the particular interest of acceleration and deflection problems.

The electromagnetic radiation of a charged particle
passing through a structure containing dielectrics' has
many applications to accelerator physics. The next gen-
eration of electron-positron linear collides will require
high-accelerating-gradient ( ) 100 MV/m) structures.
Recently a new acceleration scheme, called the dielectric
wake-field accelerator, has been proposed. The concept
of dielectric wake-field acceleration is very simple. It is a
dielectric-lined waveguide and because of its slow wave
characteristics it can be used as a wake-field device. In
order to make the dielectric structure a practical wake-
field acceleration device, however, one has to have high
gradients and manageable transverse wake fields. The es-
timation of the transverse wake-field amplitudes in the
dielectric structure is essential because it is directly relat-
ed to the beam instability (or beam break-up mode) prob-
lem. In this paper we calculate both the longitudinal
and transverse wake fields produced in a dielectric struc-
ture by passing a charged particle. First we give a gen-
eral expression for the wake fields corresponding to any
particle velocity P=U/c including all azimuthal modes
m, then discuss the implication of the results under the
limit of P~ 1, in particular for m =0 and l.

We should point out that in our previous calculation
of the transverse wake field in the dielectric structure, we
assumed that the vector potential A was proportional to
the scalar potential P. The implication of this assump-
tion was that only TM-like wake fields would be excited,
and that no TE-like wake field would exist. The conse-
quence of this was that the higher-order azimuthal-mode
m ~1 wake fields vanish when the electron beam is ul-
trarelativistic. This unexpected result attracted much in-
terest in the community. Since then we continued calcu-
lations without preassurnptions, as shown in this paper.
In the meantime many other people have also investi-
gated this problem, and the results are that both TE and
TM waves exist in the dielectric structure for m ) 1

modes. The conclusion of all these works is that the
transverse wake fields do not vanish even in the ultrarela-
tivistic limit.

Consider the configuration of a metallic tube with
inner radius 6, partially filled with isotropic material with
dielectric constant e, containing a hole of radius a at the

center which allows charged particles to pass through as
shown schematically in Fig. 1. This structure is essential-
ly an rf waveguide, having the usual rf waveguide charac-
teristics. In our case we concentrate on the electromag-
netic field radiated by a passing charged-particle beam.
Consider a particle with charge e moving at velocity v

along a line parallel to the axis of the tube at a distance ro
as shown in Fig. 1. Because of the presence of the dielec-
tric material, the Cherenkov radiation conditions will be
satisfied when P) e '~ and the particle will generate
wake fields behind it. The wake fields produced by the
motion of a charged particle are given by Maxwell's
equations:

VXE= —— V B=O,1 BB
c Bt

1 BD 4~.
V D=4ap, VXH= — + j,c Bt c

D=eE, B=pH .

From here on we will assume permeability p= l.
As a standard way of solving electrodynamic problems

we introduce a scalar and a vector potential P and A,
defined as

E= —V'P ——,B=V'X A
1 BA
c Bt

and choose the Lorentz condition

V. A+ — =0 .1 BP
c Bt

The Maxwell equations can then be transformed into two
uncoupled inhomogeneous wave equations, one for P, one
for A.

ep 0 P 4mp ~ ep 8 A = —4mj .2gt2+c2gt2
(4)

For a charged particle moving at velocity U in the cylin-
drical coordinate z direction, the charge and current den-
sities are
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the charge density p(r, 8,z, t) can be written as

p(r, 8,z, t)= z g f fp (r, 8,z, t, k, tt))
(2m) u

Xk dk da), (8)

FIG. 1. A schematic dielectric weak-field structure.

it is easy to show that p satisfies the wave equation (4):
2

1 5Pm
VP 2 2 =~Pm '

c t3t
(9)

e5(r —
r() )

5(8)5(z —ut), j=vp .
r

(5)

First we solve for the potential in the vacuum hole. In
this case e= 1 and p, = 1. Expanding the 5 functions

i.e., it is an eigenfunction of the d Alembertain operator
with eigenvalue A, = —[k +(tt)/c} (1—p )]. It is straight-
forward to show that the inhomogeneous solution of the
wave equation is

(t)(r, z, t) = J (kr)J (kro)e"" ' '
e + tm() uv uv m m 0

[k '+ ( tu/c)'(1 —P') ]

im() ei(tv/u)(z —vt)1
m, inhom

m

(10)

where

(r, co)= —K —+1—P r&
e co 2

77 U

XI —Vl Pr &—

Again for simplicity we shall write all the Fourier-
transformed potential and field components f (r, tu) as
f unless otherwise noted We f.ind the complete solu-
tions to Eq. (4) to be, for r (a,

[I (kr & )K—(kr &
)+a' I (kr)],

By the same method we can show that the inhomogene-
ous solution for A, is

A, =—P[Im(kr & )K (kr &
)+c' I (kr)], (18)

U

Az, inhom 0m, inhom (12)
A() =i Pg' —I (kr) e' I' (kr)—

kr
(19)

To simplify the notation, we introduce the symbols

Nk= (1—P),2

s = (eP —1),
U2

CO
k =—

0

(13)

(14)

A„=—P g' I' (kr) e™I (kr—)
kr

and, for r) a,

[a J (sr) +b N (sr)], (21)

The above inhornogeneous solutions are combined with
the homogeneous solution of the wave equation to form a
complete solution. Any potential and field component
f (r, 8,z, t) can be expressed in terms of its Fourier trans-
form f (r, co), i.e.,

A, = P[c J (sr) +d N (sr)],
ATE

A() =i P g —J (sr)+e J' (sr)
Sr

(22)

f (r, 8,z t) f g eim&f m(r Q))et(m v)/(z —ut)d (16) +h —N (sr)+f N' (sr)
sr (23)
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A„= P g J' (sr)+e —J (sr)
ATE sr

+h N' (sr)+f N—(sr)
sr

(24)

where a', c',e',g' and a,b,c,d, e,f,g, h are
the constants yet to be determined by the boundary con-
ditions.

All the electromagnetic-field components can be ex-
pressed in terms of P and A: i.e.,

kS' (sa) sI' (ka)
T(s)=s k +S (sa) I (ka)

sK' (ka) ekR' (sa)
X +

i{: (ka) R (sa)

2
2

m k4p2 6 1

2
1 P2

2 2 2
m sk pz e—1

a 1 —P

(33)

kp
E, =i (P —PA, ),

Ee = i p——
ikoA

—
s

(25)

(26)

kS' (sa) sI' (ka)—s' +
S (sa) I (ka)

sI' (ka} ekR' (sa)
x +I (ka) R (sa)

(34)

mE = — —ik Ar g 0 r

kp
H = —i A8

p
r

BA,

Br

BAg Ag
H, = + —i—A„9r r r

(27)

(28)

(29)

R (sr)=N (sb)J (sr) J(sb)N —(sr),
R' (sr}=N (sb)J' (sr) J(sb)N—' (sr),

S (sr}=N' (sb)J (sr) —J' (sb)N (sr),
S' (sr) =N' {sb)J' (sr) —J' (sb)N' (sr),

(35)

(36}

(37)

(38)

kp
Hm m Am+ 0 Am

r z 9 (30)

E, (r, 8,zo)= —8e cos(m8)cos
kp

Zp

Using boundary conditions E, =E&=0 at r=b,
E„Ez,D„,H, continuous at r =a, and the Lorentz condi-
tion, one can solve for all the unknown coefficients. The
mathematics of solving for the coefficients is straightfor-
ward but very long. We will omit the details here and
only give the results. The details can be found in Ref. 10.
For the longitudinal electric and magnetic fields of any
given mode m, the results are

where f'(x)=df(x)/dx and J and N are mth-order
Bessel functions of the first and second kinds, respective-
ly, and zp=z —vt is the distance behind the charge. s&

are the zeros of C(s).
The function C(s) is termed the conditional equation.

The radiated electromagnetic field (with phase velocity U)

will satisfy C(sz)=0, which agrees with Chang and
Dawson's results. " All the other field components can be
derived from E, and H, .

So far we have solved the complete electromagnetic
fields radiated by a single charged particle, even though
the form of the solutions is very complicated. Next we
will discuss some special cases, especially for m =0, 1 and
under the limit of p~ 1 or y~ ~.

For m =0 and P~ 1, Eq. (31) can be simplified as

XI (kr)I (kro)

K (ka) T(s
X I (ka) s dC(s)/ds

(31)

4e
E,(r, zo) =

ca

Ro(sa)

R 0(sa) — Ro(sa)
sa

ds 2E'
S =S

H, (r, 8,zo)= —Se sin(m8)sin
kp

ZQ

Xcos
COg

Zp
C

(39}

K (ka)
XI (kr)I (kro) I (ka)

H, (r,zo)=0,

where s& satisfies the condition

R o(sa) — Ro(sa) =0SQ

(40)

(41)

where

T(s)
s dC(s)/ds

(32) and zp is the distance behind the charge.
The transverse wake fields can be directly calculated

from E, by using the Panofsky-%'enzel theorem'
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=eV~E

which gives

(42)

'm

Em( g )
4e ror

2D (
2

cos( m e)cos( kozo )

(46)

F, =e(E„—PB&)=e dz,
i3E,

1

Fe=e(Ee+PB„)=e dz .
rae

(43)

(44)

H, (r, 6,zo)=-
a D(si) a

m

sin(m 8)sin(kozo ),

(47)

s unc ength o, theFor a Gaussian line charge with rms b h 1

wake fields can be expressed as the integration

Em N 0 —[( z(1
—z ) In ]

(45)

where

—s dC

2yaga ds
(48)

can e rewritten in theThe conditional equation (34) c b
imit as
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