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Electroweak interactions become strong at energy above —10 TeV
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We study baryon-number-changing processes at high energy in electroweak theory. We find that
at energies of the order of 10 TeV, some inelastic partial-wave amplitudes saturate the unitarity lim-

it and the cross section for such processes becomes as large as o -a' /M~. We argue that at high
energies, lepton interactions become strong with distributions of particles typical of strong-
interaction processes. The multiplicity of particles in the final state is of order 1/a„, the transverse
mornenta are of order M~, and the types of particles are primarily Higgs and gauge bosons and
their decay products.

I. INTRODUCTION

Baryon-number violation is a problem which has been
of much interest in cosmology. With a proper under-
standing of the dynamics of baryon-number violation, it
is believed that it should be possible to compute from first
principles the observed baryon asymmetry of the
Universe. In order to understand the dynamics, one
must, of course, have experimental tests.

Until recently it was believed that the only baryon-
number-changing processes relevant for cosmology were
those whose natural physical scale is of the order of
E ~ 10' GeV. Unfortunately, with the failure to observe
proton decay, it appears unlikely that it will be possible
to experimentally test conjectures concerning the physics
at such energy scales.

It has been long known that there are another class of
baryon-number-changing processes associated with elec-
troweak theory. ' The method for computing amplitudes
which involve baryon decay uses approximate classical
solutions of the electroweak theory, instantons. The
problem of instanton-induced scattering amplitudes has
long been of interest. ' The first computations of such
amplitudes were done in the classic paper of 't Hooft. '

He considered electroweak theory and employed instan-
tons to determine the rate of baryon- (8-)number- plus
lepton- (L-) number-changing decay rates. The ampli-
tudes for such processes can be estimated to be of order—2,n /a
e where a is the SU(2) weak-interaction coupling
constant. This factor is of order 10, and is so small
that if there is no large factor to compensate for this ex-
ponential suppression, then such processes are of no prac-
tical phenomenological significance.

There are now a number of results concerning violation
of B +L at high temperature which suggest that in some—2n. /a
amplitudes the factor of e is compensated by
energy-dependent factors. ' This phenomenon was ad-
vocated on the basis of qualitative arguments by Arnold
and McLerran, ' who proposed that, in instanton-
induced amplitudes containing of order 1/a external
legs of gauge or Higgs bosons, the &KB factor of

—2m/a
e is absorbed by enormous preexponential factors.
If the energy in a collision becomes sufficient to produce
so many bosons, E-M~/a —10 TeV, then the cross
section has no suppression by the WKB factor.

This phenomenon in high-energy two-particle col-
lisions was conjectured in the early paper of Aoyama and
Goldberg, " and the same behavior is also hinted at in the
explicit computations of instanton-induced amplitudes
for multiparticle processes recently done by Ringwald. '

He concludes that at an energy of order 1-10 TeV, the
weak-coupling expansion for such amplitudes breaks
down. Using his results for energy E ((M~/a, where
the cross section is still small, one finds

—4m/a a AF. /M~0-e e

where A is some constant of order 1. This result while
interesting is not entirely compelling since the computa-
tional methods used in its derivation break down entirely
when the cross section might become sufficiently large
that it is no longer suppressed by the %KB factor.

It is nevertheless useful to consider some of the aspects
of his computation in a little more detail. Recall that in
electroweak theory, the basic process of B+L noncon-
servation involves all three generations of quarks. There
is a change of one unit of B and one unit of L for each
generation. The basic process therefore involves at least
12 ferrnions as shown in Fig. 1. At high energies we may
also include the possible emission of an arbitrary number
of Higgs and gauge bosons. %'e assume there are n such
bosons in the final state of a scattering process induced by
the collisions of two fermions, each of them being a quark
or a lepton. The possible range of values of n is only lirn-
ited by energy conservation: n ~E/Mtt, . (We will con-
sider throughout this paper the simple case when A. -g
or MH-M~ to avoid the messy complications of two
mass scales. )

Ringwald's analysis, which we shall discuss in more de-
tail later, gives the amplitudes for rnultiparticle produc-
tion into a state of fixed n (Ref. 12). The sum over the
cross sections arising from these amplitudes is
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FIG. 1. The basic process involving baryon-number non-
conservation in electroweak theory. There are 12 fermions, 3

quarks for each generation and one lepton for each generation.

o „,—1/E —a, /M ii,

%e are therefore forced into the somewhat awkward
conclusion that leptons interact strongly at high energy.
We discuss the qualitative nature of such strong interac-
tions. A picture arises which is in many features similar
to hadronic physics. The essential differences are that the
final-state particles are Higgs and gauge bosons, the typi-
cal transverse momenta per particle are of order M~, and
the rapidity density is of order 1/a . Such physics can
clearly have applications for the Superconducting Super
Collider (SSC), and possibly proposed e e, e e, and
ep colliders.

n —E/M~ 2 2—4n/a, a AE /M~
tot 0.„-Ce 'e (2)

II. THE TWO-DIMENSIONAL ABELIAN
HIGGS MODEL

A is a constant here and C is a factor which contains an
energy dependence which is slower than exponential, and
also has some weak dependence on the maximum number
of boson legs, and the type of particles are in the initial
state. The dominant contribution to this sum comes
from cr „where n -E/Mir.

Equation (2) suggests that when E & M iv/a, the
WKB instanton suppression factor is compensated. The
approximations which Ringwald has used are however
only valid if E (&M~/a and if the number of emitted
quanta is n «1/a„. Such limitations are clearly stated
in the paper by Ringwald. These approximations are in-
trinsically tied to the weak-coupling expansion and to go
beyond them we will be required to use nonperturbative
techniques. It would therefore be premature to conclude
that instanton-induced amplitudes are not suppressed at
high energy.

In this paper we shall show that the principal limita-
tion in the analysis of Ringwald is that the distortion of
the shape of the instanton by the external quanta has not
been taken into account. We study here the effect of re-
laxing this condition and generalize Ringwald's results to
n & 1/a and E &Mii. /a . We begin by considering the
two-dimensional Abelian Higgs model. In this model the
instanton analysis Rives a cross section which rises ap-

JE /M~
proximately as e, and we find the somewhat
surprising result after accounting for this distortion, the
cross section continues to rise faster at high energies than
the extrapolation of the instanton result would suggest.
We therefore conclude that the cross section grows to a
size limited by unitarity (in 1+ 1 dimensions the probabil-
ity of the process approaches of order 1), at which point
multi-instanton processes become important and unitar-
ize the amplitude.

We then proceed to the more realistic four-dimensional
case. We find here that the formula given in Eq. (2) for
the cross section is only slightly modified by including the
distortion due to the external particles. As was the case
in the (1+1)-dimensional case, the cross section ap-
proaches the unitarity limit, and then becomes unitarized
by multi-instanton processes. We argue that at high en-
ergies, E M~/e, this unitarity limit should be of or-
der

Before turning to the more complicated case of elec-
troweak theory in four dimensions we first study the
Abelian Higgs model in two dimensions. This problem is
slightly more simple than is the case in four dimensions
since when computing instanton-induced amplitudes,
there is an instanton solution which is an exact solution
which has a fixed size. In four dimensions one must in-
troduce an integration over instanton sizes by first impos-
ing a size scale constraint on the action. Only then is the
instanton an exact solution of the equations of motion.

This model has an Abelian gauge field A", a complex
scalar field P, and a charge-one Dirac fermion field %.
The Euclidean space action is

+i 4(8„ieA „)y—"4],
where the Higgs potential is

V(P) =A.(P*P—i) )

(4)

This potential naively provides a vacuum expectation for
the Higgs field:

In the analysis we present here, unlike the four-
dimensional case we shall assume that k »e2 so that the
mass of the Higgs boson M~ =2~A, is large compared
with that of the gauge boson M, = 2eg. One can also
readily verify that the dimensionless parameter 1/ri plays
the same role in perturbation theory in this model as the
coupling constant g does in the four-dimensional SU(2)
theory. We assume throughout this section that g &&1 so
that perturbatively the Abelian Higgs model is a weak-
coupling theory.

The action of Eq. (4) in the gauge+Higgs-boson sector
is identical to the Landau-Ginsburg Harniltonian. There-
fore there are classical solutions corresponding to the
well-known Abrikosov vortex. In the polar coordinates
(r, 8) the classical solution has the form

lA„=O, Ae= f (r), $(r, H)=rie' u(r), —
er

where the functions f (r) and u (r) satisfy the boundary
conditions
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eK„= e„„A
2m'

(10)

where e„ is the antisymmetric symbol, so that the wind-

ing number (the Chem-Simons number) is given by

Ncs= fKodx = f A, (x)dx
277

The instanton corresponds to tunneling between the
field configurations which differ by one unit of Xcs. This
is seen from Eqs. (7) and (8):

(12)

The instanton transition is necessarily accompanied by
change of chirality of the fermions by two units because
of the anomalous divergence of the axial-vector current
J„'=+r„rs+:

e
BP = Epg ~' (13)

Therefore the instanton-induced amp1itudes in this model
should always contain at least two external fermionic legs
and chiral charge Q5= fjodx is our two-dimensional

f (0)=0, u (0)=0, f ( ao ) = 1, u ( oo ) = 1 .

The rate at which f (r) and u (r) approach their limit at
r ~ ~ is determined correspondingly by the masses M,
and MH..

—M r —MHr
1 f—(r)-e ', 1 —u (r)-e

The action of Eq. (4) for the instanton solution of Eq. (7)
is given by S;„„=Cg, where C is a function of the ratio
e /A, which is just a finite number in the limit e /A, —+0.

The topological properties in this model are controlled
by the current

analog of the d=4 electroweak theory 8 +1.charge.
To formulate scattering amplitudes in the terms used

in the perturbation theory one first decomposes the com-
plex field P into the modulus u and the phase y,

p=ue'~, (14)

and then expands U around the vacuum expectation value
of Eq. (6):

U(x)=g+a(x) . (15)

= ( T [cr(x, ) o'(x„)%(x„+,)%(x„+2)]) . (16)

In the Euclidean formulation this Green's function can
be calculated by adding source terms to the action

S [J]=S—fJ(x)o (x)d'x

—f [J/(x)1p(x)+ V(x)Jf(x)]d x (17)

with J(x) being the source for the Higgs field and Jf the
same for the fermions. The Green's function of Eq. (16)
is then found from the path integral Z[J] in which the
action S is replaced by S [J]:

The Nambu-Goldstone degree of freedom associated with
the field g(x) is absorbed by the gauge field A (x) which
becoines massive due to that, while the field cr(x) de-
scribes the physical Higgs boson H.

We shall study in this section a subset of the
instanton-induced vertices: namely, those containing two
fermions and an arbitrary number n of the H bosons. Ac-
cording to the Lehman-Symanzik-Zimmermann (LSZ)
formula these vertices can be obtained by amputating
propagators corresponding to external lines in the
(n+2}-point Green's function:

~ Xn ~Xn+1 Xn+2)

goal
+2

G(X1, . . . , X„,X„+1,X„+2) ln(Z[J]) .
5J(x, ) . 5J(x„)5Jf(x„+,)5P(x„,2)

(19)

Thus in this approximation the Green's function in the Euclidean space is given by

In the approximation used by Ringwald' the calculation of the instanton contribution to the partition function Z[J]
amounts to substitution in the integrals with the source terms in Eq. (17) the bosonic and fermionic fields of the instan-
ton which are unperturbed by the sources (in fact, the fermion field is that of the zero modes):

S[J)=S;„„—f J(x)pro(x)d x —f [P(x)+0(x)+Vo(x)Jf(x)]d x .

instG(x„.. . , x„,x„+i,x„+2)=constX f d y e '""oo(x1 y)o'p(xp y) ' ' '0'o(x„p)%o(x&+1 y}%p(x&+p p), (20)

where the const which does not depend on either spatial variables or the number n contains the usual preexponential
factors in the instanton calculus, a o(x) is the classical scalar field of the instanton solution, and +o(x) is the field of the
fermionic zero inode. Since the large-x behavior of the solutions o 0(x) and %0(x) is governed by the free-particle equa-
tion the Fourier transform of the Green s function in Eq. (20} displays the on-shell poles of the propagators, corre-
sponding to each external leg:

(Plr ' ' ' &Pn&pn+1&pn+2)

=constX(2m) 5
"=~+ —s,„„{o~"+1}F (p, +1) (cr~„"+2)F (pn+2) k=& gF(pk /MH)

Pk
k=1 Pn+] En+2 Pk MH

{21)



174 L. McLERRAN, A. VAINSHTEIN, AND M. VOLOSHIN 42

The functions F(p /MH ) and F (p ) arise from Fourier
transforms of the Higgs-field solution and of the fermion
zero mode. These form factors are equal to one at p =0
and are not singular on the mass shell. The factor g for
each external Higgs-boson leg appears here because of
the overall normalization of the Higgs field in the instan-
ton solution [cf. Eq. (7)], and we also remind the reader
that the fermions are massless in this model. Thus the
(n+ 2)-point Green's function corresponds to the
instanton-induced (n+2)-particle on-shell amplitude of
the form

A„=const X e '""4'0'(cia )", (22)

where c =F(—1).
With this amplitude one can readily estimate the be-

havior of the probability (which is the two-dimensional
substitute for the cross section) of the fermion-
antifermion annihilation into n Higgs bosons at a high
energy E =i/s »MH..

insto„-e '""(crl) "r„, (23)

ln +1 1 e
n! 2m MH MH

'2 1/2' 'n
(24)

where e=E/n is the typical energy per particle and I/n!
enters because the particles are identical. The integral in
Eq. (24) has different behavior for relativistic particles
E »nMH when the integral is ln[E/(nMH )) and for the
nonrelativistic ones, i.e., when 5:—E —nMH «nMH and
the integral is +26/(nMH). In these two cases the r„
can be estimated as

where 7„ is the phase space for n identical particles. The
latter can be roughly estimated as

1 1 p(&) dp

-e 2c&exp 1n
MH (E/MH )ln' (MHrl /E)

(29)

where a is a numerical constant and we have substituted
for the unperturbed instanton action S;„„=Cg . Notice
that this expression is a monotonically increasing func-
tion of energy until E=MHg, when the instanton
suppression may be canceled. At energies above this, the
instanton approximation breaks down, and the result is
no longer valid. In addition, our stationary phase evalua-
tion of the cross section within the instanton approxima-
tion is invalid, and a proper evaluation of the instanton
contribution shows that the cross section continues to
rapidly rise.

In Eq. (29}we might guess that the instanton exponent
is absorbed when the energy becomes sufficiently large,
E MHg . If this happens, then the instanton-induced
processes are unsuppressed.

The appearance of the energy scale Eo =MHg is not a
surprise, since this is the height of the energy barrier be-
tween sectors of the theory with different values of Nzs,
the Chem-Simons charge, as shown in Fig. 2. To esti-
mate the height of the barrier which separates degenerate
minima of the theory, we first note that there should be a
static solution of the classical equations of motion for the
effective potential which is classically unstable, and corre-
sponds to sitting on top of the barrier. Such a solution is
called the sphaleron. This solution has been constructed
for the Abelian Higgs model in two dimensions and is
given by the well-known kink solution of AP theory 3

theory

which is consistent with 6 «MHn if E «MHrl. ] We
thus find in the exponential approximation

o„,(E)

1 1 E7 ln
n! 2m nMH

1 1 2h
n! 2m nMH

'n

if E &&nMH,

]/2 n

if 5«nMH .

(25)
P(x) =rl tanh(i/A, rlx), A„(x)=0 . (30)

The barrier height energy which corresponds to the ener-

gy of this classical solution is
'2

+ V(p) =—&A, il = MHil

We are interested here in the total probability of produc-
ing arbitrary number of Higgs bosons at a given energy
E &)MH, i.e., in the sum

o„,(E)= g o„.
n &E/MH

(27)

E 1

2 1n(rl MH/E)
(2g)

Inserting our estimate Eq. (26) for the phase space into
Eq. (23), we find in the saddle-point approximation for
this sum that if the energy is constrained by the condition
MH «E &&MHq the sum receives the dominant contri-
bution from the multiparticle states with n =E/MH so
that bosons in the final state are nonrelativistic. [More
precisely the maximum of the terms in the sum corre-
sponds to

(31)

Equation (29} therefore suggests that when the energy in
the collision is larger than the height of the energy bar-

Ncs

FIG. 2. The energy as a function of Chem-Sirnons charge.
The sphaleron solution corresponds to the top of the barrier be-
tween the degenerate minima.
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V(u, J)=A[v(x) —il ] —J[u(x) —i)], (32)

where we have used P= ve'~ and v (x)=q+0 (x).
Let us consider the behavior of the action S;„„[J]for

large positive J. The main effect of the presence of J is a
shift in the vacuum expectation value of the field u(x),
which is determined by solving

dV(v J) & 2=4kv —4XUq —J =0, v ~ 0 .
8U

(33)

For large J we can neglect the term linear in U and get the
solution

rier, the effect of the barrier penetration factor disap-
pears, and the process with ENcs = l becomes un-

suppressed.
The reasoning presented thus far is insufficient to con-

clude that when E ~MBA the instanton processes are
unsuppressed. Recall that we assumed that E &(MHg
when we evaluated the sum in Eq. (27). This can be easily
corrected, but there is a more serious problem which in-
duces a breakdown of the weak-coupling expansion. This
arises because when we compute a multiparticle Green's
function, the presence of the external lines distorts the in-
stanton solution. Recall that to compute the multiparti-
cle Green's function in the instanton approximation one
does a stationary phase approximation to an integral with
an exponential of the classical action and a high-order
polynomial of the field. In the naive instanton computa-
tion, the stationary phase point is computed ignoring the
effect of the high-order polynomial of the field. This will
no longer be valid if the polynomial is of sufficiently high
order, since at some point the polynomial generates an
effect of order 1 for the computation of the stationary
phase point of the path integral. If we imagine generat-
ing the high-order Greens function by differentiation
with respect to an external field, then the distortion of in-
terest is that for the theory in the presence of a strong
external field.

Perturbation theory can be seen to be breaking down
by considering the corrections to the n+2 particle vertex.
The corrections due to the exchange of virtual Higgs bo-
sons between the external lines of the vertex have as their
expansion parameter n/il . Since the sum of Eq. (27) is
dominated by n -E/MH, the corrections are small only
when E (&MHg .

We shall soon see that we can compute the behavior of
the instanton-induced scattering amplitude for large
numbers of external legs by considering the action S[J]
in the presence of a strong external field. To simplify the
calculation we note that the form factor on each external
line F (p /MH ) in Eq. (21) gives rise to a numerical factor
c when evaluated on mass shell. Up to this factor we
may, therefore, consider the amplitude evaluated at
pk =0 instead of on-mass shell at pk = —MH. With this

simplification, it is sufficient to consider the theory in the
presence of a constant external source, J(x)=J=const.
The introduction of a constant external source coupled to
the Higgs field 0 (x) gives a Higgs potential of

(u)= (34)

lim S;„„[J]-c(u)—J
J—+ oc

(35)

It should be noted that this asymptotic behavior of
S;„„[J]is not affected by perturbative corrections since
these have 1/(u ) —J ~ as an expansion parameter.

As a consequence of Eq. (35), S;„„[J]has a branch cut
in the complex J plane. The nature of this cut is clear
upon looking at the solution for U for negative J. The lo-
cal minimum of the potential V(u, J) for positive v disap-
pears when

8J=Jc2 (36)

In fact J & J,2 corresponds to the situation when there is
no stable or metastable state with (u ) ~0 at all. The lo-
cal minimum of V(u, J) starts to be metastable [i.e.,
higher than V(O, J)] already for

J +J, ]
= —1.089k.g (37)

which means that ln(Z[J]) starts to develop an imagi-
nary part at J ~ J„which is however exponentially small
in the region J,2~ J J„.At J J,2 the theory becomes
a strongly coupled theory since the dimensionless expan-
sion parameter 1/(u ) is no longer small. At this branch
point the characteristic size of the instanton (VA, (u ) )

also becomes large which invalidates the validity of our
approximation that J=const. Therefore we cannot ex-
amine the behavior of S;„„[J]near the branch point at
J=J„.

The existence of a branch cut for J varying at a scale
—I /(&k il ) is also ensured by our previous consideration
of the limit J~~, since in this analysis the characteris-
tic size of the instanton Higgs-boson core (&A, (u))-J '~ is much smaller than (&A, g) '. In our future
analysis we shall use for the position of the branch cut

J, = —cog (38)

with c as some undetermined numerical coefficient which
is of order 1.

One might think that we implicity assume here that
the exact amplitude has the separable form analogous to
that given by Eq. (21), i.e., that it depends only on the vir-
tuality of individual external legs and does not depend on
invariants like p;p which correlate the mornenta of ernit-
ted particles. This however is not the case because due to
shrinking of the instanton at large positive J the behavior
described by Eq. (35) at J~+ oo is also valid for the
source varying at a fixed scale -MH', which generates
the on-shell amplitudes for production of soft (nonrela-
tivistic) Higgs bosons, i.e., of the configuration which
gives the dominant contribution to o.„,at E & MHg .

The branch cut for S;„„[J]obviously produces a cut

This is the limit as x ~ cc of the v (x) field in the distort-
ed instanton solution. The characteristic size of the solu-
tion is (&k(u ) )

'- J '~, so that the action becomes
2/3
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inst I

for ln(Z;„„[J])-e '"" . According to Abel's theorem,
the existence of this cut implies that when Z;„„[J]is ex-

panded around J=O in a Taylor series

In(Z[J])= g a„J"
n=0

(39)

the radius of convergence of the series is equal to
~ J, ~

and
that the coefficients of the Taylor-series expansion have
the limiting behavior

lim /a„/""=1/IJ,
I

.
pf ~ 00

(40)

lim ln(Z [J])=g(n)n! 1

n-~ 5J
C

(41)

where g(n) is an arbitrary function of n which has a
strength weaker than an exponential.

According to Eq. (18), this corresponds to the behavior
in the n ~ ao for the (n+2)-particle amplitudes

l1

cM~
n! -%%—n!(c /ri) "%W, (42)

where the factor of (cMH)" arises from multiplying the
appropriate multiparticle Green's function by the inverse
propagator for each Higgs particle, and allowing for the
form factor effect of F( —1), and c is some undetermined
constant of order 1.

We can now compute the total probability using the
vertex given by Eq. (42). In this case we shall evaluate it
in the limit where E )&MHg2:

2'

n! (43)
. '9 .

«Ot
n ~ E/MH

From Eq. (24) for the r„we find for asymptotically large
E that the dominant contribution to this sum comes from
the values of n where n =ElMH such that the particles
are nonrelativistic:

E 1
1 ~

MHn 21n(E/MHri )
(44)

The contribution to the total probability arising from one
instanton process behaves therefore as

' E/MH

o„,(E)-
M ri ln'~ [E/(M r) )]

(45)

This contribution therefore grows more rapidly than the
naive extrapolation of instanton amplitudes computed
without the correction due to the distortion arising from
external particles. This means that accounting for the
distortion does not provide a cutoff for instanton-induced
amplitudes.

The estimate of Eq. (45) cannot be taken literally for
the total probability since it violates the unitarity condi-
tion that the probability of scattering in 1+1 dimensions
cannot exceed 1. However, we have just shown that

We have therefore that the n particle connected Green's
function behaves as

'n

there is no unitarization of the amplitude arising from the
one-instanton contribution. Unitarization can only be
achieved by including multi-instanton —anti-instanton
effects. This however implies that the total probability
becomes of order unity once the multi-instanton effects
begin to become of the order of the single-instanton
effects. This happens at the energy E—E, —&A. ri .

We therefore have found that in the two-dimensional
Abelian Higgs model, the probability of chirality-
violating processes becomes of order unity at an energy
E-~A, r), and that the dominant final states are those
with n -ElMH -r) Higgs bosons.

III. FOUR-DIMENSIONAL SU(2) GAUGE THEORY

+A, (p p
—

ri ) +SF], (46)

where SF is the action for the fermions and 8'„„is the
gauge field strength:

+gg~"~~b p ~
Pv JM v V v p v (47)

The matrices r'=o'/2 are generators in the fundamental
representation of SU(2). The field (() is an SU(2} Higgs-
boson doublet which we parametrize as

0
(()(x)=u (x)exp[in(x). r] (48}

The fields m'(x) are Goldstone fields absorbed by the
gauge field W„' which thus acquires a mass Mii. =gr)/
~2. The excitations of the field u(x) around the mean
value

(u(x)) =r) (49)

describe the physical Higgs boson with a mass
MH =2&A, r).

The instanton has one zero mode for each fermion dou-
blet so that the minimal number of fermionic legs in an
instanton-induced vertex is equal to 4Nf where Nf is the
number of quark-lepton families. This fact can also be
deduced from studying the anomalous divergence of the
baryon-lepton number current:

2

68 =61.=b,Ncs=Nf J d x W„,W„"„=Nf, (50)

where 8'„",, =e„& 8' . Unlike the two-dimensional
case, for SU(2) gauge theory in the presence of spontane-
ous symmetry breaking, the instanton with finite-scale
size p is not a solution of the classical equations of
motion. It is an approximate solution only when

p « 1/(u ). The technical way to deal with this problem

We now proceed to analyze the realistic case of four-
dimensional electroweak theory. The only simplification
we here adopt is that we consider a pure SU(2)L gauge
theory and disregard the U(l) interaction. This
simplification corresponds to setting the Weinberg angle
e~ =0.

The Euclidean action for SU(2)L gauge theory is

S = J d x [—,
' W„„+~

(8„—ig W„'r )y I'
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has been known since the work of 't Hooft' and Aleck. '

One can introduce a constraint into the path integral
which constrains the size of instantons, and then in the
end the size parameter is integrated out. For our pur-
poses it is sufficient to know that the instanton action
S;„„receives an additional contribution of the form
bS;„„=2rrp (u ) from the Higgs expectation value
(u ), so that

S,„„=8rr /g +2m p (u) (51)

S[J]=S—fd x J(x)cr(x) . (52)

In the approximation where the distortion of instantons
due to the presence of J is ignored, this action generates
amplitudes for processes involving 12 fermions and n

Higgs particles

The asymptotic long-distance behavior of the gauge,
Higgs, and fermion fields is governed by e ™where M is
the mass of the corresponding particle in the physical
broken-symmetry vacuum.

In analogy to the analysis of the two-dimensional
Abelian Higgs model we consider the behavior of the in-
stanton action in the presence of a source J of the Higgs
field:

shift the expectation value of the Higgs field. The gauge
and Higgs part of the instanton action is given by Eq. (51)
with ( u ) being a function of J as

8aS[J]= +2m p ((u)~) (56)

It is straightforward to perform the integration over p to
obtain the following result for the one-instanton contri-
bution to the generating function Z [J]:

' 12

1
12„f d'y g +f0(xf y)—

( v J)

(57)

where (6/5J )' symbolically represents differentiating
over the 12 fermionic sources of different fiavor f and
+of(x) is the field of the fermion zero mode for fiavor f,
Air is the infrared energy scale of the SU(2)L theory at
which it would become infrared unstable if there were no
symmetry breaking,

—2n /a
n!(c-/r)) "e (53) 2n

A ir
=const XMexp ba„M

where c is a constant order 1.
Using the above amplitudes one can estimate the total

cross section for quark-quark scattering plus baryon-
number change. This is given by the sum over cross sec-
tions for the production of n particles as

=const XMwexp
2'

ba (Mrr )

-1O-" eV, (58)
2 2 —4m/aAE /ge W

tot ~ n (54) where M is the ultraviolet cutoff, and finally b is the
coefficient of the P function in the theory:

This expression is derived in the limit where the energy is
in the range MH «E «g /MH. The sum is dominated
by n -E /rl, and thus in this region it is consistent to
treat the produced Higgs bosons as relativistic since in
this case Eln -ri /E »MH In this lim. it, then n parti-
cle phase space may be approximated as

(E2/16 2)ll 2

7
nt

(55)

As discussed by Ringwald, the derivation of the ampli-
tude of Eq. (53) fails to be correct when n —1/a —1/k.
(In the four-dimensional case we are always working in
the limit where A, -g so as to avoid the complications of
two scales. ) The reason for this is that the parameter for
the perturbation theory radiative corrections is na . It
is therefore impossible to conclude from Eq. (54) that the
cross section becomes of order unity when the energy be-
comes -ErgI/-M rr /a, an energy which corresponds
to the barrier between different topological sectors of
electroweak theory.

As was the case in our analysis of the two-dimensional
Abelian Higgs model we can overcome this failure by
considering the distortion of the instanton field in the
presence of a strong external current J for the Higgs field.
As we saw before, the main effect of such a source is to

b =7—4N
T f ' (59)

In fact the result of Eq. (57) is obvious on dimensional
grounds since the power b with which A w enters the ver-
tex is fixed by the bare instanton action 2m/a and
renormalization-group arguments.

We may now repeat the same reasoning as was used in
the two-dimensional Abelian Higgs model. The large J
asymptotics of (u)z is given by (u)J=(J/4A, )', and
we again come to the conclusion that lnZ[J] has a
branch cut at negative J starting at J.™J, ——

A,g . Ap-
plying Abel's theorem we therefore find that the n~~
asymptotics of the (n+12)-particle instanton amplitudes
are

12 cMHA„— g +f g(n)n!
f —] A7f

12

g(n)n!
f=1

where g(n) is a function of n weaker than an exponential
and c is a number of order unity.

With the accuracy adopted here, this expression has
the same functional dependence as that in Eq. (53). How-
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7
nt

+2MH
6~'

(61)

where h=E —nM&. It is now straightforward to esti-
mate that the maximal contribution to the total cross sec-
tion arises from states with

2

31n(EMH/g )
(62)

and that o „,(E) may be evaluated to exponential accura-
cy as

AEMH
cr (E)—

g [ln( EMH/ri)] i2

' E/2MH

ever when the energy is larger than the height of the bar-
rier between different topological sectors, E )&q /M&,
the total cross section is dominated by states with
n =E/MH for which the relativistic estimate of the phase
space is invalid. For n nonrelativistic particles we find

that

where ~ is some power ~ 2. The multiplicity of Higgs
and gauge bosons is likely to grow up logarithmically at
E»E„.

Also the iteration of the (B +L)-violating amplitude in
various channels will give rise as well to strong (B +L)
conserving elastic and inelastic amplitudes. This con-
clusion, though it looks somewhat unusual, can probably
be traced to the long ago expected breakdown of pertur-
bation theory in higher orders (see, e.g., Ref. 15 and
references therein).

As we saw the onset of strong interaction in the lowest
helicity inelastic amplitude is very sharp, in fact it can be
approximated by the step function 8(E Eo).—This issue
which is directly related to experiment is what the precise
value of E0 is. To clarify this point one needs more accu-
rate estimates than ours. However, keeping in mind the
picture of Fig. 2 with the barrier separating sectors with
different values of Pcs, one might guess that E0 coincides
with the height of the barrier: E0 =E, . We can recall in

this connection that E, is computed to be

E»g'/M„. (63)
E,„=2A Ms/ a=7 —13 TeV, (66)

We thus find no cutoff of the energy growth of the total
cross section in the one instanton sector.

IV. DISCUSSION AND SUMMARY

cr„,(E -E,
p ) = 4m

tot sp (64)

The saturation of the unitarity bound in one helicity
amplitude implies a strong interaction in this partial
wave. It is however impossible to keep the interaction
strong only in one partial wave over all the energy range
when E )E, . Iterations of the instanton amplitudes in
the t channel will give rise to a proliferation of the strong
interaction to higher partial waves. We expect therefore
at E ~Esp that a picture typical of ordinary strong in-
teractions arises from t-channel unitarization, and that
asymptotically the total cross section grows as

K

cr, ,(E)— ln
4~ E

(65)

As was the case in the two-dimensional Abelian Higgs
model, the single-instanton computation of the total cross
section is not valid when the cross section becomes large
in electroweak theory. There must be unitarity correc-
tions arising at some energy scale due to multi-
instanton-anti-instanton configurations. This happens
when the center-of-mass energy reaches E-ri /MH, the
height of the barrier separating the different topological
sectors of electroweak theory. To estimate the total cross
section when the exponential growth is saturated, we first
note that the pointlike instanton interaction of left-
handed fermions has only one inelastic helicity amplitude

0f~, r2x, uzi generated for processes such as
fermion+ fermion ~b(B +L ) +X. At first therefore
only one helicity amplitude becomes of order unity at
E -E,z -rj /MH which corresponds to the cross section

where the coefficient A varies from 1.52 to 2.70 for
0&A, /g'& ~.

In the previous analysis we have considered multiple
production of only Higgs bosons and have in fact ignored
the analogous processes for the multiple emission of vec-
tor gauge bosons. The reason was that it was technically
simpler to consider the distortion of the instanton by the
scalar source than by a strong source of the gauge fields.
This was sufficient for our "existence proof, " that is to
show that some baryon-number-violating amplitudes be-
come of order unity above the sphaleron energy thresh-
old. We naturally expect that at that energy the gauge
bosons are also copiously produced with a typical multi-
plicity of order 1/a„, and typical momenta of order Ms, .
From the perspective of an experimental search for such
processes, it is of primary importance to know what
would typically be the ratio of multiplicities of the Higgs
to gauge bosons. To answer this question and find the
dependence of nz/n~ on the ratio of coupling constants
A, /g one has to perform a more refined analysis than we
have done. We would however expect that for A, /g —1

multiplicities of both should be of order 1/a
Another more theoretical question arises in connection

with the unusual behavior of the instanton-induced ver-
tices which was first observed by Ringwald. Specifically,
the vertices have form factors in the virtuality of indivi-
dual particles p, but not in the pair invariants such as
p, -p . In principle this behavior is invalidated by radia-
tive corrections, that is by the exchange of virtual parti-
cles between external legs of the vertex. %'e have howev-
er seen that the more than exponential growth of the
cross section in two-particle collisions arises due to
configurations in which only the two incoming particles
have large energy, while each of the final-state particles is
soft. For purposes of discussion it is convenient to con-
sider the process in which the incoming particles are two
fermions. The modification of the amplitude by the col-
lective effect of the n soft particles is accounted for in the
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distorted instanton action, and the wave functions of the
energetic incoming fermions are those of the zero modes
of the distorted instanton. So the only unaccounted radi-
ative effect is the exchange between the lines of energetic
particles which at most gives rise to a power dependence
on the logarithm of the total energy, and which cannot
compete with the strong growth of the amplitude which
we have found.
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