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We investigate the low-energy phenomenology of string models constructed in the fermionic for-
mulation. Models are constructed in which the gauge group SU(3) XSU(2)XU(1)X - - - is obtained
directly from free world-sheet fermions. We also construct models in which
SU(3)XSU(2)XU(1)X - -+ is obtained by symmetry breaking along completely flat directions in
the effective potential; this corresponds to world-sheet interactions. In this category we construct
models in which SU(5) is broken to SU(3) X SU(2) X U(1) by a Higgs boson in the adjoint representa-
tion and in which SO(4) XSO(6) is broken by the spinor representation. We analyze the effects of
the spin structure, massless moduli, and Fayet-Iliopoulos D terms on low-energy phenomenology.
In particular we consider the renormalization-group flow of the couplings, proton decay, mass ma-
trices, Higgs-boson mass, and charge quantization. We briefly compare these results with the
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flipped SU(5) approach and other constructions such as orbifolds and Calabi-Yau manifolds.

I. INTRODUCTION

One of the greatest challenges to string theory is the
extraction of predictions to compare with experiment. !
Progress in this direction is made rather difficult by our
inability to locate the true string vacuum. There exists a
multitude of possible string vacua while the dynamics
which selects the preferred vacuum remains unknown.
The possible vacua are the known string models, or solu-
tions to the string equations of motion. These, however,
are degenerate in perturbation theory. The needed dy-
namics would presumably come from a second-quantized
closed-string theory which, as yet, has not been formulat-
ed. As a result, we can only perform perturbative calcu-
lations around a given vacuum; we cannot determine how
the degeneracy between the different vacua is lifted.

One possible approach to this problem is to understand
the phenomenological consequences associated with par-
ticular known vacua, or classes of vacua, and use low-
energy data to assess whether the models based on these
vacua are viable. Given the multitude of possible vacua
this seems at first too formidable a task. Indeed, in the
restricted class of fermionic string models alone, over
100000 classical vacua have been constructed.? Never-
theless, the great majority of these models can be ruled
out by the simplest phenomenological criteria,? while the
others rarely survive under closer scrutiny. Furthermore,
it is possible to explicitly construct models exhibiting
chosen phenomenological characteristics by understand-
ing the relation of world-sheet phenomena to spacetime
phenomena. This was accomplished in Refs. 3 and 4, for
example, in constructing flipped SU(5) models. As a re-
sult it is possible to survey the more interesting vacua
available for analysis. This allows the understanding of
string phenomenology to progress in the absence of, and
in preparation for, a second-quantized string theory.

In this paper we investigate the relation of the string
construction to spacetime phenomena in the case of
heterotic,®> fermionic strings.6’7 We show how string
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models with desirable phenomenological properties may
be constructed and identify what difficulties arise in meet-
ing all the physical constraints. Rather than advocate
one particular scenario for unification, we survey a range
of possibilities and discuss the merits and problems of

each. Two ways of obtaining the gauge group
SU(3)XSU(2)XU(1) are demonstrated; in one case
SU(3)XSUR)XU(1)X -+ is obtained in the free fer-

mionic formulation, that is without using the massless
moduli. We will call these 3-2-1 models. In the other
case, a larger group is broken to SU(3)XSU(2)XU(1)
X - -+ along flat directions in the effective potential, cor-
responding to (conformal) world-sheet interactions.
These are grand-unified-theory (GUT) models though the
unification scale is typically the same as the Planck scale.

The case of 3-2-1 models has been investigated before
for string models constructed via orbifolds® !° and
Calabi-Yau manifolds.'"'? The construction of fermion-
ic 3-2-1 models with Weyl world-sheet fermions was dis-
cussed in Ref. 13 though no three- or four-generation
models were found. Four-generation fermionic 3-2-1
models with Weyl world-sheet fermions were found in
Ref. 2 using a computer search; the phenomenology of
these has not yet been analyzed in detail. One three-
generation 3-2-1 model was recently constructed in Ref.
14. In what follows we construct fermionic 3-2-1 models
with four generations using both Weyl (complex) and
Majorana-Weyl (real) world-sheet fermions. We find
techniques for incorporating the basic phenomenological
constraints into model construction; however, it remains
a nontrivial problem to incorporate all the phenomeno-
logical constraints into a single model together. So none
of the 3-2-1 models found as yet are truly candidates for
describing nature. However it seems that there is no fun-
damental obstacle to meeting the most stringent require-
ments.

The case of GUT unification in the fermionic string
has been investigated by Antoniadas et al. for flipped
SU(5) grand unification®* [SU(5) X U(1) broken by Higgs
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bosons in the 10,10 representations!’]. Recent work has
shown that this is a promising avenue.* Part of the
motivation for investigating flipped SU(5) was the ab-
sence, in string models, of Higgs bosons in the adjoint
(and higher) representations of grand unified groups;
these Higgs bosons are absent in models with chiral fer-
mions and world-sheet level-1 Kac-Moody algebras. '
However, as recently shown by Lewellen,!” fermionic
strings with Majorana-Weyl world-sheet fermions may
employ higher-level Kac-Moody algebras (at least level 2)
and so contain adjoint Higgs-boson breaking. Here we
investigate the phenomenology of such models, in partic-
ular minimal supersymmetric SU(5). We show how SU(5)
unification may be obtained; however further work is
needed to see if the correct electroweak scale can be
preserved in such models.

In addition to GUT unification with adjoint Higgs bo-
sons we also consider gauge groups such as SO(6) X SO(4)
(Pati and Salam!®) and SO(10)XSO(4) broken to
SU(3) X SU(2) X U(1) by Higgs bosons in the spinor repre-
sentations. We find that such models can be constructed
and that some phenomenological constraints, such as the
proton lifetime, can be met. However, these examples
typically suffer from excess charged light particles; as a
result, the running couplings below up before perturba-
tive unification is possible. Some possible remedies for
this feature of the construction are discussed below.

The outline of the paper is as follows. In Sec. II we
discuss in general the principles used to analyze these
models. In particular we consider the effects of massless
moduli, Fayet-Iliopoulos D terms and nonrenormalizable
terms in the effective action. We consider the phenome-
nological requirements of supersymmetry breaking,
superunification, quark and lepton mass matrices, Higgs-
boson masses, and electric charge quantization. In Sec.
III we consider examples of 3-2-1 models in the fermionic
construction. In Sec. IV we consider models in which a
GUT group is broken along a flat direction in the
effective potential. We analyze both spinor Higgs-boson
breaking and adjoint Higgs-boson breaking. In Sec. V we
summarize the results and discuss the prospects for string
phenomenology. Two appendixes are devoted to discuss-
ing the fermionic formulation. In Appendix A we review
the construction of fermionic string models®’ and discuss
the calculation of interactions. In Appendix B we
present the techniques for identifying the massless moduli
and discuss some generic features of the moduli in the
fermionic construction.

II. STRING PHENOMENOLOGY

Let us first consider stringy effects which constrain the
choice of vacua; next we shall consider low-energy con-
straints. The string loop corrections are particularly im-
portant.

Cosmological constant. In classical vacua without
spacetime supersymmetry the one-loop contribution to
the cosmological constant (or, equivalently, the dilaton
tadpole) is generically on the order of the Planck mass. !°
As a result these solutions are not true vacua. Hence-
forth we shall restrict our attention to classical vacua

with N=1 spacetime supersymmetry. Of course, super-
symmetry will have to be broken at low energies in such a
way that the cosmological constant still vanishes. We
will be forced to assume that supersymmetry is broken by
a nonperturbative mechanism; this situation is discussed
below.

Fayet-Iliopoulos D terms. In classical vacua with
spacetime supersymmetry a U(l) gauge symmetry may
apparently be anomalous.?®?! This anomaly is canceled
by the Green-Schwarz mechanism?> while a Fayet-
Iliopoulos D term?® is generated in the effective ac-
tion.?%2! This corresponds to a dilaton tadpole at two
loops in string perturbation theory. As a result of the D
term the auxiliary field for the (anomalous) U(1) gauge
boson has (in its equation of motion) a constant piece
added to it proportional to the anomaly:

D~TrQ+2qi¢i*¢i ) (1)

where D is the auxiliary field, Q the charge, and ¢; are
scalar fields. Thus these vacua are not true vacua either.
However, as shown in Ref. 20, the constant TrQ may be
canceled by giving appropriate vacuum expectation
values (VEV’s) to the scalar fields; if this can be done so
that the auxiliary D fields and F fields have vanishing
VEV’s then supersymmetry is restored and the dilaton
tadpole vanishes. In what follows it will be important to
take into account such terms in order to find the true va-
cua.

Certain effects at the string tree level are also worth
noting.

Massless moduli. Generically there exist some flat
directions in the (massless) scalar potential in any classi-
cal vacuum. The completely flat directions are known as
massless moduli of the theory. Giving a VEV to a scalar
in a flat direction corresponds, in world-sheet language,
to adding an exactly marginal operator to the Lagrang-
ian, the marginal operator being the vertex operator for
that scalar.

Since all points along a flat direction are degenerate,
the physics that determines the true vacuum is not yet
understood. Supersymmetry breaking is expected to pro-
vide corrections to the potential and so determine the
vacuum; thus it is possible to get some idea of the
corrected potential within the context of some assump-
tions about the supersymmetry-breaking parameters in
the low-energy field theory.?* However it is difficult to
investigate VEV’s on the order of the Planck mass this
way since the low-energy field theory is cut off at the
Planck scale. We can expect nevertheless that VEV’s
along flat directions obtain generic Planck scale values.
If a VEV must be fine-tuned to produce a desired phe-
nomenological result, we may consider this unnatural.
Thus, naturalness in this sense is one way of assessing
whether a model is viable. One particular flat direction
will always be the dilaton VEV, which determines the
string coupling constant. We expect we will always fine-
tune this value until a better understanding of string dy-
namics is achieved. In the examples considered below,
we shall choose a value which gives us the correct fine-
structure constant.



42 PHENOMENOLOGY OF FERMIONIC STRINGS

It remains an open question whether the dynamical
corrections to the dilaton potential fix the string coupling
at a value which is nonzero and consistent with perturba-
tion theory.?>?® However recent results suggest that this
is indeed possible in vacua where gaugino condensation
occurs in more than one extra gauge group.?’ In the ex-
amples considered below, we shall see that multiple
confining gauge groups arise quite easily in model con-
struction. Although this is still just a necessary condition
for the mechanism proposed in Ref. 27, it appears that
the ““dilaton problem” is not intractable.

Nonrenormalizable interactions. Nonrenormalizable
terms suppressed by the Planck mass appear in the
effective field theory as a result of integrating out the
massive modes of the string.!?> These terms may play an
important role if one or more fields appearing in a term
acquire a large VEV, e.g., a Planck scale VEV. Then the
term may provide in effect a new renormalizable interac-
tion. This mechanism could contribute to the quark mass
matrices, providing the needed Kobayashi-Maskawa
(KM) mixings.?® In addition the nonrenormalizable
terms could be responsible for introducing intermediate
scales into a model; as pointed out in Ref. 12, this could
occur if nonrenormalizable terms are responsible for lift-
ing a direction left flat by the renormalizable potential
(see Ref. 12).

Next we consider the requirements of low-energy phe-
nomenology.

Superunification. By superunification we mean the
unification of all coupling constants somewhere near the
Planck scale. Actually, as shown in Ref. 29, the effective
field-theory couplings are expected to unify at about
gsmngSXlO17 GeV. This allows us to make predictions
for sin’@y, and Aqcp in terms of the fine-structure con-
stant, as long as perturbative unification is possible. We
will do this for specific models using the lowest-order
(one-loop) Georgi-Weinberg-Quinn equations.® It will
be seen in the examples below that these calculations pro-
vide a stringent test of the string models, ruling out most
of the examples we have.

As also shown in Ref. 29, string threshold effects add
corrections of order unity to the values of the various
couplings at the unification scale. This means that the
different gauge couplings in a 3-2-1 or Pati-Salam model
can have different threshold corrections. We will keep
this effect in mind so we can properly assess the accuracy
of the simple one-loop approach.

Supersymmetry breaking. Since we have confined our
attention to classical vacua with spacetime supersym-
metry, it is necessary to envision a mechanism which
breaks supersymmetry at low energies. It is natural to
think this breaking determines the Higgs-boson mass and
explains the smallness of the electroweak scale compared
to the Planck scale. Thus the supersymmetry-breaking
scale in the visible sector will be called my (Higgs-boson
mass). Its order of magnitude may be estimated only
after assumptions are made regarding the manner of su-
persymmetry breaking.

The way in which supersymmetry is broken in string
theory is not well understood. Most candidate mecha-
nisms either produce an unacceptably large cosmological
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constant or a dilaton potential which drives the theory to
zero coupling.?® It seems that some kind of nonperturba-
tive mechanism is needed such as a gaugino condensate
in one (or more) of the extra gauge groups.?® The Higgs-
boson mass would then depend on how the extra gauge
group couples to the visible sector (e.g., if it is hidden)
and on the scale of the condensate. Faced with this lack
of understanding we will mostly avoid this issue but,
when necessary, assume that such a condensate is indeed
responsible for the breaking. We may also estimate the
scale of the condensate(s) from the renormalization-group
flow of the gauge couplings.

Proton decay. The rate of proton decay is easy to esti-
mate in most models and can be used to discard a great
many candidates. In 3-2-1 models and GUT models with
string scale unification, there is no danger of rapid proton
decay due to gauge-boson (fermion) exchange; however,
we must still consider the possibility of squark exchange
or colored “Higgs-boson” (“Higgsino”’) exchange.

The squark exchange, shown in Fig. 1,%' could be
brought on by terms in the superpotential of the form
QLD and U D D where Q is the quark doublet, L the lep-
ton doublet, and U and D the conjugate quarks. Howev-
er, in the examples constructed below in the fermionic
formulation, it will be apparent that these terms are
generically absent. This is due to the extra quantum
numbers carried by the matter fields; these quantum
numbers are either associated with discrete symmetries or
charges that couple to a gauge group broken at higher
energies. In either case the extra selection rules come
from extra world-sheet fields in the quark vertex operator
which are singlets of the world-sheet SU(3) X SU(2) X U(1)
current algebra.

The possibility of colored “Higgs-boson” (“Higgsino™)
exchange,* shown in Fig. 2,%! is more relevant here. In
minimal or flipped SU(5) models the colored Higgs boson
appears in the same multiplet as the electroweak Higgs
boson. Thus some mechanism is needed to split the dou-
blets and triplets while leaving light doublets. The GUT
Higgs boson which breaks SU(5) in the minimal case can
split the doublets and triplets if the VEV is in the right
direction.?* However the electroweak Higgs boson still
acquires a GUT scale mass unless some additional mech-
anism is present (see Ref. 31 for a review). In the flipped
case, if the U(1) charges (of the GUT and electroweak
Higgs bosons) are properly assigned, the doublet-triplet
splitting with light weak doublets occurs naturally. '°

In 3-2-1 and Pati-Salam models a colored Higgs boson
need not even be present. If it is present, there are

cl
Y
ol

A

b e
ol

Y

FIG. 1. Squark exchange leading to proton decay (Ref. 31).
The solid lines are fermions; the dashed line is the squark.
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FIG. 2. (a) Colored “Higgs-boson” exchange (Ref. 31). (b)
Colored “Higgsino” exchange together with gluino exchange
(Ref. 31). The subscripts 1 and 2 refer to two different genera-
tions. This process can lead to the proton decay p —K +Vﬂ (Ref.
33).

several ways in which too rapid a proton decay may be
avoided. An SU(3) triplet may have different couplings
than the Higgs doublet; so the triplet may be prevented
from coupling to the quarks due to the extra selection
rules mentioned above. Alternatively, as in the GUT
case, the triplet can become superheavy from a large
VEV given to a 3-2-1 singlet (e.g., along a flat direction).
Both of these mechanisms will be illustrated in the con-
structions of Secs. IIT and IV.

Quark mass matrices. To agree with experiment, the
quark mass matrices need to be sufficiently complicated
to provide all the quarks with masses and provide the
KM mixings. In many models the Yukawa couplings are
not complete enough to give all the quarks a mass. In 3-
2-1 models it seems advantageous in this respect to have
multiple weak doublets which can combine to form the
Higgs bosons; a linear combination could couple to more
quarks than either doublet alone. However, the other
linear combinations, if light, may then be problematic.
They affect the coupling constant flow and so endanger
unification. Also the extra weak doublets could result in
flavor-changing neutral currents®® unless their masses are
sufficiently high (above the TeV scale). Indeed none of
the models constructed below solve all of these problems
simultaneously.

Neutrino masses. There are several ways in which the
neutrinos may become extremely light. In either GUT or
3-2-1 models a seesaw mechanism can arise, originating
from a large VEV given to a scalar (e.g., along a flat
direction). The conjugate neutrino could acquire a large
Majorana mass as in the usual seesaw mechanism or
could be coupled via a large Dirac mass to another 3-2-1
singlet. Alternatively, the conjugate neutrinos could be
absent from the spectrum. The neutrinos would then be
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barred from obtaining a Dirac mass. None of the exam-
ples constructed so far have this property. However, in
one example (Sec. III) we will see the neutrinos couple to
a different Higgs doublet than the other fermions. If this
Higgs doublet is not part of the true Higgs doublet, that
is, if it does not acquire a VEV, then the neutrinos could
in principle be massless. We will discuss this situation in
more detail in Sec. I1I.

Electric charge quantization. The presence of fraction-
ally charged color singlets in the spectrum is a generic
feature in string models®®®” which, as we shall see, is
avoided in certain cases. Of course, whether such frac-
tional charges represent a problem or a most welcome
prediction depends on the masses of the particular states
(be they elementary or bound states) in a given model. As
shown in Ref. 37, fractionally charged color singlets inev-
itably occur when sin’@), is 2 at the unification scale (as
in usual GUT’s) and the gauge group SU(3)XSU(2)
XU(1) is not embedded in SU(5). In the examples dis-
cussed below we shall see three mechanisms by which the
phenomenological problem of light fractional charges is
avoided. One of which is indeed to have SU(5)
unification which, as mentioned in Sec. I, is made possi-
ble here by incorporating level 2 Kac-Moody algebras on
the world sheet.!” Another mechanism is to have the
fractionally charged particles acquire Planck scale masses
via the massless moduli. A third mechanism, also dis-
cussed in Refs. 4 and 37, is for the fractionally charged
particles to form heavy bound states as a result of carry-
ing an extra “color” charge which confines at higher en-
ergies.

With these basic criteria in mind, we shall investigate
the phenomenology of particular models. We next show
how 3-2-1 models may be constructed.

III. FREE FERMIONIC 3-2-1 MODELS

In this section we construct fermionic string models
with the gauge group SU((3)XSUQ2)XU(1)X -+ ob-
tained directly from the spin structure. In the next sec-
tion we consider models in which a larger group is bro-
ken along flat directions at the Planck scale. We will
present the analysis of one model in detail and discuss the
salient features of two others. We choose to present in
detail the model with the best predictions for sin’@, and
Aqcp» since it requires more detail to see how these pre-
dictions emerge. The other examples illustrate the ways
in which the proton lifetime and quark mass matrices
may be incorporated in the construction.

We employ the notation of Kawai, Lewellen, and Tye®
for the fermionic string. A brief review of this formula-
tion is given in Appendix A; the references may be con-
sulted for more details. A fermionic string model is
specified by a set of 64-component vectors W; and a ma-
trix of constants k;; meeting certain consistency condi-
tions (Appendix A); the W;’s determine the allowed
boundary conditions of the world-sheet fermions around
the string loop; the k;;’s fix certain phases appearing in
the one-loop partition function.

A 3-2-1 model may be constructed with the following
spin structures:
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We call this model Al. The subscript ¢ on the }’s means
that the + refers to complex fermions; each complex fer-
mion consists of two real fermions [cf. Eq. (A3)]. The k;;
matrix for model A1 is chosen to be

k;=0 fori<j,
except kys=1, (3)
kos=kis=kas=7% -

All other k;’s (i Z j) are determined by the constraints
(Appendix A). The reasons for this choice shall be ex-
plained below.

The spin structures in (2) have a direct bearing on the
particle spectrum. The W, sector contains the graviton,
axion, dilaton, and all the gauge bosons in this model; it
also contains scalars to be discussed below. The vector
W, introduces spacetime supersymmetry. W, contains
one generation of fermions. W; contains a second gen-
eration of fermions which couples to the W, generation
via Higgs bosons in W+ W,+ W, (this structure is the
same as the toy model in Appendix A). The vector W,
forces the W, and W, sector fermions to be chiral [cf. Eq.
(A4)]. It also contains two generations of chiral fermions
itself. At this stage the first ten left-moving Majorana-
Weyl fermions provide (in the W, sector) the gauge group
SO(10) under which the matter generations transform as
spinors; the choice kg, +k,4 =k +k;, ensures that all
four generations have the same chirality. The vector Wy
then cuts the SO(10) symmetry to SO(4) XSO(6) [cf. Eq.

2] 1406 105)04(0214)0919)

10)(4, 1%)1205(121%)) .

ac

[

(A4)]. Finally, W, reduces SO(4) XSO(6) to U(2) XU(3).
Two combinations of the two U(1)’s are viable hyper-
charges with the standard assignments.

Let us remark briefly on the choice of k;;’s [Eq. (3)].
The choices k;s=kys, k;s=ko, and k 2+k 3tk
=kgy, +ko; +ko, (modl) are needed to preserve N=1
spacetime supersymmetry. This is evident from consider-
ing the projection [Eq. (A4)] of gravitinos in the W, sec-
tor. Then the choice k,s7k 5 forces the Higgs bosons in
the W+ W, + W, sector to be weak doublets rather than
color triplets.

Before considering the Fayet-Iliopoulos D terms and
massless moduli, the gauge group for this model is

SU(2), XSU(3)X[U(1)]*X[SU(2)]?

X[U(1)]® (visible) , (4a)
X[SUQ)PX[U()]* (semihidden), (4b)
X[SU(2)]*XSO(5) (semihidden) (4c)

which has rank 18. By visible we mean gauge bosons
which couple directly to matter. Semihidden means that
these gauge fields couple to extra chiral superfields which
couple in turn to the visible gauge group. After consider-
ing the D terms and moduli this situation will change
quite a bit.

The complete massless spectrum of Al before turning
on D terms and moduli is given in Table I. The more
relevant particles in the spectrum include

2 generations with extra U(1) charges (W, and W, sectors) ,

2 generations doublets of extra SU(2) with extra U(1) charges (W, sector) ,

8 weak doublets h;,k;,, i=1,...
6 color triplets f;, f;, .»3 (W, sector) ,

4 vectors of visible SO(4) {i.e., [SU(2)]*} &:,&:>

6 particles with U(1) charges only ¢12,¢12,¢13,¢13’¢23’$23

2 singlets @,,P, (W, sector) ,
SO(5) vector X (W sector) .

4 (W,+W,+W; sector) ,

i=1,2 (W,+W,+ W, sector) ,

(W, sector) ,
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TABLE I. Model A1 spectrum—‘before.” Gauge group=SU(2); X SU(3) X [SU(2)]* X SO(5) X [U(1)]".

Superfield Representation U(1) charges® Sector

0, (2,3,1,1,1,1,1,1,1) (0,—1,1,0,0,0,0) W,

L, (2,1,1,1,1,1,1,1,1) (0,3,4,0,0,0,0) w,

U, (1,3,1,1,1,1,1,1,1) (1,1,1,0,0,0,0 w,

D, (1,3,1,1,1,1,1,1,1) (—1,4,4,0,00,0 w,

z (1,1,1,1,1,1,1,1,1) (=1,—3,1,0,0,0,0 W,

v, (1,1,1,1,1,1,1,1,1) (1,—4,1,0,0,0,0 W,

0, 2,3,1,1,1,1,1,1,1) (0,—1,0,4,0,0,0) w,

L, 2,1,1,1,1,1,1,1,1) (0,3,0,1,0,0,0) w,

U, (1,3,1,1,1,1,1,1,1) (1,4,0,1,0,0,0) w,

D, (1,3,1,1,1,1,1,1,1) (—1,4,0,1,0,0,0) w,

2, (1,1,1,1,1,1,1,1,1) (=1,-3,0,1,0,0,0 w,

v, (1,1,1,1,1,1,1,1,1) (1,—2,0,1,0,0,0) W,
03,0, (2,3,2,1,1,1,1,1,1) (0,—4,0,0,—1,0,0 W,
Li,L, (2,1,2,1,1,1,1,1,1) (0,3,0,0,—1,0,0) w,

U, U, (1,3,1,2,1,1,1,1,1) (1,4,0,0,—1,0,0 W,
D,,D, (1,3,1,2,1,1,1,1,1) (—1,1,0,0,—1,0,0) W,
A (1,1,1,2,1,1,1,1,1) (—=1,-3,0,0,1,0,0) W,
V3, Vs (1,1,1,2,1,1,1,1,1) (1,—3,0,0,4,0,0) W,
hy,hy 2X(2,1,1,1,1,1,1,1,1) (1,0,1,1,0,0,0 W, +W,+W,
hih, 2X(2,1,1,1,1,1,1,1,1) (—1,0,—1,- 1,000 W,+W,+W,
hyhy 2X(2,1,1,1,1,1,1,1,1) (1,0,—1,—1,0,0,0 W, +W,+W,
Ry hy 2X(2,1,1,1,1,1,1,1,1) (—1,0,1,1,0,0,0) W, +W,+W,
21,8 2X(1,1,2,2,1,1,1,1,1) (0,0,1,—1,0,0,0) W, +W,+W,
21,82 2X(1,1,2,2,1,1,1,1,1) (0,0,—1,1,0,0,0) W, +W,+W,

hi (1,3,1,1,1,1,1,1,1) (0,1,—1,0,0,0,0) W,

7 (1,3,1,1,1,1,1,1,1) (0,—1,1,0,0,0,0) W,

fa (1,3,1,1,1,1,1,1,1) (0,1,0,— 1,0,0,0) \\

In addition there are a number of particles with both
semihidden and visible quantum numbers (Table I). The
only asymptotically free group is the semihidden SO(5).
After turning on the D terms and moduli, the SO(5) will
be broken to SO(4) but will stay asymptotically free and
become fully hidden. The semihidden [SU(2)]? in (4c)
will also become asymptotically free and fully hidden. So
we postulate that supersymmetry is broken by gaugino
condensation in these (to be) hidden groups.
Fayet-Iliopoulos D term. The U(1) “anomaly” of Al is
in a linear combination of the latter three visible U(1)’s:

TrQ=(0,0,24,24, —48,0,0) , ()

where the components of Q are just the U(1) charges. As
discussed in Sec. II, the associated Fayet-Iliopoulos D
term puts a constant in the equation of motion for the
U(1) gauge auxiliary field:?°

D~mj(TrQ)+ 3 q;!4; . (6)

scalars

A string vacuum is a supersymmetric minimum ob-

tained where the expectation of D vanishes. This can be
achieved if the fields with U(1) charges, ¢,; and ¢,;, ac-
quire VEV’s such that [{¢;3)[>=[{¢y3)[*~m},. It is
clear from the methods of Appendix B that this is an F-
flat direction so that supersymmetry is truly restored (and
the dilaton tadpole vanishes). In the process, the super-
potential couplings,

W~b1623813+ G12013623+ 13 1 f3+ 6232 f 3 v

give masses to @5,43,815,6,3,f; and a linear combina-
tion f,+(phase)f,; take (phase)=1 for concreteness.
There are additional superpotential couplings which

make massive the entire W,+W,+2W, and
W;+W,+2W, sectors (see Table I). Also half of the

W,+2W, and W;+2W sectors get massive. The U(1) in
the TrQ direction is broken; also a second linear com-
bination of the (latter) three visible U(1)’s is broken by the
VEV’s.

Massless moduli. The massless spectrum is further re-
duced via the massless moduli. The SO(5) vector has a
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TABLE 1. (Continued).
Superfield Representation U(1) charges® Sector
P (1,3,1,1,1,1,1,1,1) (0,—1,0,1,0,0,0) W,
S (1,3,1,1,1,1,1,1,1) (0,1,0,0,—1,0,0) w,
fs (1,3,1,1,1,1,1,1,1) (0,—1,0,0,1,0,0) W,
12,012 (1,1,1,1,1,1,1,1,1) (0,0,£1, ¥1,0,0,0) w,
13,013 (1,1,1,1,1,1,1,1,1) (0,0,£1,0, ¥ 1,0,0) w,
623,63 (1,1,1,1,1,1,1,1,1) (0,0,0,+1, F1,0,0) W,
&, 0, 2X(1,1,1,1,1,1,1,1,1) (0,0,0,0,0,0,0) W,
s (1,1,1,1,1,1,1,1,1) (0,0,0,0,0,0,0) W,
X (1,1,1,1,1,1,1,1,5) (0,0,0,0,0,0,0 W,
2,1,1,1,1,1,1,1,4) (£1,£3, 24,5, F4,£5,£1) W, + W
(1,1,1,1,2,1,1,1,4) (FL£3, 52575, F48D W, +W
(1,1,2,1,1,1,2,1,1) (FLFL L+l vl 5L 5] W, +W,+W;+W,
(1,1,2,1,1,1,2,1,1) (F+, ¥4+ 5, 74,7570 W, +W,+W;+W,
(1,1,1,1,1,1,2,2,4) 0,0,1,0,—1,00 W,+W,+2W,
(1,1,1,1,1,1,2,2,4) 0,0,0,1,—1,00 Wi+ W, +2W,
(1,1,1,1,1,1,1,1,1) 0,0,0,4,—1,+1,+1) W,+2W,
(1,1,1,1,2,2,1,1,1) (0,0,0,1,—1,00 W,+2W
(1,1,1,1,1,2,1,1,1) 0,00,—4,—1,£1,0 W,+2W
(1,1,1,1,2,1,1,1,1) 0,0,0,—1,—10,=1) W,+2W
(1,1,1,1,1,1,1,1,1) 0,0,4,0,— 1, £1,x1) W,+2W,
(1,1,1,1,2,2,1,1,1) 0,0,1,0,—1,0,0) W,+2W,
(1,1,1,1,1,2,1,1,1) 0,0,—1,0,—1,+1,0) W,+2W,
(1,1,1,1,2,1,1,1,1) 0,0,—1,0,—1,0,£1) W,+2W
(1,1,2,1,1,1,1,1,1) 0,0,1,1,0,£1,£'1) W,+2W,
(1,1,1,2,2,2,1,1,1) 0,0,3,1,0,0,0 W,+2W,

*The first two U(1) charges, U(1) , and U(1)g, contain two combinations which are viable hypercharges, +U(1) , — %U(l )g. With this
normalization, the hypercharge coupling ay satisfies sin’8, =% at py, as in usual GUT’s.

flat direction (X ) ~myp, which naturally breaks SO(5) to
SO(4). Next, consider the doublets 4, the singlets ®,,¢,,
and the visible SO(4) vectors g;. These have the cou-
plings

W~h1}72¢+ +h2};4(b+ +Elh2¢‘.+}73h4(b_

The VEV (& ) ~myp, gives mass to the entire W,+ W
and W, +W,+ W;+ W sectors (see Table I). This makes
the asymptotically free group from Eq. (4c), [SUQ2)]*,
completely hidden. In addition, all the fractionally
charged color singlets become superheavy; the potential
culprits are either in the W,+W, or W, +W,+W,+ W,

+g,8,®,+8,8,P_ sectors, depending on the choice of hypercharge. Thus,
3 B the modulus (@ ) removes these particles.
1818101217828:6121818191218:8:91, (8) At this point we still have two more massless moduli;

where @, =& ,+P,. The singlets $, could each acquire
a VEV, but this would make all the A’s and g’s heavy.
Some h’s are definitely needed for electroweak breaking
while the g’s can be used to break the horizontal SO(4).
So, a more interesting region of moduli space is along the
flat direction given by

(‘I)+ ) ~mp ,
9)
g *=1(g ) P~m}, .
This makes ®_, h,, h,, hy, and h, massive. It also
breaks the horizontal SO(4) to U(1) at the Planck scale.

these are the VEV’s for a linear combination of the trip-
lets f and a linear combination of the doublets A. To
preserve the standard model they must vanish; in particu-
lar,

<f1_f2)=<f1_f2>=0,

_ _ (10)
(h,+h,+ihy+ih,)=0.
The choice for these two is unnatural in the sense de-
scribed in Sec. II. However, taking the VEV’s to vanish
does give a point of enhanced symmetry; as a result the
VEV’s are natural at least in the technical sense. In prin-
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TABLE II. Model A1 spectrum—*“after.” Gauge group=SU(2), XSU(3)X[SU(2) )1E X [UD]S.

Superfield Representation U(1) charges Sector

0, (2,3,1,1,1,1,1,1) (0,—1,1,0,0,0) W,

L, 2,1,1,1,1,1,1,1) 0,2,4,0,0,0 W,

U, (1,3,1,1,1,1,1,1) (1,1,1,0,0,0) W,

D, (1,3,1,1,1,1,1,1) (—1,1,4,0,0,0) w,

e (1,1,1,1,1,1,1,1) (—1,—4%,3,0,0,0 W,

2 (1,1,1,1,1,1,1,1) (1,-3,1,0,0,0) W,

o) 2,3,1,1,1,1,1,1) (0,—4,1,0,0,0 W,

L, (2,1,1,1,1,1,1,1) 0,3,1,0,0,0) W,

U, (1,3,1,1,1,1,1,1) (1,4,1,0,0,0 W,

D, (1,3,1,1,1,1,1,1) (—1,3,5,0,0,0 W,

e (1,1,1,1,1,1,1,1) (-1, —;,;,000) W,

" (1,1,1,1,1,1,1,1) (1,—%,1,0,0,0) W,

03,04 (2,3,1,1,1,1,1,1) (0,—31,—4,£4,0,0) LA
Ly, L, (2,1,1,1,1,1,1,1) 0,3,—1,%£1,0,0) W,
U,,U, (1,3,1,1,1,1,1,1) (1,1,—1,£1,0,0) W,
D,,D, (1,3,1,1,1,1,1,1) (=1,1,-1,+100 W,
2,2, (1,1,1,1,1,1,1,1) (—=1,—3,—1,£1,00 W,
V3 Vs (1,1,1,2,1,1,1,1) (1,—3,—4,£4,0,0,) W,

h, (2,1,1,1,1,1,1,1) (1,0,1,0,0,0) W, +W,+W,

h, (2,1,1,1,1,1,1,1) (—1,0,—1,0,0,0) W, +W,+W,;

hy (2,1,1,1,1,1,1,1) (1,0,—1,0,0,0 W, +W,+W,

ks (2,1,1,1,1,1,1,1) (—1,0,1,0,0,0) W, +W,+W,;

g 2X(1,1,1,1,1,1,1,1) (0,0,0,0,0,0 W, +W,+W,

fi (1,3,1,1,1,1,1,1) 0,1,—1,0,0,0) W,

i (1,3,1,1,1,1,1,1) 0,1,—1,0,0,0 W,
fi—Ff (1,3,1,1,1,1) (0,—1,1,0,0,0) W,

fs (1,3,1,1,1,) (0,—1,1,0,0,0 W,

13 (1,1,1,1,1,1,1,1) (0,0,0,0,0,0 W,

b2 (1,1,1,1,1,1,1,1) (0,0,0,0,0,0 W,

D, (1,1,1,1,1,1,1,1) (0,0,0,0,0,0) W,

s (1,1,1,1,1,1,1,1) (0,0,0,0,0,0) W,

X (1,1,1,1,1,1,2,2) (0,0,0,0,0,0) W,
2X(1,1,1,2,1,1,1,1) (0,0,—1,0,%1,0) W,+2W,
2X(1,1,2,1,1,1,1,1) (0,0,—1,0,0,£1) W,+2W,
2X(1,1,1,2,1,1,1,1) (0,0,—1,0,%1,0) W,+2W,
2X(1,1,2,1,1,1,1,1) (0,0,—1,0,0,£1) W, +2W,
8X(1,1,1,1,1,1,1,1) 0,0,1,£4,£'1,+"1) W, +2W;
2X(1,1,2,2,1,1,1,1) (0,0,1,+1,0,0) W, +2W,

ciple these VEV’s will be zero for some values of the
supersymmetry-breaking parameters. This information
could be used to constraint the values of those parame-
ters in a more detailed analysis. However, it would not
be worthwhile to engage in such antics with this particu-
lar model as we will soon uncover more serious defects.

To summarize the results of Fayet-Iliopoulos D terms
and massless moduli, the remaining gauge group is

SU(2)XSU3)X[U(DPPX[U(1)]* (visible) , (11a)
X[SU(2)]*X[U(1)]* (semihidden), (11b)
X[SU(2)]* (hidden) . (11c)

Of the remaining particles, the more relevant ones in-
clude 4 generations, 4 weak doublets, and 4 color triplets.

The complete spectrum which remains is given in Table
1I1.

sin’0y, and Agcp. Following Sec. II, the one-loop
renormalization-group flow of the gauge couplings pro-
vides a prediction for the Weinberg angle and Agcp. We
use the Georgi-Quinn-Weinberg equations*

b,
ai_l(y)za[,]-f-—lniu— (12)
2 p

for the couplings at the scale u in terms of the unified
coupling a at scale u; and the b coefficients. For
SU(N), in the supersymmetric case, the b’s are given by

b=—3N+ 31, (13)
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where [, is the quadratic Casimir of the representation r
(e.g., I, =1 for the fundamental representation). For the
U(1) factors normalized to have coupling a at the string
tree level the b;’s are

=13 07, (14)

where Q is the charge.

To calculate sin’y and Agcp we assume all the
remaining particles not in the standard model have
masses ~1 TeV. Let the superunification scale be of or-
der ging3X 10" GeV. The Georgi-Weinberg-Quinn
equations may then be solved for sin%@,,, Aqcps and ay
in terms of the fine-structure constant, a(100 GeV)
= L. For model Al we obtain a{,le.B, sin29w=0. 20
+0(a) at 100 GeV and Aqcp=~100 MeV. These predic-
tions are compatible with experiment, so Al passes this
test. Also the unification coupling is consistent with per-
turbation theory. So it is seen that after the dust settles, a
seemingly complicated model can exhibit a grand desert
scenario and meet these basic criteria.

Proton decay. The problem of proton decay is the main
defect of this model. The first mechanism for proton de-
cay mentioned in Sec. II, from the couplings QLD or
U D D (Fig. 1) is avoided, because the extra visible U(1)’s
exclude these couplings; it is also easy to check that the
Planck scale VEV’s given to moduli do not induce these
couplings via nonrenormalizable terms. However, the
second mechanism, colored Higgs-boson exchange (Fig.
2), is present at low energies. In particular, three of the
four remaining triplets, f,, f,, and f; couple to matter
with the superpotential

2
W~ 3 (/10,0 +fD¥+fUgz)

i=1

+f3Q;L,+f3UsD,+f3Q,L;+ f3U,D; . (15)

These couplings allow for rapid proton decay. The de-
cay proceeds (at most) at the TeV scale so the resulting
proton lifetime is clearly unacceptable. Below we shall il-
lustrate the mechanisms for avoiding this problem in oth-
er models.

Mass matrices. The four remaining Higgs bosons in
model A1l couple the quarks and leptons in the W, sector
to those in the W, sector. As a result there are enough
couplings to give masses to all up and down quarks (and
leptons) in two generations. However, the two genera-
tions in the W, sector do not get masses. Furthermore it
is clear that none of the Planck scale VEV’s induce the
needed Yukawa couplings. So, a completely satisfactory
mass matrix is lacking. A model which overcomes this
difficulty shall be constructed below.

Model A2. Some of the defects of model A1 may be
avoided in other models. The construction in Table III
shows how rapid proton decay may be avoided. We call
this model A2. The gauge group, again from the W, sec-
tor, is SU(2)XSUB3)X[SU@)]*XSU(5)X[U(1)]° (rank
22). There are four generations which appear in the W,,

TABLE III. Model A2.

woz(_;_ﬂ)l _;_44)

W, =(0%011)°]1%)

W,=(0%041)(101)*0'01%¥)

W, =(0%($03)4011)?[0"2140* 1)
W,=(0%1101(01 1)2(1 10?0015 1%0%2)

W, =(0%000)*(0+1)2(000)2|(140%)(0*1%)(120%)0% L 20'°)
Wi (0%(000(000)%(01 1 P14 S(H0% )(4,004210° 1)

k,;=0 for i>j except kg =ky =ky =ks;=1

W;, W,+W,, and W;+ W, sectors. The long life of the
proton is saved because the colored triplets in the W, sec-
tor, called f; before, are quintuplets of SU(5) and do not
couple to quarks. This structure results from the projec-
tion of Wy on the W, sector [Eq. (A4)]; the projection
forces the W, sector scalars which couple to matter to be
weak doublets rather than color triplets.

The other salient features of model A2 include a

Fayet-Iliopoulos D term corresponding to the ‘“anoma-
lyn38

TrQ~(0,0,4,0,3,—4,0,—1,0) . (16)

Again a supersymmetric minimum is found by giving
VEV’s to W, sector scalars, with U(l) charges
(0,0,—1,0,0,+1,0,0,0) and (0,0,0,0,—1,0,0,%=1,0). The
massless moduli may be chosen to leave four light dou-
blets, though some VEV’s again must vanish leaving
some enhanced symmetry. A main problem of the model
is that the asymptotically free groups, [SU(4)]*>XSU(5),
do not become fully hidden. They stay semihidden in the
sense that supermultiplets with hypercharge and color
have [SU(4)]* and SU(5) quantum numbers, respectively
(these particles also carry fractional electric charges). It
is expected that supersymmetry breaking in the semihid-
den sector would then feed into the visible sector at a
much higher scale. A rough calculation, assuming
ay;=5.3 as in the model Al, gives that SU(4) (with
b,= —8) confines at ~10'® GeV. SUSY breaking would
be expected a few orders of magnitude below 10'® GeV
(since the auxiliary fields in supergravity go as ~1/mp,
times the terms bilinear in the fermions), but hardly low
enough to protect the mass of the Higgs boson. If we as-
sume the dynamics of supersymmetry breaking somehow
avoid this conclusion we may calculate sin?6y, and Aqceps
a rough calculation gives sin?0,=0.20+0(a) and
Aqcp=3 GeV. Aqcp appears a bit high in this scheme.
In any case, we prefer to think of A2 as an illustration of
how to preserve the proton.

It is worth noting that the particles with fractional
electric charge are confined into bound states by the
semihidden SU(5)X[SU(4)]* (these particles are in
W,+W;+W;+2W, and sectors of the form

-+ - +Ws+Wq). Thus, the possibility exists, as in Ref. 4,
that these may be quite massive. This illustrates a second
mechanism for avoiding light fractional charges, though
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TABLE IV. Model A3.

_( 120.1
2
1_(02 O%—L)6| 144)
W,=(0%(031)%(101)*[0'61%)

w3:(02( lO )4(0] 1) |012_;_404%24)
w4=(02 0%%)2( 0 ) 10)2I010(020212)]402122)

=(02(1 10) 0 )2(01 I)2|010 02]4)0212|202120)

_(02 (000) (01 1 )2 2|010( 1204)040202 1 100]0)

W, =(0% )Ho%)(ooo)(oom [(3408)( _05)0"0202(1505)1302)

W, =(0%(011)(000)(000)%(011)(000)[; *(0*} 10)L Lololo(ot?L%0)1%0% )

k,=0 for i >j except ky =k =kgy=ks; =1 and ky3=k;s=kg=kg =7
this mechanism is perhaps more dependent on assump- 0 Ay O hy)(Q
tions regarding nonperturbative effects (i.e., confinement).

. . hy 0 hy 0|0,
Although A2 avoids proton decay the real test is W~(TU,U,0.0,)

whether acceptable quark and lepton masses can be ob- 1727374710 hy 0 hs| Qs

tained at the same time we protect the proton lifetime.
In other words, we need to know if the required Yukawa
couplings of quarks and leptons to SU(2) doublets do not
imply the existence of dangerous couplings to SU(3) trip-
lets. In this sense model A2 is not quite adequate since
the mass matrices have several defects. For example,
there is one massless generation. Also there are no KM
mixings between the first two generations (W, and W3)
and the second two (W,+W, and W3+ W,); this is true
even after the nonrenormalizable terms are included. It
should also be noted that the neutrino mass eigenvalues
are the same as the up-quark mass eigenvalues; then the
appropriate splitting, m , <<m,, does not occur.

Model A3. We can, however, construct a model which
incorporates both the proton lifetime and acceptable
mass matrices. This model, called A3, is given in Table
IV. Model A3 will have another problem; the spectrum
contains so many particles that perturbative unification
will not be possible. Nevertheless, it is useful to see how
the mass matrices arise and how the problems of A3
might be avoided.

The gauge group for model A3 is
SU(2), XSU3)X[U(1)]’XSU(6) XSU(2) (rank 16), con-
sisting of gauge bosons in the W, and
Wo+W,+W,+W;+W,+W,+W+2W, sectors.
There are four generations in the W,, W3, W,, and W,
sectors and a total of 16 Higgs doublets in W, +W,+ W3,
W,+W,;+W, W,+W,+W,, and W;+W,+W;. This
structure results (following the discussion of interactions
in Appendix A) in Yukawa couplings between the sectors
W, and W3, W; and W,,W,, and Ws, and W5 and W,.
All the needed Yukawa couplings can be found in the re-
normalizable action. The relevant terms in the superpo-
tential have the form

h; 0 hs O [|Q,
0 h, 0 hy|qQ,
hy 0 hy 0]]|Q,

4
0 hy 0 hgl||Qs
hg 0 hs O Q,
0 h, 0 hg)(L,
h, 0 hy O||L,
+(FWVV,) | | he O hel|L;
hy 0 he O ||L,
0 hy 0 hg|(L,
R, 0 hy 0 ||L,
+(e,2,838,) 0 Ak, 0 Fsl||Ls|’ (17

h, 0 hg O |(Ls

where Q; (L;), i=1,...,4 are the quark (lepton) dou-
blets, U;, D; (¥,,¢;) the quark (lepton) singlets, and i hj
the Higgs doublets. Of course, in order for this scheme
to work and still permit perturbative unification, a linear
combination of the 4;’s must become the true Higgs dou-
blet while most of the others must be superheavy; in par-
ticular at most seven of these doublets can stay light.
This could result, in principle, from couplings of a linear
combination of 4,’s to a combination of ;s and a singlet.
We return to this point momentarily.

The mass matrices resulting from the couplings in (17)
have several interesting properties. First, the down
quarks and the down leptons have the same mass eigen-
values so that the relation m,=m_ at the unification
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scale is obtained. Yet, the up quarks and the neutrinos
have completely different couplings, so there is no analo-
gous relation for up quarks and neutrinos. It is even pos-
sible to have massless neutrinos if the A’s which couple to
neutrinos do not acquire a VEV. Ideally, one would like
to see these doublets become superheavy.

The question of whether the appropriate weak doublets
acquire large masses can be answered by looking at the
Fayet-Iliopoulos D terms, massless moduli, and non-
renormalizable terms. We find, alas, that the needed cou-
plings are not in fact present in model A3. However,
there seems to be no fundamental obstacle to obtaining
such couplings in a model incorporating this structure.

Let us briefly examine the other salient features of this
model, in particular to see how the proton lifetime is
saved. The U(1) “anomaly” is

TrQ~(0,0,—1,—1,0,0,—2), (18)

where the first two (nonanomalous) U(1) charges are, at
this stage, viable hypercharges. A supersymmetric
minimum may be found by giving Planck scale VEV’s
to three scalars in the W,+W,;+W,+W; and
W,+W;+W.+3W, sectors having the following U(1)
charges:

¢1: (07 )451’00 3)
¢2: (O lriy 0,0’%) ’ (19)
¢3: (0,1, —4,4,0,0,%) .

The VEV’s [(¢,)|*=2[(¢,)|*=2|(¢;)|*~m}, then give
a supersymmetric minimum ({D)=(F)=0). It is in-
teresting that these VEV’s break one of the viable hyper-
charges. The only remaining choice for the hypercharge
fixes which states are up quarks and which are down
quarks. This leads to the mass matrices discussed above
and the relations m,=m _and m ,#m,.

The spectrum mcludes two 3, 3 pairs of SU(3) whose
Yukawa couplings could result in proton decay. These
states are essentially the same as f;,f; (i=1,2) in model
Al, in the W, sector. However, here there is a massless
modulus which removes these particles. In particular,

there are 3-2-1 singlets in W,+W¢+2W; and
W;+ W¢+2W; with U(1) charges:
o4 (0,0,£1,—1,0,0,—1) (W,+W4+2W; sector) ,

20

®%: (0,0,—1,+1,0,0,—1) (W;+W¢+2W; sector) .

These fields can acquire Planck scale VEV’s,
(®4)=(d4)=(®Z)=(®2) which, along with the
VEV’s (4,) above, lic along a completely flat direction.
The dangerous tnplets f:,f; then become superheavy via
couplings to ®£'® and another, less dangerous 3,3 pair.
This demonstrates the other mechanism for preserving
the proton discussed in Sec. II: rescue by massless modu-
li. The proton will still decay; however, the decay will
proceed at the Planck scale. The dominant mechanism
would be decay via dimension five operators®® with a life-
time (orders of magnitude) above the value obtained for
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usual GUT’s [~10% yr for Mgy ~2X10!® GeV (Ref.
30)].

Finally, let us remark on the main problem with A3.
In addition to the 16 extra weak doublets, the spectrum
includes a plethora of doublets, triplets, and particles
with hypercharge which have no Yukawa couplings to
matter. In fact there are 8 more remaining doublets, 12
more triplets, and 96 more particles with only hyper-
charge. The hypercharge coupling constant has a Lan-
dau pole at ~10° GeV, so that perturbative unification is
not possible. These extra particles also carry fractional
electric charges. As before, this model is only an illustra-
tion of how certain desirable features may be built into
the construction.

To summarize Sec. III, we have analyzed three models
with gauge groups SU(3) XSU(2)XU(1)X - -+ . The first
example (A1) produced acceptable predictions for sin’@y,
and Aqgcp but suffered from rapid proton decay. The
second model (A2) incorporated a mechanism for
suppressing proton decay. The third example (A3) was
able to produce acceptable mass matrices and long-lived
protons but could not provide perturbative unification.

IV. MODELS WITH BROKEN GUT SYMMETRY

In this section we consider fermionic string models in
which the massless moduli break the gauge symmetry to
SU@B)XSU((2) X U(1) X We construct an example
for each of the following breaking patterns:

[SU(2)]2XSU(4)—SU(3) X SU(2) X U(1) , (21a)
SU(5)—SU(3)XSU(2)X U(1) , (21b)
SO(10) X [SU(2)]*—>SU(3)XSU(2) X [U(1) 2 (21c)

We shall emphasize the first two examples; the latter ex-
ample just illustrates how the breaking pattern may be
achieved. The SU(5) model will have a single GUT Higgs
boson in the adjoint representation. The others will be
broken by spinor representations. It will be apparent
that the GUT symmetry breaking will occur naturally at

TABLE V. Model B1.

W,=( lzo‘n«m
W, =(0%(051)°14*)
_(02 0 2( %0%)4|016128)
__.(02( 0 )4(0%;_) |01214O4124)
_(02 l IO) (0%%)2(1 IO |01016|4110014)
5—<02<§-§-o 0011 11o)dob0"10) 0131101 1%*)
(

703
W,=(0%000)*(03 1
ki, =0 for i <j except k,s=

)(000)(000)?|( ;“o")( 10°)0*(1°0°) 1%0%0*)

1
2
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the Planck scale. As a result these models will have
many of the features of a 3-2-1 model. However, some
differences remain; in particular the running coupling
constants will be altered so as to endanger perturbative
unification.

For example, the first model, given in Table V, shall be
called B1. The choice of k;; (Table V) leads, as in the pre-
vious section, to four generations, in W, and W3, and
Higgs doublets in the W+ W,+ W, sector. The gauge
group, again from the W, sector, is

4 generations (W, and W, sectors) ,

16 weak doublets 4,
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[SU(2)1%, XSU(4)X[SU(2)]* (visible) , (22a)
XSO(8) (semihidden), (22b)
X[SO(5)]*XU(1) (hidden), (22c)

which has rank 18. Two generations in the W, sector
form a doublet of a horizontal SU(2) while two genera-
tions in W3 form a doublet of a different horizontal SU(2)

[the SU(2)’s will be broken by moduli]. A brief summary
of the spectrum is

i=1,2 [two (2,2,1,2,2,1,1) representations of the visible group (22a)]

(Wy+W,+W; sector) ,

4 GUT Higgs bosons H,,H,, i=1,2 [(1,2,4,1,1,1,2), (1,2,%,1,1,1,2), (1,2,4,1,1,2,1), and (1,2,4,1,1,2,1)

10 6’s of SU(4) flny,f [(1,1;693,111’1):

1 adjoint of both horizontal SU(2

2 vectors of SO(8)/doublets of both horizontal SU(2)’s g;,
[two (1,1,1,2,2,1,1,8) representations of (22a) and (22b)]

vectors of each SO(5) X;, i=1,2 (W, sector),

The U(1) produces no Fayet-Iliopoulos D term in this
model. A flat direction of ¢ and g may be chosen to
break the (two) horizontal SU(2)’s to [U(1)], give Planck
scale masses to f,,f, and leave four weak doublets.
None of the remaining triplets couple to quarks; as a re-
sult, proton decay (mediated by f; and f,) is suppressed.

To see how this comes about in more detail, consider
the terms in the superpotential

W~fifr0thhd+hh,0+g,80+g,8,0+8,8,P .
(23)

The VEV for ¢,; [where i,j =x,y,z denote the SO(3) vec-
tor components], {(a¢,, +b¢,, +cd, ) ~mp is a flat
direction for all a,b,c. Choosing a, b, and c all nonzero
gives masses to all components of f, and f,. Choosing
furthermore c2=(a+b)? leaves a massless 4 of SO(4),, in
h, and h,. It also leaves a massless 8 of SO(8) in g, and
g,; then the VEV (g, +ig, ) ~myp, [with different SO(8)
components of g, and g, getting the VEV] gives a mass
to the ¢ > (a+b)? mode of b,

Next we consider GUT symmetry breaking. The flat
directions for the GUT Higgs bosons may be deduced
from the superpotential

W~H H ®+H,H,»+H H,f +H H,f . (24)
The direction given by (H,+H,+iH,+iH,)~mp, is

(1,1,6,1,3,1,1),

s ¢ [(1,1,1,3,3,1,1) representation]

representations of the visible group]

and (1,1,6,1,1,2,2)

(W5 sector) ,
representations of the visible group] (W, sector) ,
(W, sector) ,

i=1,2

(Wy+W,+ W, sector) ,

singlet ® (W, sector) .

[

flat according to (24); specifically, we give VEV’s to the
states with fermionic charge vectors:

Hy (o—dmimimdmdo i),
Hy (- +i4+1414141 004141,
(25)
Hy (o —i=i=i=i=f—i4h),
H, (-~ +1+1+14141..0 411

in the [SU(2)]% X SU(4) X [SU(2)]* subspace of the charge
lattice. An analysis using the method of Appendix B re-
veals that this direction is completely flat. Thus
[SU(2)14 X SU(4) is naturally broken at the Planck scale;
more correctly, since H is in the spinor of
[SUQ2)1z XSU(4) X [SU(2)]%, the breaking is

[SU(2)]% XSU(4) X [SU(2)]?
—SU(2), XSUB)X[UD]*. (26

The superpotential (23) gives masses to six of the eight
(color) triplets in f. Ideally we are then left with four
generations, four weak doublets, and two color triplets;
the remaining color triplets, components of f, do not
mediate proton decay [because they carry extra SU(2)
quantum numbers]. However, there are extra com-
ponents of H;, H; which are neither massive from (23) nor
eaten by gauge bosons. These include the GUT Higgs
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boson, eight triplets and six hypercharge *2 particles.
An analysis according to Appendix B shows that these
stay light along the flat direction. Luckily there is no
QLH coupling that would induce proton decay. Howev-
er, these extra particles do contribute to the
renormalization-group flow. A rough calculation then
shows that the hypercharge coupling a, has a Landau
pole at ~10'' GeV. So perturbative unification is not
possible.

It seems that this problem is endemic to the scheme
used here of breaking at the Planck scale. The fact that
there are four generations hardly makes a difference; if
there were only three generations, the Landau pole would
only move up to ~10!2 GeV. The only solution to this
problem is to get the extra components of H,,H, out of
the spectrum. In principle this could be achieved in a
model if there was only one pair of GUT Higgs bosons,
H,H, without the coupling HH®. So far, we have not
found how to construct such a model with spinor Higgs
boson.

The model B2, defined in Table VI, has the GUT group
SU(5) with one Higgs boson in the adjoint representation.
The appearance of a single GUT Higgs boson suggests
that such a construction may permit perturbative

J

4 generations (5 and10) ¥,X;, i=1,...
1 adjoint Higgs boson H (W,+ W, sector) ,
10 and 10 F,,F, (W,;+W, sector) ,

10 and 10 F,,F, (W, sector),

12 5,5 electroweak Higgs boson pairs h;,h;

SO(7) vector /SU(2) ,
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unification. As remarked in Sec. I, the adjoint Higgs bo-
son together with chiral fermions is allowed because the
world-sheet SU(5) current algebra is really level 2.'7 In
fact, the model B2 is simply a variation of the SO(10) ex-
ample given by Lewellen.!” The first eight W vectors are
the same as Lewellen’s eight-generation SO(10) model;
the ninth vector cuts the gauge symmetry to SU(S),
halves the number of generations to four and reduces the
number of adjoint Higgs bosons to one [Lewellen also
constructs a four generation SO(10) model,'” but we
choose to concentrate on this SU(S) variation since it only
requires a single GUT Higgs boson].

In B2 the gauge bosons are contained in the
Wy+ {W,, W3, W,}] sectors, where {W,,W;, W,} means
any linear combination of W,, W3, W,. The full gauge
group is

(5)X[U(1)]® (visible) ,

X[SU(2)]>XS0O(7) (semihidden) (27)

which has rank 12. The adjoint Higgs boson is in the
Wy+W,+ {W,, W3, W,] sectors while the four genera-
tions are in W5+ {W,, W3, W,}. The spectrum may be
summarized as follows:

,4 (W sector) ,

(W,, W, +W,, W, and W4+ W, sectors) ,

doublet &, [(1,2,1,7) representation of (25)] with U(1) charges (1,0,0) (W sector) ,

U(2) 4, doublet/SU(2)p adjoint &, [(1,2,3,1) representation of (25)] with U(1) (1,0,0) (W sector)

more SU(5) singlets ¢, .

TABLE VI. Model B2.

WO:(%20|%44)

W, =(0%0L 1)
— 8 8

w2~(020|% 04% 024)
—-(020|080404 141 4020)
_(020’ 120412)14 1202)4016)

0

*%44)

W, =(0%(041)%(Lol
W,=(0%(101)011)
*(02(000 )2( 4 0 |‘8036)
_.(02

k,;=0 for i <j except ki;=k3;3=

) |( 1404)1202(%0)802%14)
2( 1 lO l l804%16(04%12))

10)($01)(301)%(000)2((1%01%0%)0%121%0%0* 1 2(10° 1 70%))

1
2
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There is a U(1) “anomaly,”
TrQ~(—1,0,0), (28)

which may be handled by giving VEV’s to @, and ®,.
The supersymmetric minimum is given by (®%)=(®4)
~mp, where u and d are the “up” and “down” com-
ponents of the respective SU(2) , doublets.

The analysis of this model has not yet been completed
(since this is a relatively new construction); in particular
the nonrenormalizable couplings are not yet computed.
However certain things are clear: In order to permit per-
turbative unification, the 10,10 pairs should get su-
perheavy as well as most of the 5,5 pairs. The singlets
could in principle accomplish this via couplings such as
®FF,hh and also nonrenormalizable terms. The cou-
plings will have to be worked out carefully to determine if
this is possible (this work is in progress). In addition, the
only renormalizable coupling of the electroweak Higgs
boson to matter occurs for the 5,5 pair in the W/ sector:

W~hl¢il_/i+};l¢ivi . (29)

This electroweak Higgs boson couples to the GUT Higgs
boson,

W ~Hh h,+Hhh, , (30)

so that the Higgs doublets and triplets can be split. The
VEV

(H)~ -2 (31
-2
-2

is in a completely flat direction. In this region of moduli
space the doublets and triplets in &,k are split but they
are both superheavy. To obtain light doublets some other
mechanism is needed. The most universal such mecha-
nism, the “missing partner” mechanism,*’ relies on
higher representations (e.g., 50 and 75) and so is not
applicable in this model. Higher-level representations are
allowed in the case of higher-level Kac-Moody alge-
bras, *° though further work is needed to determine if
these can be incorporated in such a model. 75 and 50
representations may occur but the 50 would be massive.
Also, before we can say definitively that proton decay is
suppressed it will be necessary to compute whether the

TABLE VII. Model B3.

WOZ(%zo‘%M)

W, =(0%(01 1)°[ 1)

W,=(0°(0}5)2(103)*0"°4%)

W;=(0%(10d) 01120121401 *)

w4=(02(%%0)2(0%%)2(Ll0) |0]0;6141 10014)
=(0%(130)(101)(05 121 10)(301)]0'(L30)(01%) 1101 1%%)

W= (0%(000)*011)(000)(000)?/0'( 205>o4<;os 14000%)
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singlets that should acquire VEV’s do not induce proton
decay through nonrenormalizable interactions (this work
is in progress).

Nevertheless, it is apparent from the preliminary
analysis that this type of construction opens a range of
new possibilities. On one hand, the problem of perturba-
tive unification in GUT models seems manageable in this
construction; also, integer electric charge quantization is
guaranteed by SU(5) unification. On the other hand, the
range of grand unified scenarios is greatly increased once
we consider Higgs bosons in higher representations. So
this makes it more difficult to extract a true prediction
from string theory.

Let us briefly illustrate how the breaking (21c) may be
obtained. The spin structure in Table VII, called B3, ex-
hibits this pattern of breaking. The spin structure is the
same as model B1 except that 1* in W is removed from
¥,, through ,, and s, through 15 As a result the
gauge group becomes

0O(10)X[SU(2)}* (visible)
X[SU(2)]* (semihidden)
X[SO(5)]*XSU(4) (hidden) . (32)

The group SO(10) X [SU(2)]* is broken along flat direc-
tions by two 16’s and two 16’s in the W sector. One
16,16 pair breaks SO(10)X[SU(2)]* to SU(5)XSU(2)
X U(1); this contains what is essentially the flipped SU(5)
group. The next pair breaks this to SU(3)XSU(2)
X[U(D]* As before, the GUT scale is naturally ~mp,.
As in B1, perturbative unification is precluded by the ex-
tra components of the GUT Higgs bosons.

V. DISCUSSION

In this paper we have constructed a series of fermionic
string models with gauge group SU(3)XSU(2)XU(1)
X -++ . Two kinds of construction were used. In one
case the group SU(3) X SU(2) X U(1) was obtained directly
in terms of free world-sheet fermions; in the other case a
larger group was broken to SU(3) X SU(2) X U(1) via mass-
less moduli at the Planck scale.

In the first case it was possible to obtain realistic pre-
dictions for sin’,, and Aqcp- In separate examples it
was possible to suppress the decay of the proton and ob-
tain realistic quark (and lepton) mass matrices. We
identified the aspects of the construction that led to these
phenomenological consequences. In the future we may
investigate whether these features can be incorporated
into a single model. In these models the massless moduli
and Fayet-Iliopoulos D terms played a key role in trun-
cating the massless spectrum. These mechanisms were
even able to provide a hidden sector in which supersym-
metry could be broken (model A1). Of course, the prob-
lem of whether supersymmetry is really broken remains a
serious unresolved issue.

In the case that SU(3) XSU(2) X U(1) was obtained via
massless moduli, we constructed models with spinor
Higgs-boson breaking and adjoint Higgs-boson breaking.
The models examined with spinor Higgs-boson breaking
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were plagued by excess particles; as a result, the running
coupling constants were inconsistent with perturbative
unification and the known couplings at present day ener-
gies. Modifications of the spectrum and the superpoten-
tial that would avoid this difficulty were pointed out in
Sec. IV (in particular, some excess GUT Higgs bosons
would have to be projected out while leaving behind a flat
direction for the remaining GUT Higgs boson). Yet we
were unable to obtain this feature in this construction.

The model with adjoint Higgs-boson breaking of SU(5)
avoided this difficulty in that the spectrum contained
only one GUT Higgs boson. This construction also
guaranteed electric charge quantization. However the
proper doublet-triplet splitting appears unlikely without
some modifications of the spectrum. Further work is
needed to determine how promising such models can be.

It is worth noting which aspects of these results are
relevant to the case of three generations and which per-
tain only to four-generation models. The mechanisms de-
scribed for suppressing proton decay, removing extra
particles, obtaining various gauge groups, and removing
fractional charges can be expected to apply in three-
generation models. Also the problems of perturbative
unification and obtaining acceptable mass matrices are
found in three-generation cases as well;'>*! the solution
of the perturbative unification problem in the 3-2-1 mod-
els A1 and A2 may be useful in assessing other examples.
On the other hand, the Yukawa coupling matrix of model
A3 relies particularly on its four-generation structure.
This is because the four spin structures containing each
generation form combinations which contain the Higgs
multiplets. It remains to be seen whether a variant of this
structure can be constructed in the three-generation case.

Let us consider how these results relate to other work
on the phenomenology of string models. First, with fer-
mionic strings, a number of flipped SU(5) models have
been constructed,>* the most recent of which has promis-
ing phenomenology.* The spectrum contains three gen-
erations and just one GUT Higgs boson (10,10 pair),
which should allow for perturbative unification. At the
level of renormalizable interactions, the colored Higgs
bosons which couple to quarks are naturally heavy, thus
suppressing proton decay; also at the level of renormaliz-
able interactions, there is a seesaw mechanism for the
neutrino in at least one generation.* As in the minimal
SU(5) model discussed here, further calculation of the
nonrenormalizable terms would be desirable. This would
be useful to determine if proton decay (mediated by
remaining light triplets) is not induced by the terms with
large VEV’s, if a realistic mass matrix is possible and to
complete the analysis of sin*6}, and Aqcp- It would also
be desirable to see if the hidden sector is truly hidden or
really semihidden, as in model A2 presented here in Sec.
III. In any event, even if the particular model in Ref. 4
shows flaws, this type of construction shows promise.

The phenomenology of orbifold models® has been in-
vestigated in detail in Refs. 8-10 and 42 with results simi-
lar to those found here. In particular Z; orbifolds of the
3-2-1 type and also SU(3)XSU(2), XSU(2)g X U(1) type
were analyzed in Refs. 9 and 10. Some phenomenological
constraints, such as the proton lifetime, could be met

while others, such as perturbative unification, were more
elusive without some intermediate scale in the model. °
String models from Calabi-Yau manifolds were analyzed
in Refs. 11, 12, and 41; the models based on Wilson line
breaking of E, also have problems with perturbative
unification.*! However, more recent (2,0) compactifi-
cations may avoid this problem.* So, it is not at all pos-
sible to rule out any formulation of the heterotic string at
this time.

In view of the generic problem of perturbative
unification, it seems that the Antoniadas et al. model*
which avoids this problem and the 3-2-1 model A1 (Sec.
III) which has acceptable values for sin’6y, and Agcp,
are significant. It seems that the coupling constant flow
is a powerful test for the class of interesting models. Of
course, the real problem is the incorporation of all the
desirable features into a single model.

Though as yet no one model is a true candidate, the in-
gredients for meeting the phenomenological constraints
are present. In a sense we are in an ideal situation (con-
sidering we do not yet have the dynamics for choosing
the vacuum). The ingredients are there, yet to find them
all in a single model is nontrivial. The number of truly
acceptable models may then be rather small; there may
be only one, or a few or none. Since we know some tech-
niques for incorporating the desired features in construct-
ing vacua, it should not be necessary to perform a ran-
dom search. The more interesting constructions may be
attempted, analyzed, and discarded as necessary. In this
way we may, despite our lack of knowledge, obtain a
good idea if string theory is really a viable description of
nature.
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APPENDIX A: FERMIONIC STRINGS

In this appendix we briefly review the construction of
fermionic strings. As discussed above we must also con-
sider the space of string vacua continuously connected to
these models via the massless moduli; the massless modu-
li are discussed in Appendix B. The advantage of consid-
ering fermionic strings is the relative ease with which re-
normalizable and nonrenormalizable terms in the
effective action may be computed. The disadvantage, of
course, is the loss of generality incurred in restricting at-
tention to any one type of construction.

We employ the notation of Kawai, Lewellen, and Tye®
for the fermionic formulation. The light cone degrees of
freedom for the fermionic, heterotic string include 20 free
right-moving Majorana-Weyl fermions, ¢;, i =1, ..., 20,
and 44 free left-moving Majorana-Weyl fermions, ;,
i=21,...,64. The first two right-moving fermions
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transform as two components of a spacetime (four-
dimensional) vector. In addition there are two right- and
left-moving free bosons X;, i=1,2, which transform as a
spacetime vector. There is a right-moving superconfor-
mal symmetry with supercurrent given by

Te=i 3 90X, +¢¥hstethsthg+ - - +1510¢ -

i=1,2
(A1)

Other possible choices for the supercurrent exist;*
what follows we only consider the supercurrent of Eq.
(A1). A string model is obtained by specifying the
boundary conditions of the fermions around the closed
loop of the string. More specifically, a model consists of
a set of allowed sectors; in a given sector each fermion
has a particular boundary condition. The boundary con-
dition may be denoted by

2miW

dilo=2m=e"" "Iy, (a=0) (A2)

for the ith fermion in the W; sector. Each W, is then a
64-component vector. A set of W;’s meeting certain con-
sistency conditions (Table VIII) is almost all that is need-
ed to specify a model. A pair of Majorana-Weyl fermions
may also be combined to form a Weyl (complex) fermion:

A~ +iy; .

A Weyl fermion may have a boundary condition which is
neither periodic nor antiperiodic, given by W =n/m,
with n,m €Z. We take all components W‘ to 11e in the
interval [0,1).

Modular invariance requires that if the sectors W; and
W, are present then the sector given by W, +W, is
present. So the vectors W; form a basis for the allowed
set of sectors. For those sectors given by linear combina-
tions of W,’s we write W, +W,; to_indicate that each
component is again between 0 and 1; W TW, =W, +W,
(modl). The complete set of allowed sectors 1s then glven
by 3;a;W; where a;’s are non-negative integers less
than the “order” (least common denominator) of the
components of W .

The rules for model construction are listed in Table
VIII; see the references for a detailed discussion.®’ The
spectrum of a given model consists of the various excita-

(A3)
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tion in each sector, subject to a generalized Gliozzi-
Scherk-Olive (GSO) projection.*> In the S aW sector
the physical states left by the projection are given by®

Wi'Nzaw|PhyS>: 2 ajk; kit W

; |Iphys) mod1

WZa

(A4)

for all i where N S oW is the fermion number operator in

the > ja jW ; sector, the multidot products are Lorentzi-
an (left movers minus right movers), Wy, is the all-Neveu-
Schwarz sector (Wk— ; for all k), and k;; is a matrix of
rational numbers meetmg the consxstency conditions in
Table VIII. A model is fully determined by specifying
the W vectors and the k;;’s. For an arbitrary choice of
W{, a consistent set of k ’s may not exist; this is one of
the main constraints on WJ

The definition of the number operators N S oW in

terms of the free fermion mode expansion is straightfor-
ward except for the Ramond zero modes in the case of
real fermions. A precise definition for N S aw in this case

was worked out in Ref. 46. Since this case is relevant to
the examples of Secs. III and IV, the definition is given in
Table IX.

Let us illustrate the fermionic construction with some
simple examples. The simplest model consists of just two
sectors, one with all Neveu-Schwarz fermions and one
with all Ramond fermions. The notation for this model is
simply,

— %20|%44) , (AS)

where %20 refers to 20 right-moving Neveu-Schwarz fer-

mions and %44 refers to 44 left-moving Neveu-Schwarz
fermions (right movers are on the left and vice versa due
to obscure historical reasons). This model is not space-
time supersymmetric; it also contains tachyons. There
are SO(44) gauge bosons in the W, sector obtained by ex-
citing one right-moving fermionic oscillator with a space-
time vector index and two left-moving fermionic oscilla-
tors. There are also [SO(3)]® gauge bosons obtained by

TABLE VIII. Spin structure rules.

kj+k;=W; W, modl

m;k,, =0 modl
ki+kio+W/—IW, - W,=0 modl
4 3 W!W/W, =0 modl

I: real fermions

WI=WI=W W WI=Wo W+ Wi= - - -

=WE+WP+W¥ modl

where m;=least common denominator of W,

Modular invariance = W,k

exist

W, Nzawlphys)— 2‘1 kit kgt Wi—W, - EOIW |phys) mod1

where N #fermxon number in the EaW sector
S aw
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TABLE IX. Fermion number operator for real fermions.

aW

W, Ny o =W N

+1i(1-r%)

where N ’2 Lw =fermion number vector excluding zero modes

and
I =g? I] (g)™

J
@)=y -y with 1 <l < - - -

<l, and W,I-" =Wl-k =

1
i T2

where y’=1/ 2 (the Ramond zero-mode operator in ;)

exciting a left-moving bosonic oscillator and a right-
moving internal fermionic oscillator. The massless spec-
trum also includes SO(44) adjoint scalars, the graviton,
axion, and dilaton. A spacetime supersymmetric model
may be obtained by adding a second vector,

W, =(0%(041)%]1*) (A6)
so that the allowed sectors are 0, Wy, W, and W,+W,.
The notation (011)® means the components 011 are re-
peated six times in a row. The W, vector projects out the
tachyons in the W, sector [cf. Eq. (A4)] while the W sec-
tor contains the massless superpartners, e.g., gravitinos
and gauginos. In general the superpartners of particles in
an aW sector will be in the Wy+ W, +aW sector (be-
cause W, contains the spacetime supersymmetry charge).
This model has N=4 spacetime supersymmetry.

Consider adding two more vectors to the list of W’s:

W, =(0%013)%303)"10'%4) , (A7)
W,=(0%(101)%041)2|012140%124)

The model with vectors W, through W3 has N=1 space-
time supersymmetry as a result of the new projections
[Eq. (A4)] from W, and W;. These projections in the W,
sector remove gauge bosons leaving the gauge symmetry
SO(12) XSO(4) XSO(4) XSO(24). The W, sector contains
massless spacetime fermions, obtained with only Ramond
zero-mode excitations and no Neveu-Schwarz excitations.
Inspection of the zero modes reveals that these fermions
transform in the (32,2,1,1), (32,2,1,1), (32,2,1,1), and
(32,2,1,1) representations of SO(12)X[SO(4)]? X SO(24).
Likewise, fermions in the W; sector are in the (32,1,2,1),
(32,1,2,1), (32,1,2,1), and (32,1,2,1) representations.
Interactions between strings may be calculated using
conformal techniques*’*® with vertex operators obtained
through bosonization. In cases where all world-sheet fer-
mions are Weyl, these models are equivalent to lattice for-
mulations***® and the techniques of Ref. 49 may be ap-
plied directly. In the case of real fermions, some
subtleties occur. These are discussed in Refs. 46 and 51.
The bosonized vertex operators may be used; however,
the physical states are not, in general, states of definite
fermionic charge (momentum in the bosonic representa-
tion) but rather linear combinations of such states. Ac-
cordingly, the vertex operators are linear combinations.
In addition, a consistent bosonization common to all sec-
tors does not in general exist; this is because for a given
real fermion, there may not be another fermion having
the same boundary condition in all sectors. In other

words, the real fermions in different sectors may not be
simultaneously complexified. Nevertheless, when consid-
ering three-point interactions of massless states, the three
sectors involved in any nonvanishing diagram may al-
ways be simultaneously complexified.

A useful selection rule in calculating interactions is ap-
parent from the conservation of fermionic charge: In
general it is true that the sum of the vectors, a; W, —W,,
for the sector of each particle entering a Feynman graph
must vanish (mod1) if the graph is nonvanishing. *®>!
That is,

2

n

3 aiW,~ W, |=0 modl, (A8)

where there are n external legs (see Fig. 3). This is be-
cause a; W; — W, is the vacuum charge for the a; W, sec-
tor; the vacuum charges must add up to an integer (for
real fermions, this just means the number of incoming
Ramond fermions must be even). In particular, for a
three-point function, the three sectors must add up to W,
mod1. This is illustrated in Fig. 4. As an example, con-
sider the model discussed above consisting of vectors W,
through W;. There will be Yukawa couplings between
the scalars in the W, sector and two fermions in W,.
Likewise there will be Yukawa couplings between W, and
two fermions in W, or two fermions in W;. There are
also massless scalars in Wy+ W, + W;; these will couple a
fermion in W, to a fermion in W;. This last structure is
used in Secs. IIT and IV to provide the Yukawa couplings
of the Higgs bosons to quarks and leptons.

APPENDIX B: MASSLESS MODULI

As mentioned in Sec. II the string models obtained
from the free fermionic construction are string vacua de-
generate with a much larger space of continuously con-
nected vacua. This moduli space of vacua may be ex-

0~ (ai W=Wo]

FIG. 3. Selection rule for string scattering.
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n—

R
N

=

a3W =W,-a'W-a2W

FIG. 4. Selection rule for three-point function.

plored by identifying the completely flat directions in the
effective potential. In this appendix we show the
methods by which the flat directions may be identified
and discuss some generic features of these directions in
the fermionic theories.

It is useful to address the identification of moduli in
two parts. First we consider scalar fields of a restricted
type for which flatness of the entire nonrenormalizable
potential can be determined by the renormalizable terms.
Next we find the methods which can be used outside this
restricted class.

The first case arises if the vertex operator for the mass-
less scalar in the zero ghost picture, at zero spacetime
momentum, is a sum of products of currents. By
currents we mean dimension-1 operators which are mutu-
ally local; their operator-product expansions (OPE’s) con-
tain no branch cuts. So, in this case the vertex operator
has the form

0(z,2)= 3 c;[ A;(2)B;j(Z)+ - - ], (B1)

LJ

where c;; are real constants, 4 and B are left- and right-
moving parts of the vertex operator, respectively, and the
ellipsis refers to the piece involving world-sheet auxiliary
fields (the world-sheet auxiliary fields provide the string
contact interactions needed at zero spacetime momen-
tum;>? since this piece carries the same charges as the
rest of the vertex operator, it does not affect the space-
time selection rules). If the A;’s are mutually local and
the B j’s are mutually local, then it follows from the work
of Ref. 53 that the scalar created by O(z,Z) is in a com-
pletely flat direction if and only if the renormalizable po-
tential is flat. So in this case it is not necessary to com-
pute the nonrenormalizable terms. An example will be
provided.

In the case where the operators A; are not mutually lo-
cal, Ref. 53 no longer applies. However, it is generally
possible to identify the completely flat directions by in-
voking selection rules imposed by the world-sheet fer-
mions on the nonrenormalizable terms. This is essential-
ly the method used in the orbifold case.'® What we do is
consider the vertex operators for all the scalars obtaining
VEV’s and check if any combination can couple to the
vertex operator for a spacetime auxiliary field. If no such
coupling exists, then a spacetime auxiliary cannot acquire
a VEV and the direction is flat. We illustrate the method
for the spin structure construction below.

To illustrate how the flat directions are found in both

cases, we consider the toy model of Appendix A:

W,=(120]1%)

Wi=(0(033 4144

W,=(0%(011)%(101)*0'61%%) | (B2)
W,=(02(101)%(011)2|0'214%0%124) |

For concreteness let k;; =0 for i <j (the constraints in
Table VIII then fix the remaining k;;’s). This model is
equivalent to a covariant lattice construction® since all
the sectors may be simultaneously complexified. In par-
ticular, for the left movers we may complexify adjacent
pairs of fermions:

Aip~Y;+i;,,, iodd, 21=i=<44. (B3a)
For the right movers, the pairing is
M~ tiY,,
A~y tivs,
(B3b)

Ay~ tiv;,

Ao~ Hivy .

Bosons may be defined via A j~e'¢j . The fermionic
charg6e of a state is then equivalent to bosonic momen-
tum.

The flat directions of the first type, corresponding to
vertex operators of the current-current form, are readily
identified. For example, in the W, sector there are sca-
lars in the (12,4,1,1) representation of SO(12)XSO(4)
XS0(4) XSO(24) with (zero picture) vertex operators
such as ¥,¥51,,9;;. Since this operator is simply a Thir-
ring interaction term,”” it is clearly exactly marginal and
corresponds to a completely flat direction (we dropped
the world-sheet auxiliary piece since it cannot change the
form of the effective action). Along this flat direction
SO(12) is broken to SO(11) and SO(4) is broken to SO(3).
There are other scalars in W, which may be turned on
simultaneously, in the (12,1,4,1), (12,1,1,24), (1,4,4,1),
(1,4,1,24), and (1,1,4,24) representations. Again the ver-
tex operators are just Thirring interactions.

Alternative flat directions, also of the current-current
form are found, for example, in the W+ W, + W, sector

(superpartners of the W, sector fermions). Consider the
particles in the (32,2,1,1) representation (32 is the spinor).
It is clear that the renormalizable superpotential does not
couple this representation to itself, since there are only
vector and spinor massless representations. Thus the
(32,2,1,1) is F flat in the renormalizable potential. Furth-
ermore, since (32,2,1,1) is a real representation a D flat
direction exists.> The lattice vectors in (32,2,1,1) have,
among themselves, only integer multidot products, so the
mutual locality condition of the “currents” is satisfied;
therefore, we need not check any nonrenormalizable in-
teractions to know that (32,2,1,1) has a completely flat
direction. We can get the same answer by looking at the
vertex operator; the fermionic charge vector for the sca-
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lar state (in the — 1 picture) is
Q=(0(000)(—+—10)(—1—10)|k) . (B4)

The vertex operator for a real scalar in the zero picture
becomes [cf. Egs. (A1) and (B3)],

(ON[eu¢5+¢6—¢8—¢9>/2(ei¢7+e*14’7)
+e“i(¢5+¢6‘¢s_¢9)/2(ei¢|0+e_i¢10)]
. i
X(e™ e My tee, (BS)

where ¢; are the left-moving bosons. This operator is
just a product of left- and right-moving currents. As
such it is clearly exactly marginal. We can even define
new fermions in terms of which @ is a Thirring interac-
tion. However, these fermions would not be the original
fermions 1; but would be defined only transcendentally in
terms of ¥;.°® In this sense such an operator is equivalent
to a Thirring interaction in another fermionic basis.

It should be noted that the W, sector scalar (12,4,1,1)
couples this (32,2,1,1) to (32,2,1,1) in the renormalizable
superpotential. Hence the (12,4,1,1) and (32,2,1,1) direc-
tions together are not F flat.

Next consider the more general case, where the mutual
locality condition is no longer satisfied. In particular
consider giving a VEV to the W+ W, + W, scalar in the

(32,2,1,1) representation and also the W+ W, + W, sca-
lar in the (32,2,1,1) representation. Either VEV alone is
in a flat direction; are the two VEV’s together still flat?
This can be answered by examining the world-sheet selec-
tion rules. The charge vector for the second scalar (in the
— 1 picture) is

Q'=(0(000)(—L++10)—1—10)k"), (B6)

where k' -k is a half-integer; as a result the sum of the ver-
tex operators for the two scalars does not satisfy the mu-
tual locality condition [e.g., the left-moving factors, con-
sidered alone, have branch cuts ~(z —w)™*¥ in their
OPE’s]. Take k'-k=1 for concreteness. If the direction
under consideration was not F flat then some combina-
tion of the scalars with VEV’s would couple to a space-
time auxiliary F field (to give that field a VEV). The only
massless states which can be obtained from adding up
combinations of £k and +k’ are =k and k' themselves;
thus such a spacetime auxiliary must be in the
W,+W,+W, sector. To get the charge of the vertex
operator for a spacetime auxiliary field,?! we use the
spacetime supersymmetry charge

Qs =(3(£00)(100)(100)[0) . (B7)

The charge of a spacetime auxiliary in the Wo+W,+ W,
sector then has the form

QF=(0(100)(4£10)(L+10)| ---) . (B8)

There is no combination of states in (B4) and (B6) in any
picture that can couple (add to zero) with the spacetime
auxiliary Q. (actually, two states would have to be in the

— 1 picture and the rest would have to be in the zero pic-
ture). Hence the direction in F flat. D flatness is again
guaranteed by the reality of the representations. So the
two VEV’s are flat together.

It is interesting to note that the linear combination of
vertex operators in the (32,2,1,1) and (32,2,1,1) represen-
tations, which we now know is exactly marginal, is in no
sense a Thirring interaction. This is because it cannot be
fermionized; if one term such as @ in Eq. (BS) is written
as a four-Fermi interaction then the other term, with k'
rather than k, is still transcendental in terms of those fer-
mions.

_The same reasoning used to show that (32,2,1,1) and
(32,2,1,1) together give a flat direction can be used to find
additional moduli. For example, the W, sector scalar
(12,1,4,1) can acquire a VEV along with the (32,2,1,1) and
(32,2,1,1) while still remaining flat. Nevertheless, in cases
where the mutual locality condition is not satisfied (i.e.,
multidot products such as k-k’ are noninteger) it is neces-
sary to check nonrenormalizable interactions. In other
words, it is necessary to check that no combination of the
scalars with VEV’s couples to a spacetime auxiliary field.
For example, the following four scalars couple to the
spacetime auxiliary for (1,4,4,1):

(32,2,1,1), Wy+W,+W, sector ,
(32,2,1,1), W,+W,+W, sector ,
J— (B9)
(32,1,2,1), Wy+W,+W; sector ,
(32,1,2,1), Wy+W,+ W, sector .

This means that there is a quintic term in the superpoten-
tial, coupling these four to (1,4,1,1); the quintic term is
responsible for lifting a direction left flat by the renormal-
izable terms.

To summarize, the massless moduli of fermionic string
models may be identified by considering the world-sheet
selection rules. For moduli of the restricted current-
current type, only renormalizable interactions in the
effective field theory need be considered. For moduli of
the more general type, nonrenormalizable terms can lift
directions left flat by the renormalizable terms. As men-
tioned in Sec. II, this lifting provides the most viable
mechanism for generating intermediate scales in the
theory.'> However, in the models constructed in Secs.
III and IV, this mechanism was absent in the physically
interesting regions of moduli space. The absence of inter-
mediate scales led us to consider the grand desert
scenario.
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