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Wake fields in a dielectric-lined waveguide
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A cylindrical waveguide of radius a is filled partially with an isotropic dielectric between radii
b &r &a. A particle travels along the guide, possibly with an offset from the axis, at a velocity
U &c. The wake fields left behind are calculated. We find that the transverse wake forces do not
vanish as y =1—(U/c) or in any other way when U~c. The longitudinal and transverse wake
forces are evaluated as a function of b/a.

I. INTRODUCTION

Wake-field accelerators' are of great interest because
of their potential for providing a very high acceleration
gradient for the next generation of accelerators. Best of
all, it was shown experimentally that transverse
deAections appeared to be small for dielectric-lined
waveguides in contrast with the large transverse wake
forces measured in structures and plasmas. ' This is im-
portant because there will be small beam breakup, which
is a traditional source of beam instabilities in linear ac-
celerators. A complete understanding of the transverse
wake potential in such a dielectric-lined waveguide is
therefore necessary. Recently, there have been some sug-
gestions that the transverse wake forces may vanish as

y when the velocity v of the source particle approaches
the velocity of light c, [y =1—(v /c) ]. The waveguide
considered consists of a cylindrical metallic tube of radius
a with infinite wall conductivity. The tube is filled par-
tially with an isotropic material with dielectric constant e
between radii b (r & a. Our derivation of the exact solu-
tion of the wake fields shows that the transverse wake
forces do not vanish when v ~e.

II. SOLUTION

One way to solve for the wake fields is through the in-
troduction of a scalar potential P and a vector potential
A. In the Lorentz gauge, Maxwell's equations reduce to
wave equations for P and A. The mathematics is rather
complicated because the equations in A are coupled in
the cylindrical coordinate. The details are given in the
Appendix.

It is well known' that the transverse electric fields E,
and magnetic Aux density 8, in a waveguide can always
be expressed in terms of the longitudinal components E,
and B,. In Gaussian units, these relations are

meability and dielectric constant of the medium under
consideration. In the presence of the dielectric, E, and
8, are no longer independent. Thus there are two vari-
ables E, and B, to solve for. The problem is therefore
much simpler than working with potentials, where there
are four unknowns.

The source particle carrying charge q travels with ve-
locity v =Pc along the cylindrical waveguide at an offset
rv from its axis. The Maxwell s equations for longitudi-
nal fields are

pe 8
&

4m Bp+ 4', ~z

c Bt e Bz c dt
(2.2)

2pE' ()

c2 gt2
(2.3)

The charge density and current density are represented
by, respectively,

5(r rv)—
5(8)5(z vt), — (2.4)

J, =up . (2.5)

g (r, 8,z, t)= g eimef dtvei(z —Ui)~/vg

m = —oo

With the help of

5(z —vt) = 1 d~e"
2'TTU

(2.6)

The test particle to be accelerated by the wake of the
source particle travels with essentially the same velocity
U. Thus, we seek here only those solutions that are func-
tions of z —Ut.

Note that all the above quantities are functions of
(r, 8,z, t) Let us de. note the Fourier transforms in the
variables (z —vt) and 8 by a tilde, i.e.,

B2 4

e t

(2.1)
and

5(» —ro)
5(8)= g e' ef k dk J (kr)J (krv),

2& 0

where p and e are, respectively, the relative magnetic per- (2.8)
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where J is the Bessel function of order m, Eq. (2.2) can
be rewritten as

E," =8' I +7)' K, E, =A p

&zm =&'mIm &zm =Cm rm

(2.16)

2

V + E, (r, co)=P (r, co),
C

where

(2.9) where the superscripts v and d denote vacuum and dielec-
tric, respectively. In the above the following abbrevia-
tions have been used:

i477co PEv J
Ve c

C01 e f k dk J (kr)J (kr ) .
mV e

(2.10)

The particular solution can then be obtained easily as

I =I (kb), K =K (kb),

p =J (sa)Y (sb) Y—(sa)J (sb),

r =J' (sa) Y (sb) Y'—(sa)J (sb),

(kro) iq~
Qm 9 2 ~ 9y' GATV

I (kro), 8' =8 I (kro) .

(2.17)

kJ (kr)J (kro)

~u y o k +(~/uy)
(2.11)

Knowing E, and B„ the transverse electric field can
now be computed directly using Eq. (2.1). At the bound-
ary r =b, these transverse components are

where p and e have been dropped because the particle is
traveling in the vacuum sector, and (1—u /c ) has been
replaced by y . The integration over k can be done ex-
actly to give

I (cur/uy)K (coro/uy), r(ro,
EPart lip co

K (apr/vy )I (coro/uy), b & r & ro,

(2.12)
d
pm

Es = X' I' + (8' Im+rI'mK ),
a)(l —P )

"™
cob(1 —P )

(2.18)

co(peP 1) — cob (peP 1)—
E„'=

2
S'mI —

2 (0"mIm+ri'mKm),
cub(1 —p ) co(1 —p )

(2.19}
mvp

2 Cmfm +
2 Am~m

lVS

rub (peP 1) — ru(peP 1)—
where I and K are, respectively, modified Bessel func-
tion and Hankel function of order m.

For the general solution we have

I (kro)I (kr), O~r ~b,
magen

A [J (sa)Y (sr) Y(sa)J —(sr)], b ~r ~a,

where

I' =I' (kb), K' =K' (kb),
p' =J (sa}Y' (sb) —Y (sa)J' (sb),
r' =J' (sa) Y' (sb) Y' (sa)J'—(sb) .

(2.20)

(2.13)

where

N N
k =—)/1 —P and s = )/peP 1, — —

V V
(2.14)

All polarization charges and currents have been taken
care of by the macroscopic magnetic permeability p and
dielectric constant e. Therefore, there should be no sur-
face charge or current at the boundary r =b. Thus we
expect

and Y is the Neumann function of order m. We have
assumed that the dielectric constant is large enough so
that pep & 1. Otherwise, there will not be any Cheren-
kov radiation produced and as a result there will not be
any useful wake potential aside from space charge. In
Eq. (2.14) the constants have been so chosen that E, van-
ishes on the wall of the guide.

From Eq. (2.3), B, can also be solved

Ezm =Ezm

eE, =E"„

Ed Eu

Bzm =VBzm .
(2.21}

A p =8'I +g'K (2.22)

Then, the boundary conditions for B& and B„will be
satisfied automatically (since we have only four constants
here). The four equations obtained from Eq. (2.21) are

I (kro }I (kr), 0 r~~ b,
gen

C [J' (sa) Y (sr) —Y' (sa)J (sr)], b ~ r + a,
(2.15)

where arrangement has been made so that the radial
component of B vanishes at the wall of the guide.

The four constants 6', X, A, and C will be deter-
mined by matching boundary conditions at r =b, where
the vacuum meets the dielectric. At r =b, E, and B, are

l S, Pl

peP —1 b (peP —1)
2

=iPky 3' I' + (6' I +ri' K ),
b

b (peP 1) peP —1—

2
X' I iky (8' I'—+7)' K' },

(2.23)

(2.24)
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C r =p%' I (2.25)

eSb pmIm
(peP —1)kbI' +

m

mP(pe —1)I

I

mP(pe 1)I— (peP' 1)kb—I' +
m

We solve for A from Eq. (2.22) and C from Eq. (2.25}.
Substituting into Eqs. (2.23) and (2.24) we get two equa-
tions for the two unknowns 8' and %', the general solu-
tions of the longitudinal electric field and magnetic flux
density, respectively,

=y ( )
—2 (3.7)

in the region rp r«b and the expression inside the
parentheses is y independent. This reminds us of the be-
havior of the space-charge forces which also go to zero as

y
'

However, in the presence of a dielectric lining, the lon-
gitudinal electric field tends to a nonzero limit as y~ ~.
Using Eqs. (2.6) and (3.4) we obtain

~ (, ie&pe 1—
m.@bc

this dependence is very small at large y. In fact, it can be
easily shown that when y »cur Ic,

9m

eSb pm+m
(peP —1)kbK' +

pm

m P(pe 1)K— (2.26}

y j d iso(z cl )lc— pp

p o+ (sb/2e)po

(3.8)

III. THE MONOPOLE FIELDS

For the monopole case or m =0, the square matrix on
the left-hand side of Eq. (2.26) is diagonal and the lower
element of the right-hand matrix vanishes. We obtain
immediately So=0; or there is no longitudinal magnetic
field. The longitudinal electric field for the region
rp «r «b is

with s =co&pe —1/c. We next change the variable of in-
tegration to x =sa and integrate in the complex x plane.
To satisfy causality, the poles of the integrand are placed
slightly below the real x axis. Since pp is even and
po+(sb/2e)po is odd, we obtain, for z & ct,

4q xpp
E,o(r, z, t)=-

cab z (d /dx )2)o(x )

E,o= CoIo(kr)+rtoKo(kr),

where

(pfP 1)kKo+y —EspQKo/po
@o= no—

(peP 1)kIo+y —espoIo/po

(3.1)

(3.2)

x (z ct)—
X cos

a&pe —1
(3.9)

So(x ) xPo + Po
x g
2E'

(3.10)

where x& is the kth positive zero of the analytic function

For x &&1,

XI ( o)~x1 xIo(x)~
2

Ko(x)~ —ln, XKo(x)~ —1 .
(3.3)

Therefore, when y »cob /c, E,p becomes

(pe 1)po Io(kr)
E,o = rtIo(kro )

po+ (sb/2e)po esb

Ko(kr)

y'

(3.4)

where rI is given in Eq. (2.17).
The transverse forces on the test charge e traveling

with velocity v behind the source can be obtained from
the Panofsky-Wenzel theorem, " and are related to the
longitudinal electric field by

Here (=b/a is the ratio of the inner radius to the outer
radius of the dielectric. This result is in complete agree-
ment with that of Gai. In the event that 2)o(x) is not an-

alytic, it can be made analytic by the multiplication of x
to an appropriate power. Needless to say, we have to
multiply the numerator of Eq. (3.9) by the same power of
x. The same comment applies also to 2) (x) in Eq. (4.11)
below.

Lots of physics are embedded in Eq. (3.9). Cherenkov
radiation is produced inside the dielectric at an angle

arcsin(1/&pe) with the axis of the guide. Because the
velocity of light in the dielectric c =c/&pe is less than
the velocity of the source particle, this radiation bounces
back and forth inside the dielectric layer and penetrates
into the central vacuum region of the guide, creating a
wake potential lagging behind. It is this potential that we
hope would provide the required acceleration on other
particles.

rm

emv-
Fem= . Ezm .

t COf
(3.6)

Although F=0, it is evident that the radial transverse
force F„p is not zero since E,p clearly depends on r
through Ip( kr ) and Kp( kr ). However, since k = co /y v,

IV. HIGHER-MULTIPOLE FIELDS

For the higher rnultipole, i.e., m&0, the longitudinal
magnetic flux density is no longer zero. The square ma-
trix in Eq. (2.26) is not diagonal, contrary to what Gai
found. ' However, both 6" and S' can be solved easily.
The result will be different from that of Gai.
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kbIm ek b pm+
mI s mp

P(p, e—1 }

peP —1

kbI'
+

mI

P(pe —1)

peP —1

pk b rm

s mrm

When m %0, Eq. (2.26) can be rewritten as
F., = I (kro)I (kr)

D(s) I
i 2eco 1 ro

mD(s) b

where

(4.7)

K

rn

kbKm ek b pm+
mK s mp

P(pe —1)

IMop
—1

(4.1)

1 xI (x)=
m! 2

1 x
+1 2

'2

m '2

where we have used the relation (s/k) =y (IJep 1). —
Employing the small-argument expansions of the
modified Bessel functions for m %0

2 = 1 s2b2
y a +

pe —1 2m (m +1)

Pa+1
2(pe —1)

esbp'

mp

(4.9)

D(s)= lim (y det) (4.8)f~ cc

is independent of y. %e see clearly that E, and there-
fore the transverse forces do not vanish in the limit

P~ QO.

Now, let us evaluate the determinant. Using the
small-argument expansions of the modified Bessel func-
tions in Eq. (4.2} we get

1 x
(m —1)! 2

m+2 x
m(m+1) 2

(4.2}

psbrm
a +

p,e 12m (m —+1) mr

(m —1)! xE (x)=m

—m

1+0 x
2

2 From Eqs. (4.5) and (4.8) we have

1 $2b2
D(s)= +

pe —1 m (m +1)
esbp'

mpm

m! xxE' (x)=—
2 2

1+0
2

psbr'+ —(pe+ 1) (4.10}

we obtain, when y » cob/c,

kbI'
=1+0(y ) and

mI

kbK'

K
= —1+O(y ) .

(4 3)

Substitute the results in Eq. (4.7} and then Eq. (2.6}. The
integration is then performed in the complex x =sa plane
to obtain, for z (ct,

'm -
m

8q "0 r
E, (r z, t)= a' b

1+a, 1+a2

1+a2 1+a3
K

9m

—1+a4
1+a&

Therefore, Eq. (4.1) for 8' andS' becomes

(4.4)

xpmrm x (z ct)—xg cos
(d /dx)2) (x) av'p, p —1

(4.11)

det=(a, —2a2+a3)+(a, a, —2a2), (4.5)

which is 0 (y ). The —1 and + 1 in the right-hand ma-
trix, on the other hand, add when solving for 6" and

Keeping the lowest-order contribution we obtain
simply

where a&, a2, a3, and a4 are O(y }. The 1's in the
above matrix elements and the signs before them are ex-
tremely important. The four 1's in the square matrix lead
to a near cancellation of the determinant, leaving behind

where x& is the A.th positive zero of the analytic function

(x)= x 2(2 —m (pe+1) p r

+X0 ~Pm "m +9 "m Pm ) . (4.12)

Here (=b /a is the ratio of the inner radius to the outer
radius of the dielectric. Thus, for mXO, F., does not
vanish when y~ ~. The transverse wake forces can be
obtained readily by Eqs. (3.5) and (3.6), and they also do
not vanish as y~ ~.

2g' K
det I (4.6) V. EVALUATION OF WAKE FORCES

When y ~~, the corresponding longitudinal electric
field is therefore

Knowing that higher-order transverse wake forces
(m & 1) do not vanish in the limit y~ oo, we would like
to determine their sizes relative to the m =0 longitudinal
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wake force. With the aid of Eq. (3.9), the m =0 longitu-
dinal force on the test particle carrying charge e at a dis-
tance z behind the source particle can be written as

26
X01

' 1/2

' 1/2 (5.g)

XpiZF p(Z)=
2 g P pi(xpi )cos

a e —1
(5.1)

(m +1)e
ml m&0 .

where

4 xoipo(xoi. )

&o«oi. }
(5.2)

eq roF„(r,z;rp) =
a a

'm 'm —1

and xpz is the A,th zero of 2)p. Similarly, with the aid of
Eqs. (4.11) and (3.5), the m & 1 transverse force can be
written as 1/2

(e 1)(m +—1)5
+rm 1

4m (5.10)

The ratio of the reduced forces is

This justifies the approximation used to obtain Eqs. (5.5),
i.e., x6((1 when the dielectric is sufficiently thin. The
eigenfrequency happens to be the same for the m =0 and
m =1 modes. One can compute easily the reduced wake
forces:

(5.9)

xmas
Xg P„z(x 2 )sin

a e —1
(5.3) p

' 'i/2
rm& ~ (e 1)5=m m+1
zol

(5.11)

where

(5.4)

and x 2 is the A,th zero of 2) . In the above, the analytic
functions Xlo and 2) have been given by Eqs. (3.10) and
(4.12). Also the relative magnetic permeability p, of the
dielectric has been put equal to unity. Below, the dimen-
sionless reduced wake forces P,pz and P, z will be evalu-
ated. The zeros xpz and x 2 are dimensionless reduced
eigenfrequencies of the eigenmodes. The true eigenfre-
quencies are given by co &=x zc/a&e —1.

A. Thin dielectric lining

The behavior of the limit 5~0 is not intuitive. As
5~0, one expects the absence of the dielectric lining
leaving behind a perfectly conducting pipe wall. The
electromagnetic 6elds generated by the source particle
are therefore just the ordinary space-charge 6elds, which
we have omitted after setting y~ ~. However, the lon-
gitudinal wake force as shown by Eq. (5.9) does not van-
ish as 5~0. Thus, an infinitely thin dielectric lining does
not imply no dielectric lining. Our evaluation of the
wake forces here is based on Eqs. (5.1} and (5.3} or Eqs.
(3.9) and (4.11), where y »oai/c is assumed. With the
substitution of Eq. (5.8) this assumption becomes
y»v'2e/5(e —1). As a result, our calculation cannot
lead to the situation of 5=0, or the removal of the dielec-
tric lining.

Let a5 denote the thickness of the dielectric lining or
5=1—g. Here we consider the situation of a thin lining,
i.e., 5« 1. In Eqs. (2.17) and (2.20), p, p', r, and r'
are defined as functions of x =sa and xg=sb =x —x5.
When x5 «1 we Taylor expand them up to 5. With the
aid of the Wronskian of J and Y as well as the Bessel
equation we obtain

p (x)=—,p' (x}=25, 2(1+5}
7r vT'x

(5.5)2, 25 mr (x)=—,r' (x)= — 1—
'IT'x 2

Thus, retaining only the lowest order of 5,

B. Thick dielectric lining

po(x) =—ln +s Jo(x) —Yp(x),
2 xg

po(x) = Jo(x)+ Yp(x)
2 xg

mx( 2

(5.12)

where c.=0.57722 is an Euler number. Retaining only
the lowest order in xg we get

Here we consider the situation when the inner radius
of the dielectric b =a( approaches zero. Assuming that
xg «1 we use the small-argument expansions of Bessel
functions to obtain

2 x 6
2)o(x) =——

ST' ATE
(5.6) ~( 2

( )
xg(e —1)

2E
(5.13)

and, for m %0,

45 x e
X2) (x) =

m+1 5
(5.7)

We see that there is only one positive zero in Eq. (5.6) or
(5.7), namely,

xone =xone+ ~ox ~

Jo(xpi. ) =~oiJo (xpi. )= ~oiJi

(xone

) .

(5.14)

(5.15)

We can then solve from Eq. (5.13) the Ath zero of 2)p,

Since x g « 1, the A,th zero xpz of 2)p should be very close
to the kth zero xpg of Jo ~ If we write
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'2
m.(e—1) x g Yo(xone )

xpg =xpg +
Ji(xo~)

(5.16)
2m!(m —1)!

m x
7T

2m
2 J'(x)

The corresponding m =0 reduced longitudinal wake
force becomes

X (e+1)J (x)

2m

F.p~=
2m'xo~ Yo (xone )

Ji(xo~)
(5.17)

+ x
m!(m —1)! 2

Y (x) . (5.22)

We see that the eigenfrequencies approach those of the
transverse-magnetic (TMoz) modes in a cylindrical
dielectric-filled waveguide. In fact, this is to be expected
because the dielectric fills the whole waveguide when
$~0.

The higher-order reduced forces can be computed sirni-

larly. With x)«1 and m%0,

m

1

@+1 m!(m —1)! 2

We expand J (x) about x z to obtain

J (x z)=b, ~J' (x z),
and solve Eq. (5.22) to get

2m Y(x q)

J' (x z)

(5.23)

(5.24)

p (x)=—(m —1)! 2

X J (x)+ 'Ir xt
m!(m —1)! 2

2m

Y (x)

We are now able to compute, up to the next order of x g,

1
p (x q)r (x q)=- J'(X ~)Y (x q),a+1 mm™ m

(5.25)

m! 2p' (x)=
exes xg

'm

2m

Y (x z)

J'(x z)

ev e —1 4n.
(e+1)2 m!(m —1)!

and arrive at the corresponding reduced transverse force
2m

X J (x)— 7r xt
m!(m —1)! 2

Y (x)

(5.18)
Near the zero x '

&, we have
2m

(5.26)

r (x)=—(m —1)! 2

xg
2m

2m!( m —1)!
~2

X (@+1)J'(x)

2 J (x)

r' (x)= m! 2
n.xg xg

'm

X J' (x)+ 7T xt
m!(m —1)! 2

Y' (x)

Since

E7T

m!(m —1)!

2m

Y' (x) (5.27)

'jT xt
X J' (x)—

m!(m —1)! 2

2m

Y' (x)

If the terms involving Y and Y' are neglected as we
take the limit x/~0, it is easy to see that

J' (x' ~ ) = b J"(x' z)

2

1 — J (x' ~),
xmas

we obtain

(5.28)

2) (x)~J (x)J' (x) . (5.19)

x ~=x ~+~ ~

x'~=x' ~+~' ~.
Near the zero x & we have

(5.20)

(5.21)

Thus, the eigenmodes are characterized by x &, the kth
zero of J, and x'

&, the Xth zero of J' . However, the
reduced transverse force F, z which is proportional to
p r as depicted by Eq. (5.4) will vanish identically. As
a result we must compute the zeros of 2) (x) to the next
order in x g. Denote the two series of zeros by

E 1

e+1 m!(m —1)! 1 —m2/x'~z

Y' (x', i
X J (x' z)

2mx'A

(5.29)

Now we can compute, up to the next order of x g,

1
p (x' &)r (x' z)= J (x' q) Y' (x' g),a+1 m~

(5.30)

and arrive at the corresponding reduced transverse force:
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v'e —1 4v
(E+1)2 I!(m —1)!

Y' (X' g)
X

1 —m~/X'
~ J (x' g)

2m

(5.31)

As expected, when $~0, the two series of reduced
eigenfrequencies x z and x'

z (m&0} correspond to the
transverse-magnetic (TM z) and transverse-electric
(TE z) modes in a cylindrical dielectric-filled waveguide.
In the present dielectric-lined waveguide, the modes are
hybrid and are referred to as hybrid-magnetic (HM z)
and hybrid-electric (HE z} modes instead. The lowest
mode at (=0 is the HE» mode, with x'» =1.8411, which
is lower than the lowest longitudinal HMO, mode with

xo, =2.405. The lowest transverse HM mode at (=0 is
x Ii =3.8171.

II

E 6—

I s

a = 1.2
e = 2.0
e = 3.0
e = 4.0

s s

I

I s s s

I

I s s s

I

I s, s

I
s

. I

. ! I
I I

tF'e
Ce
00

0
s I s s s s I s s s s I s s s s I s s s s

0.2 0.4 0.6 0.8
gytio of Inner to Outer Dielectric Radii b/a

FIG. 2. Lowest reduced eigenfrequency of the m =1 trans-
verse mode.

C. Numerical evaluation

1
exp

a&pe 1— (5.32)

Since O.
I is finite, consequently only the first few charac-

teristic waves will contribute significantly. For the sake
of clarity we shall restrict ourselves to the lowest mode in
the following discussion.

The reduced eigenfrequencies corresponding to the
lowest m =0 longitudinal mode xo, (TMO, ) and lowest

The wake forces corresponding to thin and thick
dielectric limits have been evaluated analytically. In be-
tween, no simple analytic formulas are possible and nu-
merical evaluation is necessary. The zeros of 2)0 and S
are first located and the summations in Eqs. (5.1) and
(5.3) are performed term by term.

Experimentally, the source is not a single particle but a
source bunch of total charge q having a rms longitudinal
length err. If the center of the bunch travels according to
z =et and the longitudinal charge distribution is Gauss-
ian, the wakes left behind are again given by Eqs. (3.9)
and (4.11) with each term in the summand multiplied by

'2

m = 1 transverse mode x '„(HE» ) are shown, respective-
ly, in Figs. 1 and 2 for g ranging from 0 to 1, with dielec-
tric constant @=1.2, 2.0, 3.0, and 4.0. The ratio of the
two lowest eigenfrequencies is displayed in Fig. 3. In
general, larger dielectric constant leads to higher eigen-
frequencies. The lowest reduced eigenfrequencies for the
monopole and dipole modes start o8 from, respectively,
xo, =2.405 and x» = l. 841 at (=0, increase rather slow-

ly with g when g 0.5, but increase rapidly to infinity ac-
cording to Eq. (5.8}afterward.

The reduced m =0 longitudinal and m =1 wake forces
of the lowest modes F,o, and P'„» are shown, respectively,
in Figs. 4 and 5, and their ratio in Fig. 6. We see that the
reduced transverse force as well as the ratio of transverse
to longitudinal forces start off almost constant at g-I
and increase rather slowly with larger g. They vanish
rapidly only when g is sulficiently close to 1; or when the
dielectric lining is suSciently thin. However, g= 1 is not
a good region to operate a wake-field accelerator. The
wake fields are generated by Cherenkov radiation inside
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the dielectric, and when the dielectric lining is thin, such
radiation is minimal. In addition, the wake-field wave-
length will be too short to work with. This is seen by ex-
amining the cosine factor in Eq. (5.1) with an extremely
high reduced eigenfrequency ( -5 '

) as depicted in Eq.
(5.8) and Fig. 1. To avoid large transverse forces, the
other option appears to be the sector of small g. This is
the configuration of thick dielectric lining. For this
reason the analytic formulas developed for thick dielec-
tric lining are very good approximation in practice. In
this region the reduced transverse wake force P', » de-
pends on the dielectric constant mainly through the fac-
tor &e—I/(@+ I) and weakly through x&&, as indicated
by Eq. (5.31). Consequently we see (also in Fig. 2) P', »
reach a maximum at e= —'„and decrease at larger e.
However, P,u, decreases with dielectric constant as I/s
as depicted in Eq. (5.17) and Fig. 1. The result is that the
ratio P'„„/P,o, decreases with e (when e) 1). Therefore,
to reduce P'„» as well as P'„„/P,p„a large e is favored.

As an illustration let us consider a cylindrical
waveguide with outer radius a =1 cm lined with a ma-
terial having a dielectric constant a=3. The thickness of
the material is taken as a b=0. 8 —cm or (=0.2. The
lowest reduced eigenfrequencies are xo, =2.518 for m =0
and x» =1.954 for m =1. They correspond to frequen-
cies roc, /2m. =8.496 GHz and co»/2n =6.591 GHz. The
reduced wake forces are, respectively, P,p&=4. 381 for
m =0 and P'„&t =1.464 for m =1. Using Eq. (5.1) multi-
plied by Zpc/4n. , where Z0=377 0 to convert the force
to mks units, we obtain the longitudinal acceleration gra-
dient 3.943X10' eV/m C, or 39.4 MeV/tn for a source
bunch of 100 nC. Using Eq. (5.2) we obtain a transverse
force of 1.32X10' rp eV/mC, where rp is the offset of
the source bunch from the axis of the waveguide ex-
pressed in m. The accelerating longitudinal force Fo&
(aside from the cosine factor) scales with a, while the
dipole transverse force F» (aside from the sine factor)
scales with a . Therefore, increasing the outside radius
of the waveguide will lower the transverse force very
much. The accelerating force will be decreased also, al-
though not as fast.

As a comparison let us consider an iris-loaded
waveguide having inner and outer iris radii b =5.11 cm
and a = 10 cm, respectively. Numerical calculation' re-
veals a longitudinal field of frequency 1.15 6Hz and a di-
pole traverse force of 1.2X10' [rc (m)] eV/mC. For a
dielectric waveguide of the same frequency we need a
guide radius of a =7.40 cm provided that we keep
b/a =0.2 and @=3. The dipole transverse wake force
turns out to be 3.25X10' [rp (m)] eV/m C, which is 3.7
times less than that of the iris-loaded waveguide. With
suitable choices of parameters, it is possible that the
dielectric-lined waveguide can have smaller deflecting
wake forces than the iris-loaded waveguide.

VI. DISCUSSIONS

(1) We have solved for the wake forces of a dielectric-
lined waveguide and concluded in Sec. IV that the m ~ 1

transverse wake forces do not vanish in the limit y~ Do.
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FTE eg TE(p p )

FTE eg TE(p p )
(6.1)

Simple analytic expressions for the reduced longitudinal
and transverse forces have been derived in the limits
when the dielectric lining is thin as well as thick. Numer-
ical computation of the lowest modes have also been per-
formed. We learn from these calculations that the re-
duced dipole transverse wake force has the same order of
magnitude as the monopole longitudinal wake force ex-
cept when the dielectric lining is very thin. This con-
clusion may not be in contradiction to what was observed
experimentally in Ref. 4. This is because the deflecting
wake force has never been actually measured there. In
that experiment, the inner and outer radii of the three
dielectric materials are, respectively, b =0.63 cm and
a =1.27 cm. The three materials have dielectric con-
stants a=3. 1, 5.9, and 3.9. According to our calculation
the deflecting force should be, respectively, 8.0
X10' [ro (m)] eV/mC, 4.7X10' [ro (m)] eV/mC, and
6.8X10' [ro (m)] eV/mC.

(2) For a particle of charge e traveling with velocity vz

in a TE field (E, =0), the transverse force can be easily
expressed by using Eq. (2.1):
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APPENDIX

We introduce a scalar potential P and a vector poten-
tial A, defined by

1 BAE= —VP ——,B=VX A .
c t ' (A 1)

In order to transform Maxwell's equations into indepen-
dent inhomogeneous equations in P for A,

of transverse forces in essentially the same way as this pa-
per. Rosing and Gai' derived the transverse forces using
the vector and scalar potentials A and P. Jones, Kein-
ings, and Peter' solved the problem in the special case of
a thin dielectric lining. Also the Advanced Accelerator
Test Facility at Argonne National Laboratory has recent-
ly reported' the experimental observation of transverse
wake forces in a dielectric-lined waveguide.

If the electromagnetic field is purely TM (8, =0), the
transverse force is

pe BP 4mp

c2 gt2
(A2)

FTM —eE™(1P P) (6.2) pe 3 A 4npJ
c2 gt2 c

(A3)

In the above, P =v /c and U is the phase velocity of the
electromagnetic wave in the z direction. There is a
theorem' which says that an electromagnetic wave can
be written as a linear combination of a TM wave, a TE
wave, and a TEM wave. Our wake field inside the dielec-
tric waveguide certainly obeys the theorem, but without
TEM contribution. Therefore, if the test particle has a
velocity U equal to the phase velocity U~ of the elec-
tromagnetic field, the TE part of the transverse force on
the test particle will vanish according to Eq. (6.1), and
the TM part of the transverse force will be suppressed by

y according to Eq. (6.2). But, this suppression is can-
celed by the fact that E, in vacuum is of order y as il-

lustrated by the part involving 8' in Eqs. (2.18) or (2.19).
However, it is difficult to understand why the trans-

verse fields can be of order y . The Lorentz-contracted
fields of a particle are of order y with an opening angle
O(y ') so that the total fiux is independent of y. Here,
instead of a small opening angle, the transverse fields are
distributed longitudinally as a cosine function as illustrat-
ed by Eqs. (3.5), (3.6), and (4.11). The total transverse
flux will therefore blowup as y . A closer examination of
Eqs. (2.18) or (2.19) reveals that E, , the part involving
S', is also of order y . The contribution of the source,
the part involving q', is 0 (y ). With the solution of 6'
and S' from Eq. (2.26), we find that the mystery is
solved, because the y parts of E, and E, cancel exact-
ly, leaving E, finite as y ~~.

Note added. I have recently learned of similar work by
other authors. Gluckstern' demonstrated the existence

with J=pv, use is made of the Lorentz condition

V. A+ =0.
c t

Note that, in cylindrical coordinate,

A„2 BAgV2A= r V2A, —
2 r2 (jg

Ae 2 BA„+8 V Ae —
2

+— +zV A, .
T T

In other words, the equations for A„and A & are coupled.
Because of the symmetry of Eqs. (A2) and (Al), one is
tempted to assign

vA= pag . —
e

(A6)

This will simplify the problem tremendously because it
leaves behind only one equation in one variable. Howev-
er, Eq. (A6) may not be correct. In fact, the relation be-
tween P and A has been given explicitly by Eq. (A4).
Any additional constraint can arise only from the special-
ity of the problem. For example, Eq. (A6) can be correct
if (1) ( A, P) rotates as a four-vector in the Minskowski
space and (2) there is no longitudinal magnetic field (pure
TM modes). But, in the presence of a dielectric, space-
time does not constitute a Minskowski space and the
electromagnetic fields do not separate into pure TE or
TM modes.
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