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The pion decay constant and the fermionic bilinear condensate at finite temperature and density
are evaluated in the whole region of broken chirality by using the composite-operator approach to
QCD. The critical exponents around the tricritical point (separating first-order from second-order
phase transitions) are determined by general thermodynamical arguments.

I. INTRODUCTION

The study of QCD at finite temperature and density
has recently attracted much interest. Among the
domains of applications are high-energy heavy-ion col-
lisions' and the physics of the early Universe. Both
deconfinement and chiral-symmetry restoration are ex-
pected to take place when the temperature T and/or the
chemical potential A, are large. The nature of the transi-
tion from the hadronic phase at low temperatures and
densities to the quark-gluon phase for large temperatures
and/or densities is not yet entirely known. It is not
known whether a single transition occurs or separate
transitions take place for deconfinement and chiral sym-
metry.

The theoretical considerations so far are based on dis-
cussion of order parameters which cover extreme and op-
posite ranges. The thermally averaged Polyakov loop is
suitable in the limit of infinite quark masses to describe
the transition from the confined to the nonconfined
phase. At the other extreme, in the limit of vanishing
quark masses, the quark-antiquark bilinears, thermally
averaged, are the typical order parameters for chiral-
symmetry transition.

We do not know which set of order parameters is suit-
able to describe the phase structure of real QCD with
physical quarks and gluons. Also, no symmetry (or sym-
metries) beyond the chiral symmetry for the limiting case
of vanishing quark masses suggest itself as convenient to
identify the different phases in terms of its patterns of
breaking. In a recent paper we have suggested a heuris-
tic argument indicating that, for zero density, the critical

temperature for chiral transition T, coincides with that
for deconfinement Td.

In the present article we shall deal exclusively with the
chiral transition, concentrating on the thermally aver-
aged quark bilinears, in the presence of a chemical poten-
tial, as order parameters for chirality.

The formal tool of the present analysis will be a
composite-operator formalism at finite temperature and
density developed in previous works. The formalism is
based on an effective action for composite operators.

The application of the fortnalism to QCD with light
fiavors has led to a phase diagram on the (A., T) plane
where the phase of broken chiral symmetry is separated
from the symmetric one by a line consisting of two pieces
which join at a tricritical point t —= (A,„T,). The transi-
tion is second order for k & A, , and it becomes first order
for A, )A,

The pion decay constant at fixed A, and T, f (A, , T), is
an essential parameter of the theory, certainly relevant to
the description of the chiral properties and, as suggested,
also playing a role in the description of confinement. We
have already discussed the T dependence of f„(A,, T) for
A, =O, in the whole range of temperatures up to T„
within our composite-operator formalism.

An important feature of the calculation of f ( T), as it
will be for the calculation to be presented here for both T
and A, finite, is the agreement of the result near the criti-
cal points to that predicted from thermodynamical argu-
ments on critical exponents. These exponents follow
from general considerations, near the different critical
points and near the tricritical point, along the full (A, , T)
critical regions of the phase diagram. We find the typical
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behavior coming from the Landau mean-field theory.
Crucial to this behavior is the complete absence of in-
frared divergences in the expansion of our effective poten-
tial around the second-order phase transition line and
around the tricritical point.

So far only the low-temperature expansion for A, =O is
known within a sufficient generality. Its extrapolation
up to the critical point, always at A, =O, would however
fail to obey the universality rules and it is therefore
doubtful. Our results agree with the low-T expansion. In
addition, they satisfy the universality rules at the critical
points.

II. FORMALISM

S '(p) =ip —X(p) —m, (2.1)

where X(p) is T and }(, dependent, and m is the quark
current mass. We will work in the m ~0 limit. Similarly
to Ref. 4 we assume

3

X(p) =y( T, A, )

p +p
(2.2}

where p is a scale parameter determined phenomenologi-
cally to be =282 MeV, and y(T, }(.) is a variational pa-
rameter which is evaluated by minimizing the effective
potential given in Ref. 4. This parameter is related to the
fermion condensate by

(2.3}

where c(T,A, ) is defined, as in Ref. 4, in terms of the
gauge coupling constant g (T, A, ) which runs with T and
A, according to

We shall essentially extend the work made in Ref. 6 to
the general case of finite temperature and finite chemical
potential A, . This is made through the generalization of
the Feynman rules for pion amplitudes given in Ref. 5 to
finite temperature and density. We remind the reader
that the quark propagator is written as (here and in the
following we shall use Euclidean notation)

where (assuming, for definiteness, three light flavors)

=—ln
9 p2

8 A
(2.5)

9 T2 A2
c, (T A)= —ln 1+/ +g

p p
(2.6)

and g is the value of the gauge coupling constant evalu-
ated at the scale p. The constant cp is fixed to be =0.554
(see Ref. 4} and it corresponds to A&cD-—220 MeV. The
parameters g and g, introduced to account for the evolu-
tion of g (T,}(,) with the temperature and the chemical
potential, will be left for the moment as free parameters.
The expectation value in Eq. (2.3) is the thermal average
in the presence of a chemical potential, defined, for a gen-
eric operator A, as

Tr(e
—(H )N)/Tg —).

Tr( e (H 2.N)/—T)— (2.7)

where N is the particle number operator.
The effects due to finite temperature and chemical po-

tential can be taken into account in the Feynman rules by
simply modifying the integration over the intermediate
states according to

4 p ~T
3

2n+1 ~T+ik, p
(2n ) (2m. )

(2.8)

&ola"J„'l~&,
,
g=m 2.(T,X)f.(T,X) . (2.9)

This substitution corresponds to the imaginary-time for-
malism after using Poisson's formula.

To evaluate the pion decay constant as a function of T
and A, , we define f ( T, A, ) through the relation

(2.4) We then evaluate the matrix element as done in Ref. 6 by
using the Feynman rules we have discussed. We find

f (T,A, )=12 g ( —)"I (2n )

X(p) X(p) —2po
2 BX(p)

()p

4 '+X'(p}l'
in(p —i A. )/T

e (2.10)

III. PION DECAY CONSTANT AT FINITE TEMPERATURE AND DENSITY

To evaluate f„(T, A, ) it is convenient to separate in Eq. (2.10}the n =0 contribution and write

f ( T, A, ) =f ( T, A)+f ( T, A ), .

where

(3.1)

X (p) —
—,'p'X(p)2 & 2

(2m) 0 [ +X( )]
(3.2)
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FIG. 1. Plot of f„/fo vs A, /1, , at T=42 MeV. The solid
lines correspond to (=0.6 [(=0.9 (upper line), (=0.1 (lower
line), corresponding to k, =-165 and 290 MeV, respectively].
The dashed lines correspond to (=1.5 [(=0.9 (upper line),
(=0.1 (lower line), corresponding to A., =160 and 280 MeV, re-
spectively]. The terms "upper" and "lower" refer to the relative
positions of the lines at A, =A,
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FIG. 2. Plot of f /fo vs T/T, at A. =4. 2 MeV. The solid
lines correspond to (=0.1 [(=0.6 (upper line), (=1.5 (lower
line), corresponding to T, =105 and 94 MeV, respectively]. The
dashed lines correspond to (=0.9 [(=0.6 (upper line), /=1. 5

(lower line), corresponding to T, =103 and 92 MeV, respective-
ly].

and, by the same manipulations as in Ref. 6,

dz; l 2y 3z; 1f '„(T,A, )= g'(T, A,),g, (1 —z, )I dyydZ;=) dZ o Qy +z,. 1+ exp[(pQy +z;+A, )/T)
+(A,~—I, )

x +2x +x+y =0 . (3.4)

Notice that the only dependence on T and k of f (T, A, )

comes from the value of g(T, A, ) corresponding to the
minimum of the effective potential. Also the dependence
of f (T, A, ) on the parameters g and g comes only
through y(T, A, ). One possible choice for g comes by re-
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where z, are the roots (changed in sign) of the cubic equa-
tion

TABLE l. (A, , T, ) in MeU for some values of ( and g.

0.6 1.0

(3.3)
l

quiring that f„at X=0 coincides at low T with the low-
temperature expansion of Ref. 7. This gives (= 1 (Ref.
6). As far as g, a possible indication comes from Ref. 8
which gives, for three light flavors, g/g=O. 15.

The behavior off ( T, A. ) is illustrated in Figs. 1 —3. In
Fig. 1 we give f /fc [where fo=f (0,0) which, with
our choice of the parameters co and p, is =91 MeV] at
fixed T before the tricritical point as a function of A, /A,
The graph illustrates the first-order character of the
phase transition in the chemical potential for various
values of the parameters g and g. In Figs. 2 and 3 we
give f /fo at fixed k before and after the tricritical point
as a function of T'/T, for various choices of the parame-
ters g and g. For the calculation of the tricritical point
see Sec. IV. In Table I we give the coordinates of the tri-
critical points for some values of g and g.

IV. BEHAVIOR AROUND THE TRICRITICAL POINT

To study the behavior of the theory around the tricriti-
cal point we recall from Ref. 4 the expression for the
effective potential

FIG. 3. Plot of f /fo vs T/T, at k=113 MeV. The solid.

lines correspond to (=0.1 [(=0.6 (upper line), (=1.5 (lower
line), corresponding to T, =85 and 76 MeV, respectively]. The
dashed lines correspond to (=0.9 [/=0. 6 (upper line), (=1.5
(lower line), corresponding to T, =69 and 64, respectively].
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49p
4m.

(4.1)

V(y, T,&)= '
y —,' —I dxxln 1+c(T,A. )

x +2x +x
T 3—4—g I dx x [in{1+expI —[pQ(x +z, )+A]/TI )+(A~ —I, )] . (4.2)

Here, as in Refs. 4 and 6, we have neglected terms which
do not depend on g, but which may still depend on T and
A, . These terms play no role in the considerations made in
Refs. 4 and 6 and in the present context (they are, howev-
er, important from the thermodynamical point of view).
In Ref. 4 we have shown that the effective potential (4.2)
gives rise, in general, to a phase diagram in the {A, , T)
plane (see Fig. 4), having one line of second-order phase
transitions (Lii), and a second line of first-order phase
transitions (i.i ), which join at a tricritical point
t =—{A,„T,). These two lines divide the (A, , T) plane in two
disconnected regions corresponding to the chiral-broken
and to the chiral-symmetric phases. Along L&I up to the
tricritical point the absolute minimum of the effective po-
tential is at g=O; therefore, we can study the theory
around t by expanding V for small values of g. To study
the behavior at the points of L& close to the tricritical
point, it is necessary to expand V up to the sixth order in
g (Ref. 9). From this expansion it will be possible to
determine the critical exponents for y and consequently
for the condensate and for f .

%hen expanding the effective potential, one may ex-
pect to encounter problems related to the property of y
to be proportional to the order parameter of the chiral-
symmetry breaking. In fact, in the y~0 limit, the fer-
mions in the theory become massless, and infrared diver-
gences might show up in the coeScients of the expansion
of the efFective potential. For instance, by taking V at
zero temperature and zero chemical potential, one sees
immediately that the fourth derivative at the origin is in-
frared divergent. In fact, in the y~0 limit, this term

+a4(T, A)y +a, 6(T, A, )y +
The critical line L« is determined by the equation

az(T, A, )=0, a4(T, A, ) &0,

(4.3)

(4.4)

and the coordinates of the tricritical point are solutions
of the equations

az(T, A)=a~(T, A, )=0 . (4.&)

The coordinates of the tricritical point change slowly
with g and g (at least in the physically interesting region)
as shown in Table I.

As a side issue we notice that at points close to L„but
far from t, we can, for instance, at fixed A, , expand az
around the critical temperature. Since at these points
a&%0, we can limit the expansion (4.3) to the fourth or-
der. Then applying the same procedure as in Ref. 6, we
easily see that the critical exponent for y (and conse-
quently for the condensate and for f„)is —,'.

Let us expand az(T, A, ) and a„(T, A, ) around the tricriti-
cal point

gives rise to a contribution ——„'g 1ng . However, the full

calculation shows that the fourth derivative is free of in-
frared divergences. The same happens for the sixth
derivative. As a consequence we get a definite power
series up to the sixth order of the effective potential:

V(y, T, k) = V(0, T, k)+az(T, A, )y

(4.6)

L

FIT+, 4. Phase diagram in the (A, , T) plane showing the line of
the first-order phase transitions (Li), the line of the second-
order phase transitions (L» ), and the tricritical point
t —= (A,„T,).

(4.7)

To determine the critical exponents we have only to use

Direct calculation shows that a6( T„A,, ) =—a 6 (g, g) & 0.
In Figs. 5 —7 we have plotted the coeScients
az, az, a4, a4, a6 vs g for various values of g.

It is convenient, for the following discussion, to map
the critical lines on the {az,tz4) plane. This is done in
Fig. 8. It is easy to show that in the broken phase,
around the tricritical point, the absolute minimum of the
efFective potential has the expression

—o4+(a4 —3aza6)'x=
3a6
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