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QCD sum-rule techniques are applied to the spectra of p and J /¢ mesons at finite temperature to
investigate the relative importance of quark and gluon condensates and perturbative thermal effects
in determining bound-state parameters. Of particular interest are the consequences of nonperturba-
tive physics persisting above the deconfinement phase transition, which is implied by nonzero gluon
condensates found in lattice calculations. For the p meson, the quark thermal bath induces only a
smooth variation in the hadronic parameters as the temperature is increased; the quark condensate
and its temperature dependence are the most important factors. For the J /¢ meson, perturbative
thermal effects overwhelm the gluon condensate contribution at a temperature around 100 MeV, so
that high-temperature charmonium physics is consistent with that expected in a weakly interacting
quark-gluon plasma. Corrections to other plasma properties from nonperturbative physics are dis-

cussed.

I. INTRODUCTION

The description of hadronic matter under extreme con-
ditions of temperature and density is an interesting and
important theoretical problem, with direct relevance for
experiments at present and future heavy-ion colliders.
One facet of this description is the modification of ha-
dronic spectra as the system is heated or compressed,
which has been studied for light mesons using chiral
models of QCD,"? and for charmed mesons using poten-
tial models.> Instead of using such effective models, we
would like to predict these modifications directly from
quantum chromodynamics (QCD).

At sufficiently high temperature, hadronic matter is
thought to undergo a phase transition to a quark-gluon
plasma (QGP). While the nature of this transition is not
well understood, its existence has been demonstrated by
numerical simulations. Lattice calculations (without
dynamical fermions) suggest that T, ~200 MeV.* It is an
exciting possibility that the energy densities believed
necessary to produce such a QGP (~2-3 GeV fm ) will
be reached by existing and planned heavy-ion machines.
Experiments in this direction are at present being con-
ducted at the CERN SPS and are planned for the relativ-
istic heavy-ion collider (RHIC) at BNL. To interpret
these data and to identify signatures of QGP formation in
ultrarelativistic heavy-ion collisions, the properties of
both hot hadronic matter (including the vacuum) and the
QGP must be known.

In this paper, we use QCD sum rules at finite tempera-
ture to study the spectra of p and J /¢ mesons. With the
sum-rule approach, we can predict hadronic properties in
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terms of finite-temperature perturbation theory and
long-distance nonperturbative physics, which is summa-
rized by quark and gluon condensates. Since we can
identify the contribution of each component, we learn
about the relative importance of the various quark and
gluon condensates in determining bound-state parameters
and how thermal effects influence these parameters. Fi-
nally, we can directly explore the physical consequences
of nonperturbative physics at high temperatures by relat-
ing nonzero condensates to observed resonance proper-
ties.

This last point is important because the widespread be-
lief that the QGP is a gas of weakly interacting quarks
and gluons has been questioned by several authors.’™’
For example, an interesting lattice calculation® for pure
SU(3) gauge theory suggests that nonperturbative physics
persists at high temperature, above the phase-transition
region. In this calculation, the area-law behavior of
space-space Wilson loops was found to persist even above
the deconfining temperature.® DeGrand and DeTar have
argued that the area-law behavior of spacelike Wilson
loops causes the static correlator to be screened by color-
singlet modes.’ If there exists a one-to-one correspon-
dence between the real-time dispersion relation
f(p,w,t)=0 and the static dispersion relation
f(£ip,0,T)=0, the real-time excitations will also be
color-singlet modes. In this scenario, a nonperturbative
length scale 1/gT exists even above T, so that, while the
perturbative picture is correct for small distance scales,
hadrons can only be color singlet at distances larger than
1/gT.

Unfortunately, the situation is not entirely clear be-
cause spacelike Wilson loops cannot be directly interpret-
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ed as physical observables, or related to a parameter in an
effective theory of QCD. However, lattice calculations
[in pure SU(2) gauge theory] have found evidence for
nonperturbative physics above T, in the form of nonzero
gluon condensates above T,.'"!! In this paper, we
present additional lattice calculations and, using QCD
sum rules at finite temperature, study the physical conse-
quences of nonvanishing gluon condensates for hadronic
parameters.

Finite-temperature QCD sum rules have been applied
to a variety of mesonic resonances by Bochkarev and
Shaposhnikov,'?"'* using the Matsubara (imaginary-
time) formalism to extend the T=0 sum rules. In all
cases (they do not consider heavy-quark mesons), they
find that the spectra undergo rapid changes at tempera-
tures around 130-150 MeV, which they interpret as evi-
dence for a phase transition. Recently, Dosch and Nar-
ison have reanalyzed the calculation of the p meson, and
conclude that only smooth changes in the spectra are pre-
dicted at these temperatures if proper sum-rule stability
criteria are applied.'> In this paper, we present a new
analysis of the p channel, including temperature effects
on the condensates not considered in Ref. 15, and give
original results for the J /1, using numerical optimization
techniques to extract spectral parameters from the sum
rules.

The paper is organized as follows. In Sec. II, we
present numerical lattice calculations of the gluon con-
densates above T, and discuss how the area-law behavior
of Wilson loops is related to nonvanishing condensates.
In Sec. III, we review QCD sum rules at finite tempera-
ture. In Sec. IV, we study the p meson as an example of a
light-quark meson. In accord with Ref. 15, we find that
the quark thermal bath induces only a smooth variation
in the hadronic parameters as a function of the tempera-
ture. The quark condensate and its temperature depen-
dence are found to be the most important ingredients in
determining the spectrum. In Sec. V, we study char-
monium and the J /¢ in particular. In this case, the per-
turbative thermal effects overwhelm the gluon-
condensate contribution at a temperature around 100
MeV, and hence the sum rule seems to break down. In
Sec. VI, we summarize our results and discuss future in-
vestigations.

II. GLUON CONDENSATE AT HIGH TEMPERATURE

Finite-temperature lattice calculations of gluon con-
densates in pure SU(2) gauge theory have indicated that
both magnetic and electric condensates are nonzero
above the phase-transition region.!”!" Here we supple-
ment the results of Ref. 11 with additional calculations
that feature better statistics. To extract the magnetic or
the electric condensate, we calculate the average pla-
quette in the space-space direction or the space-time
direction. In the continuum limit (a —0),

_ @5 a a (147T2 6
(P,)=1 <Tr 120,2> T +0(a*), (1)

where P, means the elementary plaquette in the 1-2
direction.
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To extract the nonperturbative condensate as defined
by Shifman et al.,'® we have to subtract out from the
measured Monte Carlo data the contribution of the
weak-coupling perturbation expansion of { P ) on the lat-
tice.'” This weak-coupling expansion has been calculated
on an asymmetric lattice by Heller and Karsch!® to
second order in the lattice coupling, O(1/8?%). In our lat-
tice calculation, we fitted higher-order corrections in the
weak-coupling region to O(1/B°). If there is a nonvan-
ishing condensate, the difference between the lattice and
weak-coupling results would be proportional to {G2)a*
and hence would scale with S like

at= A%exp( —120%8/11)(11/672B) 204121 ()
L

Figure 1 (space-space plaquette) and Fig. 2 (space-time
plaquette) show this difference for a 10° X 3 lattice in pure
SU(2) lattice gauge theory, with 5000 iterations for each
point. The results are essentially identical to those of
Ref. 11, but with smaller uncertainties. The thermal Wil-
son lines were used as the order parameter for
deconfinement and all these points were in the deconfined
phase (smaller than 0.2).

The weak-coupling fit was done at 3 larger than 2.8 for
10 points, using a least-squares fit. If we include any
points at B smaller than 2.8, the y? value increases appre-
ciably. For example, if we include two points at §=2.3
and 2.5, the x? value increases by as much as 10. Assum-
ing A; =5.2 MeV, the temperature at =2.3 is about 295
MeV. Similar features have been observed in a sym-
metric lattice.!” By comparing the absolute values, we
find that the magnitude of the magnetic condensate is
about 0.6 times that of the zero-temperature value and
the magnitude of the electric condensate is about 0.7
times that of the zero-temperature value:
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FIG. 1. Logarithmic plot of the difference between the lattice
result and the weak-coupling result for a space-space elementa-
ry plaquette on a 10° X 3 lattice, as a function of 8=4/g>.
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FIG. 2. Same as Fig. 1 for a space-time elementary plaquette.
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The magnitude of the 7=0 condensate is comparable to,
although somewhat smaller than, values used in QCD
sum-rule applications.

Can we relate nonvanishing condensates above T. to
the area-law behavior of Wilson loops? Lattice gauge cal-
culations tell us that Wilson loops at zero temperature
can be parametrized in terms of a part that is proportion-
al to the perimeter of the Wilson loop, a part that is pro-
portional to the area of the Wilson loop, and a part that
behaves like the Coulomb potential.'® In a perturbative
calculation, we get the Coulomb part and the perimeter
law part, but not the area-law behavior, which is there-
fore linked to the nonperturbative nature of QCD.

Shifman® showed that the area-law behavior of Wilson
loops at zero temperature was related to the existence of
nonvanishing gluon condensates. Unfortunately,
Shifman’s argument cannot be extended to finite tempera-
ture and so no direct relation is known between conden-
sates and the behavior of Wilson loops above T,. In fact,
space-time Wilson loops do not have an area-law behav-
ior above T,. It is possible that the static space-space
Wilson loops are less affected by temperature than the
space-time Wilson loops. If so, the area-law behavior of
space-space Wilson loops would still suggest nonpertur-
bative physics, related to nonvanishing gluon conden-
sates, at finite temperature (and above T,). At present,

R.J. FURNSTAHL, T. HATSUDA, AND SU H. LEE 42

we do not know of a rigorous proof of this conjecture.

In any case, lattice calculations indicate nonvanishing
magnetic and electric condensates at high temperature.
Since gluon condensates at high T are a manifestation of
nonperturbative physics in QCD, we would like to know
their physical consequences. In the following sections,
we study resonance parameters using QCD sum rules at
finite temperature to see how the persisting gluon con-
densate can affect the physics.

III. QCD SUM RULES AT FINITE TEMPERATURE

Let us first review QCD sum rules at zero tempera-
ture'®?! by considering the time-ordered product of two
vector currents J,(x), such as (@y,u —dy,d)/2or ¢y c:

i [d*% e®T[J,(x)],(0)] . (5)

The vacuum expectation value of this operator is the
time-ordered correlation function I1,,(q):

n,w<q>=i<o‘fd4x T[T, (x),(0)] ‘o>

=(q,9,—9°8,,)T(g?) . (6)

The function Il(g), for spacelike Q%= —g?, satisfies the
dispersion relation
————d2 H<Q2)=ipf * gsmIls) 7
dQ T Y0 (s+Q)
The theoretical side of the sum rule is derived from an
operator-product expansion of Eq. (5):

i [d*x e T[J,(x)],(0)]
=C,X1+C,:mgq:+Cg:G}:+ -+ . (8

The nonperturbative nature of the QCD vacuum enters
through the nonvanishing vacuum expectation values of
the normal-ordered operators; these expectation values
are the condensates. The condensate terms (those not in-
volving the identity operator) are called the power
corrections. The operator-product expansion (OPE) in-
corporates long-distance physics into the vacuum expec-
tation values and short-distance physics into the Wilson
coefficients. Corrections due to explicit dependencies on
the separation scale are expected to be small in QCD
sum-rule applications.?!

The phenomenological side of the sum rule follows
upon inserting a parametrized model of the spectral den-
sity, which is proportional to ImIl, into the right-hand
side of Eq. (7). We use the well-established model of the
spectral density consisting of a narrow resonance and a
smooth continuum with a sharp threshold:'%2!

ImI(s)=fMZ8(s —Mg)+6(s —So)ImII(s) o - (9)

As indicated, the continuum contribution is evaluated
perturbatively.

The theoretical side can be calculated reliably for large
Q%= —gq? with only a few power corrections, and using
perturbation theory for the Wilson coefficients. On the
other hand, we want the phenomenological side to be



largely saturated by the lowest resonance, which happens
at small Q2. The region of overlap between the two sides
can be enlarged by taking additional derivatives with
respect to 0?%in Eq. (7); these are the moment sum rules,
which are typically used for heavy-quark bound states.
Taking Q% and the number of derivatives n to infinity,
with QZ/ n fixed, leads formally to the Borel-transformed
sum rules.

To formulate a finite-temperature sum rule, we take
the thermal (ensemble) average of Eq. (5) instead of a vac-
uum expectation value. At finite temperature this polar-
ization tensor can be decomposed into transverse and
longitudinal parts (following the notation of Ref. 13):

rI0()=<12HI >

(10)
H”:(ﬁu_q,q-’ /qz)nt +(q,q1w2/q2)nl .

Here we work in the rest frame of the thermal baths, with
g"=(w,q). As in Ref. 13, we consider the formation of a
resonance at rest, so we are interested in the q—0 limit.
For q—0, IT, =(w?—q*I1, and II, satisfies a dispersion
relation similar to Eq. (7):

ReH,(w2)=Pf0wdu2(—u% : (an

dw?
where p(u ) is the spectral function given by
p(u)=-71;tanh(u /2T7)ImIT (u) . (12)

To calculate the theoretical side of the sum rule in the
asymptotically free region (w>*— — ), we evaluate the
Wilson coefficients using finite-temperature Green’s func-
tions and again incorporate nonperturbative physics
through nonzero expectation values of the normal-
ordered operators. At finite temperature, the thermal ex-
pectation values of the normal-ordered operators are not
equal to zero even in perturbation theory; in our ap-
proach, these perturbative thermal corrections are incor-
porated by making the Wilson coefficients temperature
dependent. (We assume that perturbation theory is ade-
quate at temperatures 7~ 100 MeV. Some supporting
arguments in favor of this assumption are given in Ref.
13, but we have no rigorous demonstration.??) The tem-
perature dependencies of the condensates themselves are
taken from simple models or from lattice calculations.

To simply illustrate how our prescription for the
finite-temperature sum rule arises, we can consider a
time-ordered product of fermion fields W(x). Using
Wick’s theorem,

[ d*x e=T[W(0)¥(x)]
= [d*x e ™ W(O0)W(x):+iST ) . (13)

If we take the perturbative ensemble average of this
operator, the normal-ordered term contributes
278(q?—m?*)np and so gives, along with the (lowest-
order) zero-temperature Green’s function, the usual
noninteracting Dolan-Jackiw finite-temperature Green’s
function. (To calculate the higher orders, one must fol-
low the ?erturbation theory of the real-time matrix for-
malism,?® but this distinction is immaterial for the calcu-
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lations in this paper since we limit ourselves to one-loop
order.) As indicated above, the nonperturbative nature
of QCD is taken into account by assuming that, in addi-
tion to the perturbative temperature-dependent piece, the
normal-ordered part has nonperturbative pieces, which
will contribute to an ensemble average.

To include the nonperturbative physics via the conden-
sates, we expand W(0)W(x): for small x, as in Ref. 21, to
obtain a series in x" multiplying dimension 3+n opera-
tors. Then the lowest-order term in x gives rise to the
quark condensate part 278*q){(ggq)), from which the
perturbative part has been subtracted. While the nonper-
turbative operator matrix elements are to be included
only up to some finite dimension operator, perturbative
parts of the matrix elements are included from all orders
and summed to recover the temperature-dependent part
of the perturbative finite-temperature Green’s function.
The net result is an expansion in terms of temperature-
dependent condensates and temperature-dependent Wil-
son coefficients.

Applying an analogous procedure to the operator
product of Eq. (5) and taking the thermal average, one
obtains the expansion

i [d*x e ™ T[J,(x)],(0)])
=CIx1+CcI{mgq» +2CI(E?)
+2CH(B* N+ -+, (14)

where the perturbative temperature dependence is sub-
tracted away in ((@)) and the Wilson coefficients have
acquired temperature dependence. Again, if one starts
from the OPE [Eq. (8)] and directly takes its thermal
average, one needs contributions to infinite order in the
expansion to get the C’s in the above expression. Thus,
although the scale is now set by T as well as the conden-
sates (or Aqcp), Eq. (14) is an expansion only in Agep /05
the expansion in 7 /Q is already summed.

On the phenomenological side of the sum rule, three
types of terms contribute to the spectral density at T+0,
as shown in Appendix A: the resonance part, the annihi-
lation part, and the scattering part, which have support
in different regions of the energy plane:

plu)=fME8(u’—M}3)
+6(u®—S)pg(u)+8(u?)p, . (15)

The scattering term p,, which arises only at finite temper-
ature (or density), describes the absorption of the external
current by thermally excited particles.

Just as at T=0, we must calculate moment or Borel-
transformed sum rules to suppress higher-dimensional
power corrections and to enhance the resonance contri-
bution to the dispersion integral. The Borel sum rule
takes the form

a,

© 2 - Z/MZ
fo do‘e © p(a))pert+n§1 Ve,

= [ ot M D0 hgron s (16)

where we have applied the Borel operator L), to both
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sides of Eq. (11):

— 1 —a2\n
Lu (n—l)!( @)

nacm,—m)z/n:M2

IV. p MESON AT FINITE TEMPERATURE

In this section, we examine the relevance of the quark
and gluon condensates to the spectrum of light mesons.
We focus our attention on the p meson, since QCD sum
rules work well at 7=0 in this channel.?! The tempera-
ture dependence of the p-meson mass m,(T) comes both
from the nonperturbative condensates ((gg)) and
(GG ) and from the perturbative Wilson coefficients.
Dosch and Narison analyzed only the latter effect and
concluded that it is important only at quite high tempera-
ture, T > 350 MeV."> Our calculation takes into account
both effects and shows that {((gg )) governs the mass shift
of the p meson and the other factors are less important.
This observation is consistent with the picture that chiral
symmetry is responsible for the p meson properties. Such
a picture is seen in studies of the linear 0 model, where
the p meson appears as a dynamically generated pole,?*
and in the theory of hidden local symmetry, where the p
meson arises as a gauge boson of the symmetry.>’

Let us start with the Borel-improved sum rule at T#0
discussed in Sec. III, and take the p-meson current
(@ Yu dy“d)/Z as J,(x). In the asymptotic region
(0*— — ®), one can estlmate Rell, reliably:

(MZ)LMReH,=f0wda)2e_“’ M [9(@2-—4m;)pg+6(w2)ps]

1

87°

a, a,

o m | 18

where p; and p, are given in Appendix A, and the Borel
operator L,, is applied to improve the perturbation
series. The first term in Eq. (18) is the perturbative one-
J

|

Choosing M? small enhances the pole contribution while
large M? suppresses the contributions of higher-
dimensional operators. Following Dosch and Narison,'?
we have plotted mf, as a function of M? and sought a
stable region that is insensitive to changes in the thresh-
old parameter. As such a region is found only when
V'S, is larger than 1.75 GeV irrespective of T, we fix
So=4.0 GeV? and search for the minimum of m (M2 T)
at each temperature. For the parameters at T 0, we
take m,=5.5 MeV, m_ =137 MeV, and
{a,(0),a,(0)} ={0.05 GeV*,—0.03 GeV?}.

In Fig. 3, we show mp( T) for three cases of interest: (i)
a,(T) and a,(T) are assumed to be T independent, (ii)

a, 2a,

—wl/M? 1 |9
M?* Mt

872
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loop contribution and the second (third) term corre-
sponds to the quark (gluon) condensate

a,(T=17a,{GG) ,
— 3 (gg N’ .

Here we have assumed (( E?)) = —{((B?)), in accord with
the result from the lattice calculation (4), and we have
neglected the small contribution of the dimension-four
quark condensate ( m,qq ). One should also note that
a, corrections to the perturbative part and the tempera-
ture dependence of the Wilson coefficients for the power
corrections are neglected as well. The former approxima-
tion does not affect the result qualitatively (based on
T =0 calculations). For the latter, we treat the a; and a,
as phenomenological parameters that effectively include
the T dependence of both condensates and Wilson
coefficients. (As for the Wilson coefficient of {(gg ))?, one
can easily see that it does not have T dependence.)

The phenomenological side of the sum rule, including
an ansatz for the spectral function p(®)p4,0n> T€ads

®© /M2
f() dee ™ [ppole+9(w

(19)
az(T)

=S )pcont+8(w2)p1r] ,  (20)

where the first term is the p-pole contribution, with the
form ppole:fmé&wz—mf,), and the second term is the
phenomenological continuum contribution, which starts
from the threshold V/ So. The third term, which arises
only at finite T, describes the Landau damping caused by
the thermal pions. We follow Ref. 13 and approximate
the thermal hadronic contribution by that of a free pion
gas, which is certainly a valid approximation at low tem-
peratures. The importance of pion interactions and
higher mass states at temperatures above the pion mass is
currently an open question. (See Ref. 26 for a discussion
of these issues.) Explicit expressions for p ., and p, are
given in Appendix A.

Equating (18) with (20) and eliminating the parameter
f, one finds

-1
_ 1 a, a;
w?/M? — - -
’f Jdow’e petps—p.t o |2 T e } .
(21)
[
a,(T)=a,(0) but a,(7T) is assumed to be zero, and (iii)
a,(T)=a,(0) while a,(T) varies as
a,(T) T |?
=1— | 22
a,(0) T, 22)

This parametrization is deduced from a simple mean-field
assumption

Ugg N =«gg N r—o[1—(T/T.)?]1"/?, (23)

whose behavior is shown in Fig. 4, assuming 7,=200
MeV. From the line (i) in Fig. 3, one sees that the T
dependence of the perturbative part is significant only at
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M, vs Temperature
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FIG. 3. Sum-rule predictions for m,, by fixing S, =4 GeV?
and minimizing with respect to the Borel mass M. Three cases
are considered: (i) a,(7) and a,(7T) independent of 7, (ii)
a,(T)=a,(0) but a(T)=0, and (ii) a,(T)=a,(0) and
a,(T)=[1—(T/T.)*]'%a,(0).

high temperature, which is consistent with the observa-
tions of Dosch and Narison (but which contradicts Bo-
chkarev and Shaposhnikov). The line (ii) shows that the
gluon condensate is not at all important for the mass
shift. The line (iii) shows that m,(T) decreases and van-
ishes around T, as a,(T) tends to zero, which means that
((ggq ) is essential to forming the p meson and so the res-
toration of the chiral symmetry is correlated with its
mass shift. In the real world, the chiral transition is ex-
pected to be first order for the light-quark system, based
on numerical lattice simulations. In this case, we have to
use a more sophisticated parametrization for a, to be
realistic, but the qualitative feature of our result should

1000 r——==7 ] . { : 1.0
< 800 [1-(T/T)8"Y? —os8
(&) r N
E i\ \‘\ /Q
L . O
= 600 |- M \ —06<
4] - | v
0 L . =
© L " ~
£ i \ A
~ 400 — \ —04 2|
L - \ ¢ 2
O of 1
m r ! -?\/
200 — ! —oz2°
o L RN I B 0.0
0 100 200 300
T (MeV)

FIG. 4. The minimized Borel mass M from case (iii) of Fig. 3
and the mean-field model of the quark condensate, as functions
of temperature.

1749

not change.

Here we remark that the Borel parameter M, found by
minimizing m, at each T in case (iii), is always at least
400 MeV, as shown in Fig. 4. Using this curve, we can
evaluate the ratio of the power correction and the pertur-
bative part in the OPE left-hand side (LHS) [Eq. (16)].
Naively, one might expect the ratio to increase
significantly since the power correction is proportional to
M %2 and M ~—*. However, the scattering term in the per-
turbative part also increases, which gives the ratio 20%
(36%) for T=180 MeV (190 MeV). Thus, the qualitative
behavior of m,(T) seems to be reliable even around T..

Finally, we repeat our analysis of the p-meson sum rule
for case (i) but now using a numerical optimization pro-
cedure to extract the spectral parameters. In particular,
we minimize the relative difference squared of the
theoretical and phenomenological sides of the sum rule
with respect to the parameters m,,, f, and S,, as summed
over a set of M? points. We will use analogous pro-
cedures in the next section. The idea is to identify a re-
gion of M? in which we expect the sum rule to be valid,
and then to choose the spectral parameters so that the
two sides of the sum rule agree most closely in that re-
gion. This approach agrees in spirit, at least, with that
used by Bochkarev and Shaposhnikov.'?

Figure 5 shows the temperature dependence of the
spectral parameters predicted by this method, with M?
points taken between 0.5 and 0.8 GeVZ2. (This is the re-
gion of M?* where the T=0 p-meson sum rule is thought
to be reﬁable.”) The mass m, and the continuum thresh-
old /S, are plotted with respect to the left-hand axis
and the resonance strength with respect to the right-hand
axis. Changes in the values of input parameters or the re-
gion of M? used lead to somewhat different quantitative
predictions for the spectral parameters at =0, with the
continuum threshold being most sensitive to details.
However, the same qualitative behavior with temperature
illustrated by Fig. 5 is found in all cases. The behavior of

1500 —— ——— ; 5 . ‘
= e (s
= T---._.715
Q1000 - S
=
n
7
Z; 1
= —05
L
|
N I B
0 100 200 300
T (MeV)

FIG. 5. Resonance parameters of the p meson for case (i) of
Fig. 3 as functions of temperature, by optimizing the Borel sum
rule for M? between 0.5 and 0.8.
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m, is consistent with curve (i) of Fig. 3 and with Ref. 15,
but contradicts the sudden decline around 7=140 MeV
reported in Ref. 12. Similarly, the threshold and strength
show only a smooth decline as a result of the thermal
scattering terms; one would not interpret their behavior
as signaling a phase transition.

In summary, our analysis in this section shows that the
p meson is a bad (good) indicator of the effects of the
gluon (quark) condensate at finite 7. In the following sec-
tion, we will examine the heavy-quark system, where
(( GG ) plays a more important role.

V. J/¢

Zero-temperature sum rules for charmonium have been
extensively studied by Reinders et al.?! using the mo-
ment method and by Bertlmann®”?® using the Borel-
transform method. In this section, we present results for
finite-temperature sum rules with both approaches, using
the numerical optimization technique described above to
extract the spectral parameters.

In the heavy-quark system, the dimension-four conden-
sates are most important (particularly for Q?>0).2! In
addition, the contribution from the heavy-quark conden-
sate vanishes to leading order in the heavy-quark-mass
expansion.?! Thus, the charmonium spectrum is primari-
ly determined in the sum-rule approach only by perturba-
tion theory and {{G?)). (Again, we assume that the elec-

J T dote M ppt 002 =S )p}, +8()p)y +pip)]
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tric and magnetic condensates are equal.)

We start once more with the Borel-transformed sum
rule at 770 from Sec. III and take the J /4 current ¢y ¢
as J,. In constructing the theoretical side at finite tem-
perature, we neglect the temperature dependence of the
a, correction to the perturbative part. In Appendix B,
we estimate the correction coming from this part and
show that it is negligible for T'<<m,. We also neglect
the T dependence of the Wilson coefficient for the gluon
condensate, as in the p-meson case. With these assump-
tions, the theoretical side reads

(M?)L,,Rell, =f0xdw2e_“Z/Mz[G(w2—4mC2)pg+8(w2)ps]

_ mZ 2
+%e M M), a( M) +gb(MD)]
(24)
where
477'2 a
= D66 . 25)
¢ 9(4m?)? << T »

A(M?), a(M?), and b(M?) are given in Ref. 28 and sum-
marized in Appendix C.

The phenomenological side of the sum rule will be
modeled after Refs. 12 and 13. We include scattering
contributions from thermal D mesons, which are analo-
gous to the pion contribution in Sec. I'V:

(26)

where poo=fm}, 8wt —m},,), p, is the same as p, with V/S,/2 replacing m, and a multiplicative factor of
(1+ag /m), and p}, and p'Ds are the D-meson contributions p,, and pp, with a multiplicative factor of (1 +a, /7) (see Ap-

pendix A for further details).

After equating the theoretical and phenomenological sides, the logarithmic derivative with respect to 1/M? gives us

the following expression for the J /¢ mass:

2
my =

X

In Ref. 28, the denominator is expanded to first order in
a, and ¢. Here, we maintain the ratio to study the effect
on the continuum. In this ratio method, we have to make
sure that we are studying the range of M? where the
power correction is small. In our work, we keep the
gluonic power correction less than 30%. The assumption
is that neglected power corrections are of the order of the
square of the power corrections that are kept, and so are
small.? To determine the resonance mass and continu-
um threshold, we search for the range of M? for which
the power correction is smaller than 30% using the ratio
method and then minimize the relative difference of the
theoretical side and the phenomenological side in this
range. Using the new parameters, a new range of M? is

* 2 2, —wl/M? _f°° 2,2, —wt/M? 2
f4m2da)we Pye Soda)we pgt2m e
c

© 2=t /ME [ 2 —wi/ME . ;o
f4mzdw e Pg 5, dw’e pgtps—pp—pp Ty ¢
c

—4m?/M? r a,a’+éb’
dme /M Ala,a+¢b) 1___‘4______¢__
A a.a+ob
-1
_ m2 2
M g (a,a+b) 27

determined and the process is iterated until the range is
self-consistent.

We use one of the parameter sets from Ref. 28:
m,=1.42 GeV or m=1.28 GeV , (28)
a,=0.27, ¢=1.23X10"3.

We follow the prescription of Bertlmann in choosing the
renormalization point to be at the physical mass
m2=m%*p>=m?). As noted in Ref. 28, the appropriate
scale for M? is set by the level splittings rather than by
the particle mass. Thus, we expect M2~ 1 GeV?. Indeed,
applying the criteria discussed above, the M? range is
from about 0.7 to 1.4 GeV?,
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In Fig. 6, we show how the resonance parameters
change as we change the strength of the condensate at
zero temperature. While the prediction for the J /¢ mass
is fairly insensitive to the value of the condensate, the
continuum threshold and the resonance strength decrease
significantly as the condensate is reduced in magnitude.
Thus the resonance becomes less prominent; this could
indicate that the J /4 is dissolving, but we cannot draw
strong conclusions based on a sum-rule analysis once the
threshold becomes close to the resonance mass. (Note
that we do not have to know the initial condensate value
precisely, because if we started with a different value we
could adjust the other parameters to have the threshold
around 4 GeV to start with.)

In Fig. 7, we show how the resonance parameters
change as a function of the temperature, assuming a con-
stant value for the condensate to isolate the perturbative
thermal effects. Only small changes in the parameters are
predicted until 7~100 MeV, at which point the reso-
nance strength and the continuum threshold decrease
suddenly. The exact position of this decrease depends
somewhat on the parameters used and will shift if we in-
clude higher-order corrections and introduce the temper-
ature dependence of the condensate. However, the sud-
den change in the threshold seems to indicate that the
sum rule breaks down at approximately this temperature
and that the bound state may disappear.

The sudden change is caused by the scattering term p,,
which incorporates the effects of the charm-quark
thermal bath. It is surprising, at first, that this thermal
bath should have an influence on the resonance proper-
ties, because 7~ 100 MeV <<m_ and so the thermal fac-
tor ng is quite small. However, in the sum rule all terms

mS/M

except for p, scale like e -

(24), while p scales like npze_ . Thus, at a given
temperature, the scattering contribution overwhelms the

, as can be seen from Eq.
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FIG. 6. Resonance parameters of the J /¢ as functions of the

magnitude of the gluon condensate, by optimizing the Borel
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FIG. 7. Resonance parameters of the J/¢ as functions of
temperature, by optimizing the Borel sum rule.

other terms for M? less than a characteristic value. As
the temperature is increased, this value moves into the re-
gion where the power correction is less than 30%, at
which point the scattering term dominates the sum rule
and precipitates the sharp changes in the spectrum shown
in Fig. 7.

Let us first explain that the exponential factor

—4m2/M?

c

comes from the propagation of heavy inter-
mediate states. For the correlator of ¢y ,c, the heavy-
quark-mass expansion is possible except for the scattering
term:

Al d e (gL
oy 07 «JIy fo do (m2+Q2)"+lp(w)
A & «G*)
(4m2)"  (4m2)" (4m2)?
aml _,
ch g;e T (9

At small QZ/(4mf), the last term, which comes from the
scattering term, dominates the others. This is because
the scattering spectral density is peaked at zero energy,
so the “intermediate state” is almost on shell at small Q2
and has a large propagation amplitude. The other terms
come from heavy intermediate states whose propagation
is suppressed; after the Borel transformation this suppres-
sion shows up as the exponential decay factor.

Now recall the Borel sum-rule scenario at 7=0. At
very short (spacelike) distances (or M? large), the
coordinate-space correlator is described by the free prop-
agation of quarks; specifically, the dominant contribution
to the correlator comes from the propagation of a free g
pair intermediate state. As we move to larger distances,
power corrections start to become important relative to
the free propagation of quarks, which shows up in the
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sum rule as 1/M? corrections. These corrections (and
perturbative corrg:ctizons), when Borel transformed, will
include the e fme propagation factor, along with ad-
ditional M? dependence [see Eq. (24)]. Higher-order
power corrections should not change the exponential M?
dependence if we restrict M2 so that the lowest-order
corrections are 30% or less.

For charmonium at finite temperature, these contribu-
tions to the sum rule are only slightly modified at temper-
atures below 200 MeV (except for the temperature depen-
dence of the condensates themselves, which we are not
considering here). This is because the temperature

. . -m /T . ..
corrections involve factors of e ¢ in addition to the

—4m2/M?

factors, and so are essentially negligible. How-
ever, as discussed above, the new contribution from the
scattering term goes like e_m‘/T but is independent of
M2,

At low temperatures, the scattering term is comparable
to other contributions only at larger times (or smaller
M?), where its effects are unobservable because higher-
order power and perturbative corrections dominate and
sum-rule methods cannot be applied. However, at a
sufficiently high temperature, the scattering term is im-
portant at values of M? where the power corrections are
still under control, so that it will significantly affect the
correlator at larger separations. Since, as noted above,
the appropriate scale of M? for charmonium sum rules is
1 GeV?, the scattering term becomes comparable to the
other sum-rule contributions at temperatures around 100
MeV; this is where the sum rule predicts a sudden drop
of the threshold and resonance strength. (Note: A sim-
ple comparison of exponential factors is not sufficient;
other numerical factors are important in determining the
precise temperature.) One can argue that the sum-rule
approach breaks down when this happens (e.g., perturba-
tion theory for p, might be inappropriate) and one should
therefore be cautious about drawing strong conclusions.
However, it does suggest that the nonperturbative phys-
ics (manifested as nonvanishing gluon condensate) is
overwhelmed by the influence of the thermal heat bath
and hence a perturbative treatment of the charmonium
system could be a valid approximation.

The argument given above cannot be applied to the
light meson system, because the current quark mass is
effectively zero and only the high-momentum expansion
is possible for the correlator:

Gy =@ tyea, L8N

4

= W2 2 4
—«quﬁ» +d3§+d4§ . (30)
Our numerical results show that in the small-Q? region,
the power correction provides a dominant contribution
until T gets large. In the large-Q? region, the perturba-
tive contribution always dominates. Thus, at moderate
temperatures the scattering term does not change the
qualitative nature of the 7 =0 sum rule.

We have repeated the analysis of charmonium using
moment sum rules, generalizing to finite temperature the

+d,
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sum rules of Ref. 21. In the deep Euclidean region

Q2= —w?, the theoretical side of the sum rule reads
oo 1 |_d |
M, (Q°)= oy 10’ I,
> 1 2_
_fo dwzm[e(m 4ml)p,
+8(w?)p, ]
+1Ad(n)a,(§a,+b,(£)¢], (31)
where
2
=2 (32)

and the functions 4, a,, and b, are tabulated in Ref. 21.
(The overall normalization factor of + follows the con-
vention of Ref. 13.) The phenomenological side is
modeled with the same spectral functions as before:

[>e] 1 ’
[y de gt 0T S0

+8(0?)(p)p +pp )] - (33)

We use the parameter set given in Ref. 21 (note that the
parameters are £ dependent):

m.=1.21 GeV ,
(34)
a,=0.21, ¢=1.80X107"°.

These parameters can be varied somewhat and still pro-
vide a reasonable description of the charmonium states at
T=0."

The analogous results for the moment sum rule to the
Borel sum-rule results of Figs. 6 and 7 are shown in Figs.
8 and 9, respectively. The spectral parameters are deter-
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FIG. 8. Resonance parameters of the J /¢ as functions of the
magnitude of the gluon condensate, by optimizing the moment
sum rule.
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J/¥% Moment Sum Rule
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FIG. 9. Resonance parameters of the J/y as functions of
temperature, by optimizing the moment sum rule.

mined by minimizing the relative difference of the
theoretical and phenomenological sides, as summed over
the moments from n=35 to n =9. This range in n corre-
sponds to the stability region at T =0.2! As can be seen
from Fig. 8 and Fig. 9, similar qualitative results are ob-
tained in the moment method as were found using the
Borel-transform rule, although the predictions differ
quantitatively in some details such as the absolute
strength of the J /¢ resonance. (The latter discrepancy
can be attributed, at least in part, to the differences in the
parameters sets used for the two sum rules.) The sys-
tematic dependence of the spectral parameters on the
magnitude of the gluon condensate at 7=0 and on the
temperature is quite similar, including the temperature
range in which the continuum threshold and the reso-
nance strength decrease rapidly. Thus, this behavior
does not depend on details of the sum rules.

VI. SUMMARY AND DISCUSSION

Let us summarize our results. For the p meson, which
we believe typifies the behavior of light-quark systems,
the chiral condensate {{(gq )) is the most important factor
in determining bound-state properties. The changes in
these properties as a function of temperature and density
have interesting implications for hot quark-gluon plas-
mas, high density matter, and even for finite nuclej.?3%3!

For heavy-quark bound states such as J /v, thermal
fluctuations (calculated in lowest-order perturbation
theory) overwhelm the gluon condensate above a certain
temperature, at which point a perturbative description of
the bound state would seem to be justified. (We caution
the reader that this temperature is rather low, ~ 100
MeV, while the finite-temperature sum rule should be
most reliable at higher temperatures, so its quantitative
value might not be well determined.) This behavior of
the spectrum is similar to that obtained by a potential
model with a temperature-dependent string tension,’ al-
though the exact connection is not so clear. The mecha-
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nism for the phase transition is difficult to explain in the
sum-rule approach; however, our results seem to be con-
sistent with the description of J /¢ at high temperature
advocated by Matsui and Satz.’?

It would be interesting to study the behavior of D
mesons with the QCD sum-rule approach. The first
reason is to include the temperature dependence of the
D-meson mass in the hadronic scattering term of Eq. (24).
Second, one can study potential level crossings of the
J /¢ spectrum and D mesons,>* which would have impor-
tant implications for signatures of the quark-gluon plas-
ma. In addition, one must investigate corrections to the
present calculations, such as contributions to the thermal
spectral density from multiparticle intermediate states, to
test the robustness of our results. Work in these areas is
in progress.

Let us turn our discussion to the nonperturbative phys-
ics of QCD at high temperature. As we have shown,
when considering hadronic parameters the influence of a
persisting nonvanishing gluon condensate is overwhelmed
by other contributions so that the naive picture of the
QGP as a gas of weakly interacting quarks and gluons
seems to be justified. However, the surviving gluon con-
densate might induce non-negligible corrections to other
plasma properties such as the electric or magnetic
masses. For example, the temperature dependence of the
screening length in lattice gauge calculations disagrees
with the perturbative calculation at finite temperature.**
The screening length given in a perturbative calculation
goes like

rDT= ———L——_3__— . (35)
gV N+N /2

Here N =3 and N/ is the number of flavors.

The product r;, T increases with temperature according
to Eq. (30), since g decreases with temperature. Howev-
er, lattice calculations show that r, T decreases with tem-
perature above the phase transition. Based on the as-
sumption that the infrared behavior of QCD at high tem-
perature is the same as three-dimensional QCD,® Nadkar-
ni calculated the screening length in three-dimensional
QCD with the further assumption that the vacuum ex-
pectation value of the adjoint Higgs field { 4,) =v is not
equal to zero.* In this approach,

1 1—11/127c

ryT=— , (36)
P g (N+N,/2)/3—2cg? /7]

where
v=cg(T)VT , (37

g is the running coupling constant, and c is a nonpertur-
batively determined dimensionless constant.

As can be seen in the equation, this expression modifies
the original value in the direction that decreases with
temperature. In Nadkarni’s approach, the nonperturba-
tive nature of QCD at high temperature is expressed in
terms of the nonvanishing vacuum expectation value
(VEV) of the A4, field and including this effect seems to
give a temperature dependence of the screening length
more consistent with the lattice result. At this stage, it
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would be interesting to see how the gluon condensate
compares with the VEV of 4 in modifying the screening
length in a manageable way to further study other prop-
erties of the plasma that could be modified by a nonvan-
ishing gluon condensate. Some of these issues are
presently under investigation.
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APPENDIX A

In this appendix we give a brief account of the deriva-
tion of the spectral function p(w?).!* At zero tempera-
ture, it is finite only above the two-particle threshold
@?>4m?+p2. On the other hand, at finite temperature
the spacelike region w?<p? is also allowed since the
ground state contains thermally excited particles that can
absorb the external current. As shown in the text, this
contribution becomes quite important in the case of char-
monium. To lowest order in the strong-coupling con-
stant O(a?), the longitudinal component of the spectral
density reads

for w?—p?>4m?

(A1)
for p?>w?,

=[exp(x)+ 1], which are obtained from the time-time component

We want to take the limit p —0, but is not trivial for pj(w,p) because of the constraint 0 < <p. However, we note
that pj(w,p), considered as a function of w, is nonzero only for 0 <w < p but becomes increasingly large in this region as
p—0. By integrating over this region with p finite and then taking the limit, we find

pPum),

2T

lxmf dw pilw,p)= f ,du 2np

p—0

so that pj(w,p) effectively becomes a & function in w. Thus, the final result is that the spectral functions reduce to

lim p§(w,p)=tanh |-— [p%w*m)=pfle

p~»0 T

. ® u _

:lir})pf(w,p)=8(w2)f4mzdu22np 3 pu%m)=3
where pY(w%m)=v(3—v?)/167* and v=(1—4m?*/

»*)'?, which were ﬁrst given by Bochkarev and

Shaposhinkov.'?
On the phenomenological side of the sum rule, we
should take into account the scattering terms due to
color-singlet hadrons. For the p-meson sum rule, the
dominant term arises from the thermal pions
Awtm,),

p,,=3f4:2dw22n3 % p(osm (A4)

where np(x)=[exp(x)—1]"'. Note that the last factor
p°(w*m ), which is numerically important for m =~ 140
MeV, is neglected in Ref. 13. For charmonium, the dom-
inant contributions come from the hybrid pseudoscalar
mesons D° D D*, and DF. The bosonized form of the

2)101 )

(A2)
(A3)
f
current J, =ty ¢ written in terms of these fields is
—_ D A pD—4p93 po +3 p-
Ju i(D"3,D"+D"3,D"+D;79,D;) . (AS5)

The spectral function using this current is easily obtained
by replacing the pion mass in (A4) with the D-meson
masses:

pDzzpﬂ(mfr‘—)mD) ’
(A6)
pDS :prr(mﬂ“’mDS) .

APPENDIX B

Here we will estimate the temperature-dependent o
contribution to the charmonium sum rule. This contri-
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bution will come from thermal gluons, which are charac-
terized by the Boltzmann factor nyz. Compared to the
zero-temperature «a correction, these temperature-
dependent contributions will have np cutting off the
gluon phase-space integral. The ratio of these two is then
of the order of (T /m_)?. Hence it is clear that this effect
can be safely neglected, at around 7=200 MeV, com-
pared to the o, correction at zero temperature.

This contribution is also small compared to the power
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APPENDIX C

Here we summarize the expression for Eq. (24) in the
text, which has been derived in Ref. 28:

1
b, =_1
G(b,c,w)= T

w=4m2/M?* .

“xx " Yo+x)"bdx ,
(C1)

Using these formulas, the moments are given by func-

correction, as can be seen as follows. If the operator- tions
product expansion is exact, this term would come from 3
nonvanishing of the condensate term at finite tempera- TAM?)= G(1 2,m) (C2)
ture. Namely, 16Vr o
o o H=——_G L3
<<—GZ>> =5 (a7 a(M*)= 3‘/ﬂ_G (3,3,0)
T pert T
— 1
The ratio of this at 7=200 MeV to the nonperturbative X[m=e1G(1,2,0)+5¢,G(2,3,0)]
condensate contribution ey 41n2 hw) (C3)
a, ”
«—GZ» , where
m nonpert 3
using the parameters from Sec. V, is less than 5%. This C=3T— ar
is not an exact estimate because the operator-product ex-
pansion is valid only at large four-momentum, but it ¢ =5mtic,, (C4)
gives an estimate of how large the relevant scales are be- . “1 s
tween the temperature-dependent o correction and the h@)=0G(3,3,0)G " (5, 3,0),
gluon condensate. and
J
b(M?)=—10G(—1,3,0)G7'({,3,0), (C5)
%=i+%G(%,§,w)G_'(%,§,w) , (C6)
, 4 _
—a (MZ)—3—‘/?G "1, 3,0){—¢,G(2,2,0)+%¢,G(3,3,0)
—1G(3,%,0)G ML, 5 0) i 41n2
AN IR @I T CIG(1,2,w)+7c2G(2,3,w)]]+ flw), (CT7)
where
flo)=G711,5,0)[G,3,0)— 1063, },0)+10G(1,3,0)G(4, 3,0 )G '(4,3,0)] (C8)
and
b'(M)=0G (L,3,0)G(—110)+ 1064, 3,0)+10G(—1,1,0)G(3,5,0)G 7 '(1,3,0)] . (C9)
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