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Relativistic description of quark-antiquark bound states.
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We present the results of a study of light- and heavy-quark —antiquark bound states in the context
of the reduced Bethe-Salpeter equation, including the full spin dependence. We obtain good fits to
the observed spin splittings in the bb and cc systems using a short-distance single-gluon-exchange in-

teraction, and a long-distance scalar confining interaction. However, we cannot obtain satisfactory
fits to the centers of gravity of the bb and ce spin multiplets at the same time, and the splittings cal-

culated for qg mesons containing the lighter quarks are very poor. The difficulty appears to be in-

trinsic to the reduced Salpeter equation for reasons which we discuss.

I. INTRODUCTION

In an earlier paper, ' we presented the results of a de-
tailed relativistic analysis of the spin-averaged spectra of
light- and heavy-quark —antiquark (qq ) bound states
based on the reduced Salpeter equation, a standard ap-
proximation to the full Bethe-Salpeter equation. The re-
sults of that analysis were somewhat unexpected. We
could obtain (apparently) good fits to the bb, cc, and ss
spectra using an instantaneous interaction which con-
tained a short-range Lorentz-vector one-gluon-exchange
term, and a long-range Lorentz-scalar confining interac-
tion as expected theoretically, both with quite reasonable
parameters. However, close examination showed that the
discrepancies between our best fits and the data had a
small but significant dependence on the quark masses.
The model failed completely for light-quark systems: the
slopes of the calculated ll Regge trajectories were two to
three times larger than the experimental slopes. This
problem was shown, in the context of the reduced Sal-
peter equation, to result from the scalar nature of the
confining interaction. The diSculties noted are just those
one would expect in a description of light-quark systems
in QCD which omits the dynamical energy of the gluon
fields, and, hence, misses the essentially stringlike behav-
ior of the light mesons.

We noted in Ref. l that the problems with the calculat-
ed spectra could be eliminated by using a roughly equal
mixture of scalar and vector components in the confining
interaction. While such a mixture would contradict
current theoretical ideas, ' it cannot be excluded phe-
nomenologically in a spin-independent analysis. A num-
ber of spin-dependent analyses of the qq data have been
given with various starting points, e.g. , Schrodinger or
relativistic wave equations with spin effects treated as
perturbations, and treatments based on the reduced Sal-
peter or other relativistic equations with spin included ex-
actly. ' While the results generally favor a Lorentz-
scalar form of the confining interactions with a short-
range Lorentz-vector interaction, some fits favor a
vector-scalar mixture in the confining potential, "and the

phenomenological situation remains unclear. However,
spin effects have been used in nonperturbative calcula-
tions in lattice QCD to show conclusively that the in-
teractions between heavy quarks are predominantly sca-
lar at large distances, and are consistent with vector
single-gluon exchange at short distances. ' We will adopt
this picture below.

In this paper we summarize briefly the results of a
complete spin-dependent analysis of the data on (qq ) and
unlike (qQ) quark-antiquark systems. The analysis is
based on exact numerical solution of the reduced Salpeter
equation. We encountered problems similar to those en-
countered in the spin-averaged analysis when we attempt-
ed to fit the complete spectra. In particular, we could ob-
tain excellent fits to the spin splittings in the cc and bb
systems, but only at the expense of increased discrepan-
cies in the spin-averaged energy levels. The situation was
not improved significantly by allowing a vector com-
ponent in the confining interaction. On the basis of the
systematics of the fits and calculations of Regge trajec-
tories for light-quark mesons, we have concluded, as in
Ref. 1, that the starting point of the calculations, the re-
duced Salpeter equation with static interactions, does not
give an adequate description of the basic physics of the
lighter qq systems. This conclusion is further substantiat-
ed by the results on the qQ systems. Our treatment of
spin effects may nevertheless be of some interest for fu-
ture calculations since we avoid the usual expansions in
inverse powers of the quark masses —thus allowing a sen-
sible treatment of light-quark systems —and use new ma-
trix methods to solve the resulting coupled, nonlocal
differential equations. '

The organization of the rest of the paper is as follows.
In Sec. II, we describe the transformation of the reduced
Salpeter equation in momentum space into the set of cou-
pled, nonlocal equations in position space which we have
used in our calculations. We discuss our parametrization
of the qq interaction in Sec. III A, and our numerical pro-
cedures in Sec. IIIB. Our results and conclusions are
summarized in Secs. III C and III D. Some results useful
in the reduction of the spin-dependent wave equation to
radial form are summarized in the Appendix.
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II. THE REDUCED SALPETER
EQUATION IN POSITION SPACE

Our analysis of quark-antiquark bound states will be
based on the reduced Salpeter equation used in a number

of studies of relativistic bound states. For a mixture of
scalar and vector interactions between the quark and the
antiquark (possibly with different flavors), the equation
assumes the form

3 I

(M —~]—~2)~'(p) =A'(p)r'J, [ Vv(IP —p'I }y„@(p')r"+ V&(IP —p'I)+(p')]y'& ( —p),

where Vv and Vz are scalar potentials, A* are positive- and negative-energy projection operators, co; =(p +m; }'~,M
is the total mass of the bound state, and 4 is a 4 X4 matrix wave function. We will represent 4 in block matrix form as

y+ — y++

where each element is a 2 X2 matrix with the first index associated with the quark and the second with the antiquark.
The relations

p+ — p++ cr'p
p

—+ o p p++ p
—— cr p p++ &'p

42+ 2 ~l™1 ~]™] c]]/+my
(3)

which follow from the properties of the projection operators in Eq. (1}allow us to express the "small components" of 4
in terms of the "large component" ]I}++,and reduce Eq. (1) to an equation for (]}++alone. After a change to a normal
spin basis using the definition'

(P)=[( (P)l&2] (4)

that equation can be converted to a matrix wave equation for the wave functions p with spin projections m „m2
1 2

d p'
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i =S, V

7, ( i%—,
—i7', o „o,)V, (r)(r)g(r), (7)

where the 7's are obtained by replacing p and p' in Eqs.
(6) by the gradient operators i V—and iV—", and the co's

by the nonlocal operators E, =( —7' +m, )'~ . The F.'s

are defined as the formal Fourier transforms of
co&=(p +m; )', V;(r) is the Fourier transform of
V, (~p —p'~), and P (r) is the transform of P (p).
It is understood that the gradient operators V and V' in

Eq. (7) are to be written respectively on the left- and
right-hand sides of V(r); both act on the coordinate r.
For example, the term of the form

co)+ m )

p p'V(~p —p'~)C(p')
N2+m2

in Eq. (5) becomes

—(E~+m&)V [V(r)(Ez+m2) 'Vf(r)]

(8a)

(8b)

in Eq. (7), where (E2+m2) ' is the operator inverse of
(E2+m2).

The total angular momentum j and the parity of the qq
system are conserved by the interaction terms in Eq. (7).
We can therefore separate that equation into a set of cou-
pled equations for states of given j and parity, but
differing values of the orbital and spin angular momenta I
and s. In the case of equal-mass particles on which we
will concentrate for simplicity, the terms in Eqs. (6a) and
(6b} which involve cr, —crz vanish, and there is no mixing
of singlet- and triplet-spin states. The total spin is there-
fore a good quantum number, and we can make the stan-
dard separation into singlet- and triplet-spin systems,

„with

Q, 0(r)=R 0(r)P, ,O(r) with P= —
(
—1)',

&(r)=RJ+, ,(r)P +, ,(r) +R. . .(r)5'. . . ,(r)

for P=( —1)J, (9)

&(r)=R &(r)P &(r) for P= —( —1)~,

where the P's are normalized spin-angle functions:

The Pauli matrices o. , and cr2 act on the first and second

spin indices of P
It is convenient in fitting qq bound states to transform

Eq. (5) to position space where the potentials V; are local
and easy to handle. A Fourier transform gives the
simple-appearing, but nonlocal, equation

(M E,—E—~)g(r)

constructed in our calculations as sums of terms corre-
sponding to the different types of spin operators which
appear in the V's. The relations necessary for this con-
struction are summarized in the Appendix.

III. SPIN-DEPENDENT FITS TO qq BOUND STATES

A. The quark-antiquark interaction

We will use the parametrization of the scalar and vec-
tor components of the quark-antiquark interaction used
in Ref 1:

Vs(r)=(1 —5)( P/r+—Br)(1—e ~")+Vo

+(Co+C, r+Czr )(1—e ""}e (1 la)

g a, (r)
V„(r)= —— e "'+5( P/r—+Br)(1—e "") .

3 7

(1 lb)

The scalar potential Vs(r) incorporates the expected
long-range linear confining potential with a slope 8
which is expected naively to be related to the slope n' of
the leading light-meson (/i ) Regge trajectory by
B=1/2m.a'. We have also included a 1/r term (the
Luscher term' ) which arises from the transverse zero-
point oscillations of a string or flux tube joining the
quarks. Otto and Stack' obtain the value
I3= (0.95+0.08 )n/12 for the coefficient of this term in a
lattice SU(3) calculation, in good agreement with the
value P=m/12 expected for a Nambu string. We will

take 13=m/12. We have multiplied the confining term in

Vs by a factor (1 —5) and included an identical confining
term in Vr, with a coefficient 5 to allow us to adjust the
scalar-vector mix in the confining interaction. We expect
theoretically to have 5=0; the best fits in Ref. 1 corre-
sponded to 5= 1/2. The remaining terms in V& provide a
flexible parametrization of this potential at intermediate
to small values of r.

In addition to the (possible) vector piece of the
confining interaction noted above, the vector potential
V„(r) incorporates the expected short-distance behavior
from single-gluon exchange, ' but with a damping factor
e "" to eliminate this term at large r where the r
dependence is associated with the Luscher term. In this
parametrization, 1/p' acts as confinement radius, around
which the nature of the qq interaction changes. The run-

ning coupling constant a, (r) in the gluon-exhange term is

defined, following the position-space analysis of
Hagiwara et al. ' as modified in Ref. 1, as the solution of
a regularized next-to-leading-order renormalization-
group equation

l s j
P~ I, (r)= g ( —1)' '+ (2j+1)'

m m
mi m~ m

1 2

X I'& (r}y' (s&,sz) . (10)

boln
Q(r)
A-

MS

2b
1 lbO

0

2bi

After a rather tedious calculation, we can reduce Eq. (7)
to a set of nonlocal equations for the radial wave func-

tions RI, (r) [coupled equations for s = 1, P = (
—1) ]. The

results are too complicated to record, and were actually

Here

27T + 112b

bo

boa,
277

—51 19
b$ 1 nf

b, a,1+
bo~

(12}

(13)
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for a color-singlet qq system with nf active quarks, and
~(n )

AM~s is the corresponding QCD scale factor in the
modified minimal subtraction scheme. %'e will use

nf =4 T.he function Q(r) is defined by Hagiwara et al. ;

—A (r}]/bOQ(r)= —e
T

(14a)

Here yz =0.5772. . .is Euler's constant and E, (z) is an
exponential integral function. '

8. Data and fitting procedures

The data included in our analysis consisted of the
masses of the well-established bb, cc, and ss states given
in the first column in Table I.' Because of theoretical
uncertainties in our model, which are certainly large
compared to the experimental uncertainties in many of
the masses, we did not use the latter to weight the data,
but weighted all states equally.

Our theoretical calculations of the qq spectra are per-

where the function A (r) is given to good approximation
over the range of r of interest by

2 (r)= 6'yE+ —„,+ —,[ye+in(m, re )+E,(m, re )] .

(14b)

formed by reducing Eq. (7) to a set of radial equations for
fixed j, s, and parity as sketched in the preceding section.
After the angular dependence of the wave functions has
been extracted, the nonlocal operators E=( —V +m )'~

appear in a modified form which depends on the orbital
angular momentum I in the term in question:

E-E,=( —V,'+m ')'",
I d l(1+1)

1
dr r

The crux of the calculation is the generation of e6'ective
matrix representations of this operator which allow us to
reduce the solution of the radial eigenvalue problem to a
small matrix problem. The method used is described in
detail in a separate paper. ' We will only sketch the prin-
cipal features here.

For equal-mass qq systems, we can scale the quark
mass out of such operators as Et +m. We then choose a
finite basis IL (x), j=1, . . . , n ) of associated Laguerre
functions (these are appropriate for the solution of
Coulomb-like problems), and construct a matrix Dt
which gives the exact action of ( —V&+1) on the
basis functions at the zeros I x„+& „ i = 1, . . . , n J of
L„&+(x). The matrix representation of the square-root
operator ( —Vl + 1)'~ is then constructed as

TABLE I. Fits to the ss, cc, and bb spectra using the full spin-dependent relativistic interaction in Eq. (7). The experimental masses
and mass differences were taken from Ref. 19. Comparisons are made where possible with the spin-weighted averages of multiplets,
and the splittings within multiplets. 5 measures the amount of scalar-vector mixing; 5=0 for pure scalar confinement.

State
Data

(MeV)

Spin-averaged
potential, 5=0

(MeV)
Error
(MeV)

Spin-dependent
fit, 5=0

(MeV)
Error
IMeV)

Spin-dependent
fit, 5%0
(MeV)

Error
(MeV)

(()(1 S) )

$(2'S& )

1S avg.

1'P avg.

Xc I XcO

Xc2 XcO

q, (2'S, )

Y(1 S& )

1'P avg.

Xb 1 Xo

Xb2 XbO

Y(2 S& )

2'P avg.

Xb 1 Xbo

Xb2 Xbo

Y(3 Sl)

1019
1685+"

3068
117

3525
96
141

3686

9460

9899
32
53

10023

10261
20
34

10 356

1052
1520

3082
141

3514
143
249

3671
3628

9441

9895
43
77

10021

10257
26
45

10 349

+33
—165

+14
+24
—11
+47
+ 108

—15

—19

—4
+11
+24

—4
+6
+11

ss states

cc states

bb states

1098
1616

3078
97

3512
88
141

3665
3626

9434

9895
33
57

10027

10 273
22
36

10 381

+79
—69

+10
—20

—13
—8

0

—26

—4
+1
+4

+12
+2
+2

1019
1510'

3067
100

3513
91
146

3668
3621

9426

9903
30
55

10028

10262
18
32

10 359

0
—175

—1

—17

—12
—5
+5

—34

+4
—2
+2

+1
—2
—2

+3
'Not included in fit.
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S&=DI~ =USA/ UI ', where A& is the diagonal matrix
of eigenvalues of DI and UI is the matrix of eigenvectors.
The radial wave functions are represented as column vec-
tors containing their values at the points x„+, , and
operators such as E&, E, ', or (8&+m) ' are represented
by the matrices S&, S& ', or (SI+1) '. Finally, ordinary
differential operators are represented by matrices which
give their exact action on the basis set at the points
+n+ l, i '

This construction, which is closely related to the
method of orthogonal collocation, allows us to reduce the
solution of our very complicated set of nonlocal equa-
tions to a matrix eigenvalue problem. The eigenvalues
converge extremely rapidly with increasing matrix size,
and it is sufficient in the calculations reported here to use
25X25 matrices. These can be manipulated sufficiently
rapidly that we can use a standard nonlinear least-squares
fitting routine to search for the potential parameters and
quark masses which give the best fit to the data, within
reasonable physical constraints. The results are discussed
in the next section.

C. Spin-dependent fits

In Table I we show the results obtained for the ss, cc,
and bb spectra in three complete spin-dependent calcula-
tions. In the first set, we simply calculated the spin-
dependent spectra using the scalar and vector potentials
obtained in the 5=0 (scalar confinement) fit to the spin-
averaged data discussed in Ref. 1. The results show
clearly the necessity of including spin in the analysis from
the beginning. The spin averages of the calculated
masses agree very well with the results of Ref. 1, with
shifts of only 2-5 MeV, thus suggesting the approximate
validity of the lowest-order perturbative treatment of the
spin-dependent interactions used in many previous analy-
ses. ' However, the calculated mass splittings within
spin multiplets are quite poor.

The second set of results in Table I is a best fit to the
data using the potentials in Eqs. (11) with 5=0, that is,
pure scalar confinement at large distances. The improve-
ment in the fit is substantial. In particular, the P-wave
splittings in the cc and bb systems are within a few MeV
of the correct values. However, as would be expected,
the problems encountered in Ref. 1 with the spacings of
the multiplets (e.g., the spacings of the centers of gravity,
or of the n S, states) persist. We have not been able to
obtain completely satisfactorily fits to all the states within
our constraints that (i) the potentials be flavor-
independent, (ii) the short-range interaction be described
by the one-gluon-exchange potential including vacuum
polarization corrections, i.e., that the running of a, (r) in

Eq. (lib) be determined by Eq. (12), and (iii) the doin-
inant confining interaction be Lorentz scalar, 5=0 in

Eqs. (11).
The parameters of this fit and the corresponding pa-

rameters in Ref. 1 are

m, =0.496+0.034 GeV (0.482 GeV),

m, =1.681+0.042 GeV {1.636 GeV),

rnI, =5.052+0.044 GeV (4.962 GeV),

A =0.342+0.011 GeV (0.430 GeV),

8=0.209+0.061 GeV (0. 177 G V )

Vo = —0.612+0.454 GeV ( —0.366 GeV),

Co = 1.03+2. 10 GeV (2.45 GeV),

C, =0.62+1.00 GeV (
—0.074 GeV ),

Cz=0. 24+0.41 GeV (0.34 GeV ),
@=1.19+0.74 GeV (0.933GeV),

p'=0. 825+0.041 GeV (0.740 GeV) .

The main changes are in the slope B of the linear
confining potential, and in the poorly determined (and
strongly correlated) parameters associated with the inter-
mediate range potential. The other parameters —A, the
p's which determine where the vector-scalar transition
occurs, and the quark masses —are reasonable, though
we note that m, is unexpectedly large, a sign the model
would prefer nonrelativistic to relativistic quarks as dis-
cussed in Ref. 1.

The third set of results in Table I is the best spin-
dependent fit to the data from Ref. 9. In this analysis 5 in
Eqs. (11) was treated as a free parameter to determine if
the addition of a Lorentz-vector component to the
confining potential would improve the fit, as it had in the
spin-independent case (Refs. 1 and 9). The parainetriza-
tion of Vi (r) also included an extra energy shift obtained
by replacing —4a, !3r in Eq. (lib) by ( —4a, /3r+ Vo).
Despite the extra freedom in the potential, there is not a
significant improvement in the fit to the cc and bb states,
or to the 1S-2S splitting in the ss system. [The 2 Si ss

state was not included in the fit, so that 1 S& energy
could be fitted exactly by varying m, ; in the 5=0 fit, the
(smaller) error in the splitting was divided between the
two states. ] The best value of 5 was not large,
5=0.29+0.08, i.e., a -30—70 vector-scalar mixture.

There is some improvement in the mass splittings be-
tween multiplets with 5 & 0, but the errors in these split-
tings remain large. These errors could be reduced to a
few MeV in the spin-independent analysis in Ref. 1 with a
50-50 vector-scalar mixture in the confining interaction
(5=—,'). However, the spin splittings within multiplets

evidently favor at most a small vector component in the
confining interaction. Even that component is somewhat
suspect as there is a natural overlap of the vector interac-
tion from single-gluon exchange and the (scalar)
confining interaction at intermediate quark-antiquark
separations where the wave functions are largest. The
separation of the total vector interaction in this region
into gluon-exchange and confining components is ambi-
guous since the former becomes singular at a finite radius
where a, (r) diverges and must be regularized" and,
hence, does not have a well-determined form. The 1S-2S
splitting in the ss system, which is most sensitive to the
long range part of the interaction, is actually worse with
5=0.29 than with 5=0. We therefore do not regard the
evidence for a vector component of the confining interac-
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TABLE II. Calculated masses for unequal-mass qg states ob-
tained using the 5 & 0 potential of Ref. 9. The corresponding re-
sults for the qq states are given in Table I.

State

gO

D+

D g+
S

D+
D*+

Dg+ D+
S S

D4+ D+

SC *O-SC'

Quarks

CS

cs

cd

cd

sd

Data
(MeV)

5279

1969

2113

1869

2010

498

892

144

141

394

Calculated
(MeV)

5381

2097

2148

1983

2010'

743

870

51

27

127

Error
(MeV)

+ 102

+ 128

+35
+ 114

+245
—22

—93
—114
—267

'Used to fix md.

tion as particularly significant.
We have also calculated the masses of the mixed qg

(bd, cs, cd, and sd ) quark-antiquark states using the 5)0
potentials with md adjusted to md =76 MeV to fit the
mass of the D*+. The results are given in Table II. The
calculated masses and spin splittings are generally quite
poor, with the 1 5] 1 Sp splittings too small by large
factors, e.g. , 2.7 for D,'+ —D,+, and more for the states
containing light quarks. These results cast serious doubt
on the usefulness of the Salpeter equation with static po-
tentials in describing systems containing light or even
strange quarks.

We have also investigated briefly the Regge trajectory
for the highest triplet spin states for light-quark systems.
The results are essentially unchanged from those given
for the spin-averaged interaction in Ref. 1: the trajectory
is much steeper than the observed p or co trajectories for
any reasonable value of the parameter 8 in the confining
potential.

D. Discussion

sI co+ m

2'
P P

(co+ m )(co'+ m )

The results above —the failure to obtain satisfactory
fits to the cc and bb spectra and the ss states, the very bad
results for the qg states containing strange or light
quarks, and the unsatisfactory light-quark qq Regge
trajectories —lead us to the same conclusion as we
reached in Ref. 1, that the reduced Salpeter equation with
the expected static scalar and vector potentials does not
give an adequate description of relativistic bound states.
The basic reason was discussed in Ref. 1. The spacings
between spin multiplets are determined mainly by the
spin-independent parts of the interactions in Eqs. (15) and
(16). In particular, the spin-independent part of the sca-
lar operator Fs, Eq. (6a), is given for equal quark masses
by

2

A linear confining potential varies in momentum space as
(p —p'), so kinematic configurations with p'=p are
strongly weighted in Eq. (5). For p'=p, Fs =(m/ru),
and the effective strength of the confining interaction is
sharply reduced for relativistic quarks, i.e., for ~p~ )m.
Although the corresponding vector operator Fv has its
maximum for p'= p, the addition of spin splittings to the
analysis prevents the addition of enough vector
confinement to offset the kinematic suppression in the
scalar confining potential, and the overall interaction be-
comes weaker for relativistic than for nonrelativistic
quarks. This effect shows up clearly in the unphysical
compression of the excited states evident in the calculat-
ed steep Regge trajectories, and in the consistent failure
of the reduced Salpeter equation to fit the 1S-2S spacings
in the cc and ss systems: the spacings are consistently too
small.

The very small S, -'So splittings obtained for the qg
systems containing light quarks are another consequence
of the weakness of the binding potential in these systems.
The calculated wave functions are very long range (see,
e.g., Fig. 1 in Ref. 1 for the ss wave function), and the
probability of the quarks being close together where the
cr, tr2 terms in the vector interaction in Eq. (6b) can act
is small. More precisely, the splitting is given by
(16vra, /9m~ )

~

l(t(0)
~

in the usual approximation in which
the interaction expanded to leading order in 1/m, and
~g(0)~ is simply too small as calculated here. The situa-
tion is not changed significantly for the exact o

&

o.
z in-

teraction, although the exact interaction extends over a
distance —1/m rather than being concentrated at r=0
It is easily checked that the reduction in the magnitude of

near the origin (estimated simply from the greater
volume occupied by the wave function) can account for
the remarkably small hyperfine splittings of the light-
quark systems.

We emphasize that the effective suppression of the
confinin interaction for relativistic quarks is contrary to
the behavior expected for stringlike confinement. The
more relativistic the quarks in a string model, the closer
the Regge trajectories are to being linear with a slopea'= I /2mB given directly by the energy per unit length 8
in the string, that is, the slope of the linear confining po-
tential for static (or nonrelativistic) quarks. ' The prob-
lem in the Salpeter approach, we believe, is in the omis-
sion in the Hamiltonian of the kinetic energy of the rotat-
ing color Aux tube (string) connecting the quarks. We
note in this connection that Pisarski and Stack have de-
rived a consistent string picture for quark confinement
which includes spin effects naturally, and gives the spin-
orbit interactions corresponding to scalar confinement for
large quark separations.

There are of course other relativistic contributions
which are omitted in the present treatment of the Bethe-
Salpeter equation, such as the retardation effects dropped
in the instantaneous approximation used to obtain the
Salpeter equation, and the further omission of pair effects
in the reduction of the latter. However, it is dif5cult to
see how these effects could eliminate the problems with
the Regge trajectories which are explained naturally in
the flux tube or string picture.
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Other authors have noted that one can obtain better
overall fits to the cc and bb spectra if the spin-
independent relativistic corrections in the operators Fz
and F1 in Eqs. (6) are eliminated ' or treated phenomeno-
logically. ' For example, Olsson and Suchyta' found
that they could obtain good fits to the cc and bb spectra
only by treating the relativistic correction terms in Fz'
(i.e., the difference of Fs' from unity) phenomenological-
ly, with the strength of the corrections fitted to the data.
In a difFerent approach, Gupta, Repko, and Suchyta"
used a modified quasistatic potential proposed by Gupta '

and a flavor-dependent vector-scalar mixture for the
confining potential to obtain a nearly perfect fit to the cc
and bb spectra. However, the derivation of the modified
potential in Ref. 20 is suspect for a linear confining in-
teraction since, as noted above, small values of the
momentum difference (p —p') are emphasized, while the
approximations used in Ref. 20 assume instead that
(p+p') is small and (p —p'), large. The approximations,
in any case, amount to setting Fz' and F„' equal to unity
so that the spin-independent potential is just Vz+ V~,
without corrections, and the problems discussed above
are eliminated. However, these approaches depart from
the approach based on the reduced Salpeter equation
which is adopted here, as does the use of flavor-
dependent interactions by Gupta et a/. " The conclusion
remains, that the reduced Salpeter equation is not an ade-
quate starting point for the discussion of a relativistic qq
(or qQ) system.

We recall finally (and more positively) that the spin-
dependent shifts in particle masses calculated with the
full interaction average very nearly to zero over the vari-
ous cc and bb multiplets, suggesting that first-order per-
turbation theory is approximately valid. This conclusion
is supported by direct perturbative calculations of the
splittings. Also, it is certainly necessary when dealing
with the lighter quarks to avoid expansions in powers of
1/m~, and, hence, to use the exact (or appropriately
smoothed ) interactions for numerical calculations. The
methods presented here allow a straightforward treat-
rnent of these nonlocal perturbations.
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APPENDIX

In this Appendix, we collect a number of relations
which are needed in the reduction of the position-space
form of Eq. (7) to a set of (coupled) radial wave equations
for states with specific angular momentum and parity.

p~ p'~~ —V~

~ ~i~( V2+m 2)1/2 (Vi2+ 2)1/2

p.p'~ —V V'

(p p') (V V') =V, VJV'V',

(A 1)

where the second form given in each case is that which
appears in the Fourier-transformed operators
9's( i V, i—V', cr„tr—2) and P1 ( i V, i—V', o „—cr2) in Eq.
(7). We recall that the primed operators in Vs and Pr
stand to the right of V; (r), hence act only on 1l'i(r), while
the unprimed operators act on both V, (r) and 1i'l(r).

The reduction of Eq. (7) to a set of radial wave equa-
tions, some of which are coupled, requires that we extract
the angular dependence of the wave functions, that is,
move the spin-angle functions P l, (r) in Eqs. (9) to the
left through the operators which appear. The relations
necessary in the case of the operators above are

1. Spin-independent operators

The spin-independent operators which appear in
Fs(p, p', cr, , cr2) and Fr(p, p', cr, , cr2) in Eqs. (6a) and (6b)
are

V'F(r)P, „(r)='PJ „(r)V',F(r),
( —V2+m 2) 1/2F (r)5'i. l, (r) =5'J.l, (r)( —V2i+ m 2)1 /2F (r),

[V, V(r)V, ]R1,(r)P l, (r)= P l, (r) + V(r)Vl Rl, (r),dV{r) d 2

dr dr

(A2a)

(A2b)

{A2c)

[V, V V(r)V, V )Rl, (r)'P (r)1=P l, (r) . . + Vl + Vl + V(r)VlV1 Rl, (r),d V(r) d dV(r) 2 d d 2 2

dr dr dr
(A2d)

where F(r) in the first equations maybe Rl (r) or V(r)R, (r), and

1 d 1(1+1)
I r dr& r

(A3)
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We note that it is also useful to move some derivative operators to the left of the nonlocal operators
E, =( —Vl+m )' . The latter act as smoothing operators precisely because of their nonlocal character, essentially

averaging the functions on which they act over regions with characteristic dimensions m . It is advantageous to per-
form this smoothing operation before differentiating numerically when the original functions are singular. The relation

( —Vl+m ) +
dT T

+ ( —V +m )'I+I m (A4)

allows us to make these manipulations.

2. Spin-dependent operators

The spin-dependent operators which appear in Eqs. (6) and (7) are, following the conventions above,

a, a~z. a, a,z. i(pXp') (a,+az)~ —i(VXV') (cr, +crz),

p a Ip a2 —V a, V 02, p cr,p' u2 —V o IV' o2,

i(p p')(pXp') (a, +az)~i(V V')(V XV') (o', +o'z),

(ipXp'. cr, )(ipXp' az}~(iVXV'.a, }(iVXV' crz} .

(A5)

The action of several of these operators is more complex than that of the scalar operators and it is useful to express
their action in terms of a set of basic operations. In particular, inserting the potential V(r) explicitly and converting
from Pauli matrices to spins s; =

—,'cr
&, we find that

—i(V'X V') ~ (o1+az)~ is'l"V;[ V(r)—Vj(a, +az)1, ]g(r)

. 1 dV 2 dV
i ——(r)(rX V) (o' +crz) = — (r)L (s, +sz),

T dT T dT

dV(r)
V cr1V' o2~4V(r)V s1V sz+4 r s1V sz,

dr

(A6a)

(A6b)

d V(r 1 d 1 dV(r) 1 2 1 d 1
i(V V')(—V XV) (a, +az)~2L S — ——+ —V —— +—,S=s, +s2,

dr r dr r dr r r dr r
(A6c)

dV(r) 1 d
( iV'XV' c—r )( iVXV' a—)~—4 —s rs V —s s

1 2 d 2 1 2 1 2dT

1 1 2 1——s Vs V+s s —V +—L.s Ls] 2 1 2 3 1 2
T

d V 1 1 1 d+4 (r) —LsLs+ —s rs V —s s—
aT

1 2 2 1 1 2
T

(A6d)

The spin dependence of the operators in Eqs. (5) can therefore be expressed in terms of the seven independent operators
s, sz, L (s,+sz), s, rsz r, s, rsz V, s, Vsz V, L s,L sz. The action of these operators on scalar multiples of the spin-

angle functions can be determined by rewriting the operators in terms of products of irreducible tensor operators and
using the Wigner-Eckart theorem. The results are

s, szP, l, (r)= —,'[s(s+1)——', ]Pl „(r),
L.S'JJ, „(r)=—,'[j(j+1)—l(1+1)—s(s+ 1)]P, „(r),
L.(s, —sz)P, „(r)=[—,', (21+3)(21—1)]'~ 6,,(6, 09', »+5, 1P, lo),

s, rsz rPj jp(r)= 4P, ,o(r), ——

(A7a)

(A7b)

(A7c)

(A7d)

s, .rsz. rPj l, (r) = ,'O, , P, „(r)—
4 1

—"O,l, 5', l1(r)421 —1) '

[(1+1)(l +2)]'~
2{21+3) j + j l+ (A7e)

s, .rsz V5'j Jo(r) = —
—,'Pj jo(r} (A7f)
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s, .rs2 VP l,(r)= —,'5 t'tt'J l, (r) +-
dT J, I —1 jml1

1
5

d I [(I+1)(1+2)]1/2 - d I

4(2I +3) j.l+1 jml1 d 2(2I +3) j, l+1 jm, l+2, 1

[I (I —1)]'" d I +1
2(2I —1) " ' '' " dr r

(A7g)

s1 ~ 2 ~+jmj0(r 4+jmjo Ij (A7h)

l+ 4 2I ~j,t+1&j l1(

[(I +1)(1+2)]'i d
2(2I +3) J 1+1 jm 1+2 1 dr

d I

dT T

[I(I —1)]'~'
~

d I

2(2I 1) j, l 1 jm, l —2, 1

d l+1
dp p'

(A7i)

s, Ls2 LPJ jo(r)= —
—,'j(j +1)1tt 0(r),

s1 Ls2'L+Jmtt(r)= 4(l +I I+J t+J~it(r)+(I +1) ~j t —1+J,t 1(r)+I ~j 1+1Yj 11(r) .

(A7j)

It is straightforward though tedious to use the relations above to convert Eq. (9) into a set of radial wave equations.
The only coupling in these equations in the case of a quark and its antiquark is between the triplet states with l =j+1.
In the case of a quark and a distinct antiquark, the equations for the triplet and singlet states with j=I are also cou-

pled.
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