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The coupling of the bare resonances to the decay channels is implemented. %e solve the Dyson

series for the S matrix. The S matrix is cast in a separable expansion that leads to the resonating-

group-method equations for the scattering. The overlap potential is shown to depend strongly on

the cluster sizes. This strong dependence is reflected in the corresponding shift of the imaginary

part of the resonance mass (the width of the resonance). Scattering amplitudes for E+E (m+m j

close to the energy of P (p+) are also obtained. The results of this work are quite encouraging. The

sensitivity of the scattering amplitudes to the cluster sizes (and to the chiral angle), and the strong

restrictions to the possible values for the current quark masses and potential strength, lend a special

role to the calculations of Argand plots, when measuring the extent of chiral-symmetry breaking in

hadron physics.

I. INTRODUCTION

Hadron spectroscopy plays a central role in theoretical
physics. In the last 15 years, theoretical approaches
based on QCD furnished us, in the domain of high ener-

gy, high Pz-, with a wealth of information about hadron
structure.

On the other side of the energy domain, and despite
the huge effort made in the last 50 years, it still can be
said that we lack a quantitative, theoretically predicted
explanation for the origin of the N-N forces, as well as the
knowledge as to what extent nucleons can be usefully
used as the essential building blocks of nuclei. Things
only get more difficult if we look to describe, within the
same framework, reactions such as N-N scattering. As is
well known, the essential difficulty lies in the non-Abelian
nature of QCD. But this is not the only diSculty. Even
if we replace, somehow, gluon physics by some given
quark-quark (antiquark) potential, the Dirac nature of
the quarks wi11 pose formidable problems when solving
for the Hamiltonian spectrum. The study of these prob-
lems comes in the name of chiral physics. For instance
and as we have seen, vacuum condensation is likely to
occur. This condensation, being a strong event, will have
a strong effect on hadronic phenomenology. The aim of
this paper is precisely to study these effects in quantities
such as mesonic masses and decay rates. These quantities
will be shown to depend quite significantly on the extent
of vacuum Po, quark-antiquark condensation. Also, be-
cause of the relativistic nature of the light quarks u and
d, the mesonic wave functions behave as a two-
component "spinor" in an abstract "energy-spin" space.
This will entail quite specific normalizations, in which the
components can be quite large in some cases, for these
wave functions. This fact introduces, per se, an essential
departure from the usual nonrelativistic quark model.

In the present work we choose to work with a simple
chirally invariant confining potential, the harmonic po-

tential, partly due to the existence of some work done
with this potential, ' and partly because it allows algebra-
ic simplifications to be made. Introducing a more realis-
tic potential will only make actual calculations more
cumbersome but will not change the physics involved.
Another simplifying feature of the potential lies in it be-

ing instantaneous. Again, introducing retardation will

add enormously to the extent and difhculty of the calcula-
tions, without modifying qualitatively, one hopes, the
essential features introduced by the vacuum condensa-
tion. Throughout this work it is assumed that only
quark-antiquark color singlets exist.

This paper is organized as follows. In Sec. II we dis-
cuss the Dyson equation f'or one and two quark-antiquark
pairs, together with respective S matrices. Section III is
devoted to the setting up of the associated resonating-
group-method (RGM) equations. In Sec. IV we discuss
the S- and T-matrix formalism for mesons with a separ-
able potential. In Sec. V we evaluate the diagrams re-
sponsible for the overlap of a pair of mesons into a reso-
nance, whereas the actual evaluation of the Green's func-
tions, useful when dealing with the S and T formalism of
Sec. IV is done in Sec. VI. Finally, results for the p-wave
scatterings K+K and m+~, together with the con-
clusions are presented in Sec. VII.

II. DYSON EQUATIONS FOR 1 AND 2 MESONIC
qq PAIRS

With our instantaneous interaction we have for one
meson the diagrams of Fig. 1, whereas for two rnesons

we have to consider, in addition to the previous diagrams
(this is mandatory, whenever one has annihilation or
creation of quark-antiquark pairs) the exchange diagrams
of Fig. 2, together with the interactions in Fig. 3, and
fina11y when considering the coupling between one meson
and two mesons, besides the aforementioned diagrams,
the diagrams of Fig. 4 must also be considered.
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FIG. 1. Irreducible building blocks for one meson.

A. Mesons without negative energy or exchange

This is the case for bottomonium states and for their
strong decay products, and to a lesser extent for char-
monium. If we have only one meson, we obtain the
Dyson series of Fig. 5. When summing the diagrams in
the Dyson series one must be careful to avoid double
counting. In Fig. 5 we denote the product of quark and
antiquark propagators as

6 =Gp Gp0&) pq
(2.1)

Defining the integral operator M as

We shall describe the mesonic bound states with the
help of the Dyson series for the S (and T) matrix. Later,
mesons will be obtained as solutions of the homogeneous
Dyson equations or, equivalently, as poles in the series.

For the sake of clarity we shall proceed in steps. First
we will consider mesons having no negative-energy terms
(i.e., without the annihilation of two qq pairs) and
without exchange. Second the negative-energy diagrams
will be introduced. After this, we will deal with quark ex-
change but without negative energies and, finally, ex-
change and negative-energy diagrams will be considered
simultaneously.

All these cases correspond to physical situations (for
instance, in many elastic scattering processes, flavor con-
servation forbids exchange). As for the negative-energy
terms, they are a consequence of how relativistic the reac-
tion under consideration is, and they vanish for heavy
mesons.

+ + + +

FIG. 3. Intra and intercluster interactions.

If we have two mesons but no exchange, only the inter-
cluster diagrams A and B are to be used in the series.
Without quark exchange the other diagrams C-F do not
contribute between a pair of color singlets. This is clearly
seen in Fig. 6. In this case the S matrix looks like Fig. 7,
where we denote the product of the four quark and anti-
quark propagators as

6=60~ Goq, 60~ Go

and define the integral operators A and B as

Gyd kdwy 8 Gyd kdwv
(2m. )' '~'~ (2n. )'

In this case, the Dyson series for the S matrix reads

Sq~ =G+ AG+BG+ A 6+ ABG+B G

+A 6+A BG

+AB 6+8 6+

(2.6)

(2.7)

(2.8)

where A and B commute. We must be careful because
AB and BA correspond to the same diagram. They may
not be repeated otherwise we would have the duplication
of terms. The series (2.8) can be factorized:

Gf d kdw
(2n )'

then the Dyson series for the S matrix is given by

(2.2)

SqB=(1+2+3 +A + )(1+8+8 +8 + )G

(2.9)

and summed to give

S =6+MG+M 6+M 6+
This satisfies the Dyson equation

(2.3)
AB A B (1 g)( )

(2.10)

SM =G+MSM

with the solution

S~z satisfies the equation
(2.4)

S„B=G + [1—(1—A )(1 8)]S„B. — (2.11)

S 1
M (2.5)

This result can be generalized to any set of commuting
interactions. The Dyson equation for the S matrix is

24 1S 2413X~ @
F1G 2. Quark and antiquark exchange diagrams.

FIG. 4. Interactions responsible for the annihilation and
creation of a quark and antiquark pair.
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FIG. 5. Dyson series for the S matrix for one meson (quark-
antiquark scattering) in the ladder approximation.
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therefore

S„q=G+(A +B —AB)S„s, (2.12)

FIG. 7. Dyson series for the scattering of two noninteracting
mesons, in the ladder approximation.

Sz) —(SzzGz ) Vz)S) =(SzGz ) V21S&i

S1 =G1+ V1 S1, V1 =M,
S2=62+ V2S2, V2= A +S —AS,

(2.13)

where the term —AS removes the double counting of di-
agrams.

If we have a coupling between channels of one and two
mesons, starting from Eqs. (2.4) and (2.11) already ob-
tained,

—V,z+(1 —V, ) (1—Vz )
1

21

G1 . (2.15)

These four equations can be cast in the form of a matrix
equation:

and using the potentials

V12=G1 R +T P13+P24

Vz, =Gz(P)z+Pz4) fR +T,
(2.14)

[S];,=

I—
V21 V2

(2.16)

s,
1 —(St G] '

) Vu(SzGz '
) Vz]

1
1 —

V1
—

V'2
1 —V2

G, ,

which induce the transition from channel one to channel
two and vice versa (the exchange of the created or annihi-
lated quark or antiquark is necessary if we want to obtain
a pair of mesons behaving as color singlets), we are able
to define four different S matrices coupling the two
different channels. They can be obtained (without double
counting) with the help of the series

S„=S,+(S,G, '
) Viz(Sz Gz

'
) Vz, S„

which is, in turn, a solution of the Dyson equation:
r

S11 S12 G1 0 V1 V12 S11 S12
+0 G2 V21 V2 S21 S22S21 S22

(2.17)

Again, this result can be generalized to any number of
coupled channels.

In fact, in Eq. (2.17) the columns of the S matrix are
coupled separately and, therefore, the two homogeneous
equations, one for each column, must be degenerate:

S22 =
1

1 V2 V21
1 V

V1
1

G2,
S1,
S2,

V1 V12 S
V2

a =1;2.
2Q

(2.18)

—
Vz, +(1—Vz) (1—V, )

1

12

G2,

S,z
—(S„G, '

) V, zSz —(S,G, ) V,zSzz
Had we used the V matrix acting on the right of the S
matrix, then only the rows would be coupled. This im-
plies that, in the neighborhood of a pole of S (precisely
when the homogeneous equation has a solution), the S
matrix takes the form of a tensor product:

S,b =Q, X pole X Pb . (2.19)

A. A,

A. .0~ Ox
A.

FIG. 6. Color algebra between singlets. The role of quark
exchange.

B. Mesons with positive and negative energies

This is the case for the scattering of mesons in exotic
channels. If we consider mesons without exchange but
with negative-energy components then even for a single
meson we obtain a coupled-channel equation, better
known as the Bethe-Salpeter equation:
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S++ S+
s-+ s--

G+ O

m++
+ ~ +

S++ S+—

S + S

(2.20)

trix is given by the tensor product of two one-meson S
matrices.

S~a =S~S~

=G„I3IG~+(A 81+18 —ASB)S„a (2.21)

As the case without negative energies, for two nonin-
teracting mesons (exchange is not considered) the S ma-

with the exception that it is now an equation for rank-4
matrices. The homogeneous equation then reads

g +++B++ g ++B++
B-+—W++B-+

A + —A +B++
—W

-+B-+

B+— g ++B+-
~+++B--—W++B--

+B
a-+ —a -+B--

B+
a+--W+-B--
B+ —A B+

S++;ab
S+—;ab

X S+;.b
S——,'ab

S++;ab
S+—;ab

+;ab

S——,ab

(2.22)

V+; ——

V —,' —+

120 V
—', ++ 0

=G2(P)3+P2~) fR+T,
=G2(Pi3+P24) fR + T,
=Gi R +T P)3+P24

(2.23)

C. Mesons with exchange

Whenever we couple a channel for one meson with a
channel for two mesons then we have to deal with a
rank-6 matrix. The form is the same as in the case
without negative energies except that now V2 is a 4X4
matrix and V& a 2X2 matrix. The coupling interaction
V&z is a 4 X 2 matrix, and is given by

Vi+2'++ =Gi R +T P]3+P24

1'z' =G2(Pi3+Pz4) fR + ~

If we multiply Eq. (2.24) from the left with GS„', we ob-
tain the equation

(GS„'—C)S„c=G (2.25)

or

[1—( A +C)]S„c=G . (2.26)

S~c= [ 1 —(8 +C) ]S~c

=S~+S~6 'CS~+SqG 'CS~6 'CS~+

(2.27)

Now consider the general problem where the Dyson
equation is already known for a certain set of diagrams.
If we introduce a new diagram A, we can decompose the
previous set of diagrams of the Dyson equation in a sum,
let us call it B, of diagrams commuting with A plus a sum
of diagrams C that do not commute with A. The previ-
ous S matrix was

If we consider mesons where exchange is possible but
still having no negative-energy amplitudes, there is no
difference when considering one meson alone. However,
in the channels with two mesons, diagrams C —F start to
contribute (see Fig. 3). Diagrams H (see Fig. 3) also con-
tribute. They correspond to an interaction between
different mesons. The only diagrams which commute are
now 2 with B, C with B,E with F, and also H with 8.

We have already derived the Dyson equation for com-
muting diagrams. We shall now consider the case of two
noncommuting diagrams, say, A and C. The complete
Dyson series for the S matrix, without double counting,
can be obtained as follows:

and the new one can be written as

S~~c =S„ S~ +S~ (3)S~G 'CS~ S~ +

=S„S~+S~ S~G 'CSq~~ .

Then the corresponding Dyson equation looks like

[G(S„IGNIS~ )
' —C]S„sc=G

or

[1 (A +8 AB +C)]Sggc=G

(2.28)

(2.29)

(2.30)

=S„+S„G 'CS„~ . (2.24)

S~c =Sq +Sq G 'CS~ +Sq G 'CS~ G 'CS„+ If we iterate Eq. (2.30), we find that in the general case
without exchange, the coe%cient of the Dyson equation
for the S matrix is given by
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1 —the sum of all irreducible diagrams

+ the sum of the product of all pairs of commuting irreducible diagrams

—the sum of all triplets of commuting irreducible diagrams + (2.31}

In many cases—including mm. scattering, which we will consider later —we have to consider the exchange of fermions.
For our system of four fermions q1q2q3q4, the antisymmetrizer reads

A —1 —P13—P24 +P13P24 (2.32)

For the S matrix, in order to avoid double counting, we can slide all exchange diagrams to one side of the fermionic
lines in the Dyson series. It is only in the case of the annihilation-creation diagram 8 that this sliding cannot be per-
formed. We obtain the Dyson equation

[1—A —B + AB —C D+—CD E F—+E—F A(H—HB)—]S=A 6 . (2.33)

Now if we consider the coupling of one channel for one meson with a channel for two mesons, we are naturally led to
the equation:

1 —M R +T S» S12

A(R +T) 1 —A B+A—B —C D+CD— E F—+EF—A(H —HB) —S2i S22

61 0

0 A 62
(2.34)

D. Mesons with exchange and with negative energies

This is a straightforward but cumbersome generaliza-
tion of the two preceding cases.

extended both in the direction of using bound states with
more than one quark such as baryons (qqq bound states)
and in the direction of using bound states of bound states
(for instance, going to the nuclear level and so on. . . ).

III. GENERALIZED RGM EQUATIONS

The RGM equations are the dynamical equations for
coupled channels of bound states and resonances. In our
case we want to integrate the explicit quark degrees of
freedom to obtain the corresponding equations for
meson s.

In this section it will be shown that the ROM equa-
tions are obtained simply by "replacing, " in the Dyson
equations for the S matrix, the corresponding solutions of
the Bethe-Salpeter equations.

In our case, we recall that the vacuum is condensed
into Po qq pairs, that the quarks are relativistic; and that
mesons have positive and negative-energy wave func-
tions. However we will show that the RGM equations
are still Schrodinger-like equations for coupled channels
(except for the kinetic energies which can be relativistic).

We note that this derivation of the RGM can be easily
I

A. The S matrix for a channel of one meson

S++=Go(+E)+S++Go '(+E)M++Go(+E)

+S Go '( —E)M +Go(+E),

S+ =0+S++Go '(+E)M+ Go( E}—
+S+ Go '( E)M —Go( E) . —

As usual, we define

M i'=G, (aE)f V ~.

(3.1)

(3.2)

If we multiply, from the right, expressions (3.1} with
Go '(+E)P and Go

'
( E)P, respecti—vely, and add

them, we are led to the expression

If we have a single qq pair, then the S matrix obeys the
Dyson equation (or inhomogeneous Salpeter equation}

S++G '(+E)y++S+ Go '( —E)P =P++S++Go '(+E}M++P++S+ Go '( E)M-
+S++G (+E)M+ y +S' G( E-)M-— (3.3)

We also know that on mass shell the wave functions are
solutions of the homogeneous Salpeter equation

S+ [Go '(+E)—Go '(+E~)]P+
+S' tGO '( —E}—Go '( —EM }M' =0+ (3.5)

G (+E„)y'=f V'+y++ f V+ y

G ( E)y =—f V +-y++ f-V
(3.4)

where the Green's function for a quark-antiquark pair is
(the relative energy has already been integrated out)

where E~ is the on-shell energy of the meson M. Now,
replacing these equations in expression (3.3}we get

Go(E, P, k) =
E —Eq(k+P/2) —E ( k+P/2)+2i e—

(3.6)
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Thus in (3.5) the difference of inverse Green's functions
does not depend on the quark energies and we obtain
finally

S++P+ —S+ (3.7)

Had we started with the Salpeter equations for the other
column (or for the lines of the S matrix), we would have
obtained the equations

S++y+ S+—
y

— y+

S +P+ —S
M

(3.8)

+S+ —Pt S l

E —E

Now, if we normalize the wave functions with the in-
tegral condition

$+ +

the solution of expressions (3.8) is

(3.9)

S &(k, k', E)=P (k) . yt&(k')
E EM+)e

+ orthogonal terms . (3.10)

and t)tt~ above are solutions of the appropriate Salpeter
equation for mesons. In (3.10) a factor +i@ was included
since we want the meson to propagate forward in time.

The remaining orthogonal terms correspond to all oth-
er solutions of the Salpeter equation. Because the poten-
tial is confining, there are no solutions in the continuum
for a pair of a quark and an antiquark, just bound states
that we represent with a subscript c. Then the S matrix
takes the separable form

S ~(k, k', E)= gP, (k) . tI},~(k') .
C C

(3.11)

E/2+% E +'
a a

b g/2 —$V Eh+re

(3.12)

It is a function only of the relative momentum of the qq
pairs inside the mesons A and 8. From the point of view
of the relative and center-of-mass momenta for the

In the case where the mesons are heavy, it suffices to con-
sider the positive-energy wave functions.

B. The Smatrix for a channel of two
mesons without quark exchange

Without quark exchange, the S matrix is just the prod-
uct of two one-meson [see Eq. (2.21}]Smatrices:

s»'=s„iiesg

rnesons as a whole, it is a constant.
As the interactions are instantaneous, they do not de-

pend on the energies. Then we will always integrate over
the meson-meson relative energy W, in order to obtain a
simpler propagator:

d8' 1 I

2m E/2+ IV E,—+i@ E/2 IV—E—b+ie

(3.13)E —E, —Eh+i'

C. The S matrix for a channel of one meson coupled
with a channel of two mesons still without quark exchange

We define S, and 6, as pertaining to the channel (of
one meson) and S2 and G2 for the corresponding quanti-
ties in channel two (of two mesons). We also define the
transition potentials V, 2 and Vz, as [see Eq. (2.23)]

~12 6
1 ~12, truncated

(3.14)
~21 62 ~21, truncated

Then the S matrix for the different channels, given by
Dyson series, obeys the following equations [see Eq.
(2.15)]:

St t
=S, + (S,G t

'
) Vt (S26 2

'
) V2i S„,

S22 —Sz+(S262 ) V21(S, G t ) Vt2S22,

S,2=(S„G, ')V, is~=(S, G, ')V, 2S2~,
(3.15)

S~, =($~262 '
) V2, st =(S26~ ' }V2,S„,

where both the one-channel and the coupled-channel S;
matrix elements are in turn matrices because they contain
all the positive- and negative-energy terms. In the above
equations we can replace S1 and S2 by their separable ex-
pansions. In matrix notation we obtain, using the bra-ket
formalism,

s;=y y;) E E, +If
(3.16)

SaPys
2 ly:) y~)

a=1, b=l E —E, Eb+ie
In practice we approximate S by truncating this expan-
sion to a finite number (n„nb, and n, ) of bound states.
In a matrix notation for the indices a, b, c and a, P, y we
obtain

s„=ly, & &y, l+fy, &

C

x '
&y, l v„„„„„„,ly„&ly, &

C

& 0 3 l & 48 l V21, trunt:ateds 1 t
a b

It suffices to iterate this relation, to see that the S» ma-
trix, as S, , is of the separable form

(3.17)

n

(3.18)
c=1

where s» turns out to be a c number in the space of the
bound states. Expression (3.17) then becomes
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I+ It(
C C

E &w~l&4slv21, t,....t..lw1&s»&41I ~

a b

(3.19)

In fact, because of the positive and negative energies, we have a system of 2n, X2n, equations. But if we factorize out
the external

I P, ) and ( P~l, we see that the equations are all degenerate and can be cast in a smaller set of n, X n, equa-
tions; this time for the small s matrix:

s» =g, +g1&u12lgzlvz, )s (3.20)

In (3.20} g, and gz are the one-meson and the two-meson propagators, respectively. (v, z I
and lvz, ) (c numbers, re-

spectively, to the left and right, and operators, acting on the relative momentum between mesons A and 8, respectively,
to the right and left) are the transition potentials:

( V12l,.b
—g & (t';I I 12, «.„..„dip~ & ly& &, lvz, ) =H. c.

aPy

(3.21)

In the same way, for the channel 22 we obtain a system of 2n, 2nb X2n, 2nb equations:

I+ II)
a b a b

C

(3.22)

where the S matrix S22 reads

s~r'=Iy &Iy»s &yrl(y'I (3.23}

In (3.23) sz is a q number on the relative momentum be-
tween the mesons A and 8, and an n, nb X n, nb matrix in
the space of bound states. The 2n, 2nb X2n, 2nb equa-
tions are degenerate and, again, if we factorize out the
external bras and kets, we obtain the equation, this time
for small s,

or, when written in matrix notation,

1zl $» $1z

S21 $22

If we multiply (3.28} from the left by

&g)
' 0

0 ig2
'

g) 0
(3.28)0 g2

22
—gz+gzlu» &g1 & u»lszz .

Similarly, we have

s;y'=ly &.„&y' l&y'I,

s;~r =Iy„&lyg &$„&y[l,

(3.24)

(3.25)

where s, 2 is an operator acting only to the right while s2&

is operator acting only to the left. They also are matrices
in the space of bound states of dimension n, Xn, nb.
They obey the equations

we obtain

E E i ( V121 $11 $12

—tlv21) E Eg Eb $2—
1

$—
22

i 0
0 i (3.29)

where the i (u, zl
—is real because the potential already

contains a factor —i according to the Feynman rules.
In (3.29) the columns of s;~ are decoupled. Had we

studied the equation with the operators on the left, then
rows, instead of columns, would be decoupled. In this
way, in the neighborhood of the pole we may write

s 12
—s„&u, z Igz —g1& v, z lszz,

$21 $22 IV21 )gl gzl uzi ) 11

(3.26a)

(3.26b)
s» =c, XpoleXc„s,z=c, XpoleX(yzl,

(3.30)

(3.20), (3.26a) s„—g, ( u, z lsz, =g, ,

(3.24), (3.26b) =szz —
gz luz, )s,z

—gz,
(3.26a) s, z

—g1(u12 Iszz =0,
(3 26b}—$21

—
gz lv21 &$11=o

(3.27)

Now, exactly in the same way as we did for the S, . that
were S matrices for the quarks, we can obtain a matrix
equation for the mesonic s, :

s„=lyz& XpoleXc„s»=lyz) XpoleX &yzl .

E E, —i(v'„l —c,
i

I v„) E—E, E, lyz)— — (3.31)

The RGM equation is the homogeneous equation (it is
the same for the T matrix and for the S matrix) with the
Schrodinger-like form:
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D. The s matrix with quark exchange
and direct meson-meson interaction

In the present model, quark exchange and interaction
between two different mesonic qq pairs should be con-
sidered in the Salpeter equation, as an interaction be-
tween the incoming and outgoing qq lines of the S matrix,
in K+-K scattering flavor conservation kills exchange
contributions and only diagram H should be considered,
and in m. +-m. scattering the exchange is present and all
interactions may contribute.

However, although we have already considered the
direct interaction between hadrons in a study of the
simpler nonrelativistic quark model, we prefer to post-
pone the study of the extremely interesting effects of
quark exchange and direct interaction between two
mesons.

Our aim, in this work, is to study the spectroscopy of
resonances. Their energy is the sum of the eigenvalue of
the Salpeter equation (that we call bare mass) plus a large
complex energy shift. This shift comes from the coupling
to open channels of two mesons. The effect of the direct
meson-meson interactions in the two-meson channel is to
add a potential term to the free energies of the mesons.
The RGM equations now take the form

E E, —
—ilu21) E E, Eb ——

V2
—ly2)

=0, (3.32)

where the potential V2 is a separable potential that is cal-
culated with an overlap of the bare meson wave functions
and the interaction. For resonances this shift of the cut

in the 22 channel only corresponds to a background that
will distort the energy shift of the resonance. In the ease
of the P we do not expect this background to be impor-
tant because few diagrams contribute to it. In the case of
the p we expect the background to have a bigger
influence. In any case, many cancellations occur in the
calculation of the background, and we do not expect it to
distort greatly the contribution of the free energy of the
two mesons to the pole of the resonance.

IV. s- AND t-MATRIX FORMALISM
WITH A SEPARABLE POTENTIAL

The s matrix can take the form

$» S12

S21 S22 E —E, +i@
—ilu„& E —E —Eh+is

(4.1)

1
c 12 E E E + ~ 21

a b

(4.2)

As $» is a matrix in the space generated by the eigen-
states of Salpeter equations, it has poles at the zeros of
the determinant:

but the s, matrices are simpler to determine directly
from the following relations. From (3.27), we get

1
$»

1 —gl (v12lg2 v21)

det (E E,)5„—— 1
V12 V21

a=1, b=l cab E E E @jg abc
a b

(4.3)

If we consider a single bound state or resonance (n, =1) then the pole lies at

E —i—=E +r 2 1

a' b
1

V 12 . V21
a=1, b=1 Iab E —E —E +iE abi

a b

(4.4)

Now, iterating (3.24), we obtain for s22,

22 g2+g2I "21 & 11& v12lg2 (4.5)

Then the scattering amplitude, which gives the Argand
plot is

As for s12 and s21 we have directly from (3.26a) and
(3.26b) that

3=——p ET
4 2 2 b

(4.g)

s12 s
1 1 & V12 lg2~ s21 g21V» &s1 1

(4.6)

2
b g &p2 I V21 )s1 1 ( V 12 Ip2 &

p2 =&(E/2)2 —I' .
(4.7)

These results satisfy (3.30) where the pole is s» itself, cl
is identical to I, and ly2) is equal to ( V12 lg2,

According to (4.5) we can define the on-shell T matrix
jn the channel two to be (where p2 is the relative momen-
tum of the mesons A and B)

V. ANNIHILATION OVERLAP IN P-WAVE MESON
SCATTERING

In this section we proceed to the evaluation of the
overlaps. First, and taking advantage of the instantane-
ous nature of the interaction, we integrate out the ener-
gies; and we define the truncated potentials. Next, we
consider all the diagrams contributing to the overlap of
these truncated potentials and evaluate them by steps.
We will study in greater detail the (IC+I(K IV21I(())
overlap, and we will only show the results for the similar
& Its I & It

1 I v21 I(t &»d &
~'

I & ~'I v21 Ip+ &.



42 GENERALIZED RESONATING-GROUP-METHOD EQUATIONS. . . 1643

A. Truncated potentials: V» and V» truncated

In Fig. 8, we show a typical diagram responsible for
the annihilation (creation) of two mesons in one. Only
the energies flowing in the ferrnionic lines are represent-
ed. We postpone to the next paragraphs the discussion of
the more complicated momentum dependence. This is
possible due to the simplifying features of the instantane-
ous potentials. Not depending on energy (except for the
Dirac delta that conserves the total energy), they allow in

turn, the Salpeter bound-state mesonic wave functions to
be independent of the relative energy between the quarks.
Therefore, we are able to integrate out the energies in-

dependently of the momenta. The contribution of the di-

agram of Fig. 8 reads

—+W4
2

-WA
2

f1 g
+Wg

2

-Wg
2

+ —+WA
Mg

2

—-WA
2

FIG. 8. Typical diagram, ultimately responsible for the for-
mation or destruction of a resonance, in the scattering of two
mesons. Only the energies flowing in the fermionic lines are
displayed.

dwg ding lI=
(2m ) M„

A q
+w E+—++k +i@

X
M„

2

r

M~—w E++——k +if +w E —+—+k' +if
A q 2

M~ M

2 ~ 2
+w —Eq — —k' +i@ M + —w —E — +k +is

(5.1)

Performing the integrations in w~ and wz we get

M —E + +k —E + —k +2ieA q 2 2

M —E — +k' —E — —k' +2ie M +M —E — +k —E —k +2ie
J.

=G&o(M& )G&o(Mg )Gco(M, +M~)=G2G~, (5.2)

where k, k' and —p/2+ k are, respectively, the momenta
Ilowing inside mesons A, 8, and C (see Fig. 8).

Although the integral only contains five quark propa-
gators, we end up with the usual Green's functions G&

and 62 that correspond to the two incoming quarks and
the four outgoing quarks. In this way we can factorize
G, and G2, and this allows us to use (3.21), where the
one-meson S matrix includes all the propagators and the
meson-meson interaction must be used in the truncated
form.

All similar diagrams (see Fig. 9), when integrated over
the energies, will yield the same result.

B. Evaluation of the truncated amplitudes

&y„l&y, lv„, „„,..., Iy, &

The Feynman diagrams contributing to (3.21) are
shown in Fig. 9, except for the similar diagrams where
quarks instead of antiquarks are exchanged. A +'

I

8+', and C+' stand for the wave functions of our
three mesons. The superscript + —,represents, as usual,
positive- and negative-energy components of the mesonic
wave functions. As we have seen, explicit evaluation of
the negative-energy components and D- wave com-
ponents of the P and of the p, shows that they are negligi-
ble. In the figure, the quarks' momenta, flavor, and spin
projections are also depicted. The energies flowing in the
quark lines have been omitted. We will substitute for A,
8, and C, the mesons K+(K„~+), K (KI, m. ), and
P(P,p+ ), to obtain the reactions we want to study.

We calculate the overlap with the same technique that
we used in Ref. 3 for the derivation of Salpeter equation.
Including the factor ——', that comes from the traces in
color and is absorbed in the strength of the potential (we
also use units of Ko =1), the minus sign that comes from
the exchange, and the Laplacian that comes from the po-
tential and the integration in k', we have to calculate the
overlap:
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—2VZ

(2m. )
4„+, , (k)ut +++k Vkv, +++k' 4s, , (k)

X Vk+cs $
—++k'

2

+V u — +k' u —++k 4+ —++kk $3 2 $5 C, $5sp

+—+c,..., —++k V v —++k' v —++k
2 k s5 2 s2

+c'c+..., —++k v —++k' V u —++k' 4 (k)
2 2

k' s) 2 As)$4

X Vk, @s, , (k')+Cs, , (k)Vk.u, —++k' u, —++k

—V v + +k' v +++k 4+ (k)k $4 2 Sg B,$3$5

—&+k' a,+, ,

X Vk, eAt, (k)+@+A (k)Vkut +2-+k, u +L+k

—V v — +k' v —++k @+t (k)k' s~ 2 s A, SI$5
k'=k

(5.3)

where we only write the nonvanishing terms (when u +
v,

v+u, or u+u —v+v are not derived, they vanish). In ex-
pression (5.3), u and v represent, as usual the Dirac spi-
nors, whereas P'„+s c' are the appropriate meson wave
functions. The s s stand for the spin projections.

With our choice of coordinates, the spinors carrying—p/2 correspond to s and s quarks while the ones with
p/2 correspond to u and u quarks. We also notice that
the lines of the s quark connect the meson P to one of the
mesons K, while the u lines only connect E mesons.

1. Covariant approximation

Sl

Sp

k-k

k-k'

P+k

S2

f+k'
Sl

k'

S4

~+kP

f.k
Sg

S4

k-k'

-k'

+k'

)lp k yC'

S2 Sg

Because our potential is not covariant, we have a con-
sistency problem, when choosing for a given quark, the
rest frame in which to solve the mass gap equation for the
vacuum angle P. We cannot choose a universal frame for
the vacuum angle P. A proper calculation should have
started, from the onset, with a covariant potential. This,
in itself, would constitute a formidable task in addition to
the present, already involved, calculations. In the case of
a universal rest frame, it was shown in Ref. 1 that a mass-
less pion would have a speed approximately three times
larger than the speed of light. We choose to make the as-
sumption that to each quark there corresponds a vacuum
angle centered on the center of mass of its parent meson.
We hope that, with this assumption, our model becomes
approximately covariant and, in this way, the potential in
a meson depends only on the intracluster relative momen-

sg

S4

Sp

f-k
Sp

y+kP

Sl

Sg S4

St
~+kP

Ss S4 Sp

k-k' k-k'

-k
Sg

~z NsS S
c ~2-k C

S4 S Y S

FIG. 9. Diagrams responsible for the formation (and destruc-
tion) of resonance C in the scattering of two meson: A and B.
The diagrams displaying the contribution of the negative-energy
components of the mesonic wave functions are also presented.
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turn. Therefore we assume the following.
(1) The wave functions 4M can be approximated by

those obtained in the center of mass of the meson. These
were obtained in Ref. 3 and depend only on the intraclus-
ter relative momentum.

(2) The spinors for the quark u (here, only to be found
in the K mesons) will depend only on the qq relative
momentum inside the mesons. If we use the vacuum an-

gle obtained in Ref. 2, then (p/2)+k should be replaced
by k.

(3) The quark s (shared by K and P mesons) has a rela-
tive momentum of —(p/2)+k inside the meson (() and a
relative momentum of k inside meson K. We take an
average momentum frame for the s quarks and replace
—(p/2)+k by —(p/4)+k in the respective spinors.

(4) The energy of a meson with total momentum p and
mass M should be given by the usual expression

EM =')/p +M .
In any case, the results without using assumptions (2)

and (3) will be also presented.

because —C/k and g' only differ in their vanishing tail,
we obtain

u, (k) [U, .(k)]=——„e. .(~~o.~)„.1 C
2 k

(5.5)

Similarly, we have

(5.6)

a 1 1 —S
[u, (k)]u, (k)= —— [io„.Xk) e, +5„.

(5.7)

In (g+g —U+U), only the term without a delta in the

spins will contribute. We have

2. Spinor derivatives

We have to calculate the spinor derivatives are (see
Refs. 2 and 3)

and

[v, (k)]U, (k)=—8

a
[u,t (k)]u, (k)8

a
(5.&)

u, (k) [u, (k)]=——e, —g'+-a 1 C, C
Bk, ' 2 k ' k

,k

k
(o~oz)„

(5.4)
I

If mesons 3 and 8 have the same wave function in space
and spin, the overlap (5.3) becomes

d kf 4„+(k)4„+(k)4+ —++k
(2~)3 " " ' 2 2

C +k
+ 1

&c
+k t 1

+4„+(k)4+ (k)4+ —++k

C +k

+k
2

1

2

1 —S — —k
2

+k t
2 2

+4+„(k)4, (k)4C —++k
C — +k

2

+k
2

1
k t3

+N+„(k)4„(k)4c —++k
C — +k

2 1

2

1 —S — +k
2

+k -t4

+4+„(k)4„(k)@c —++k
C — +k

2
1 —S +k

2
+k

2
(5.9)
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where t, are traces of the spin matrices, defined below.

3. Traces in spin

1 1

() 3/2 2 (5.10)

(2) For the p, with spin 1, we choose the (p) projection

The spin wave functions of the positive-energy com-
ponents are the following.

(1) For the Ic; a spin singlet,

d k
2—f k+e+ exp — Ak +2Bk ++C

(2n)3 2 2 2

'2

1/k and 1/k . However the tail is of little importance in
the integral because it is multiplied by Gaussian tails. In
this case, for numerical expediency, we can also approxi-
mate these functions by Gaussians. However, we cannot
approximate them with a Gaussian with the same initial
value and norm, as we did for the wave functions. In-
stead we impose the condition that the Gaussian coin-
cides at the origin and at another point (at 1/3 of its
height). This gives a good overall fit.

Then we just have to evaluate Gaussian integrals of the
form

s' —B/A 1 2 AC BB—
(4 A)3n

"
2 2A

@M @M
+ (5.12)

We define the negative-energy wave functions to have the
same spin wave functions. However in Ref. 3, we took
the same spin wave functions for the negative-energy bras
and the positive-energy kets. In fact we took

(5.15)

Except for the factor p, we obtain a sum of five Gaussians
with similar widths, which can be well approximated by a
Gaussian. Then the final overlap is proportional to a
harmonic-oscillator wave function with one angular exci-
tation:

where the adjoint sign T yields a minus sign for spin 0 and
a plus sign for spin 1. If we adhere to the new conven-
tion,

Nolo(p) = 24 3/2
'1/

a'

2
2

p3exp
2Q

(5.16)

+M @M (5.13)

then we must change, for the 'Sp bound states ( such as
the K and the n), the sign. of the space wave functions for
the negative-energy terms that were obtained in Ref. 3.

Thus, for the new convention, the traces in spin indices
are

5. Separable solution

The overlap (5.3) takes a separable form, where the left
form factor is an harmonic-oscillator wave function of
the I( +K relative momentum p, and the right form fac-
tor is a c number:

I &3] ) =

+IMP�]P

) (5.17)

tz=tr(@„ri czar„Xicr@c

+&&~cricr2@~@cXicr")= —23/2e3

3
=tr( 4'c cr 'i o24' ~ 0' ~ +'4

w cr "io24 c4 w
)'

t4=tr(4ccr*i crz@„@„Xicr

+4,cr*i crz4c Xio *4„)=2v 2e3,

t& =tr( 4 „cr'i crz+c@„Xicr

+Cccr ioz@z Xicr*4& )= 23 2e3 . —

(5.14)

The overlap of the 6 with EzKL is, to a very good ap-
proximation, the same because a change of the quark u to
the quark d is, in this case, quantitatively unimportant.

The p+ can only decay to the single channel of m+~,
but the flavor overlap is larger by a factor of &2. As
these overlaps are squared in the effective potentials, the
flavor contribution happens to be equivalent for these two
resonances. The differences between the respective over-
laps are thus purely dynamical.

The overlap is a function of the parameters of our
model (which are the strength of the potential Ko and the
current quark masses m„, md, m„. . . ). Only one param-
eter remains free if we require our model to reproduce
the physical masses of the pseudoscalar mesons (see Ref.
3).

4. Gaussian approximation of our functions

The wave functions are almost Gaussians. In Ref. 3
they were obtained numerically and their Gaussian ap-
proximation was given. With our new convention for the
spin wave functions, we have to be careful to take both
P+ and (() positive.

The functions C/k and (1—S)/k also have a Gauss-
ian shape except that their tail decays more slowly (like

m
m„= +

2K0 CK

m 02 m+'mK m

CK C

1

2I.
1

2I( 0

+2 02
mK mK

cK CK

+2

+2 02 +2
mK mK m

CK CK C
(5.18)
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The above relations are the same as the Gell-Mann rela-
tions, ' except that the constants c and cz are slightly
different because mz and m are finite:

c =17 14. . . , c =15 10. . . . (5.19)

We choose the free parameter to be the strength of the
potential I( 0. Like all the parameters and wave func-

tions, the annihilation overlaps are functions of I%'o. In
the case of the P to K+K or KsKL decay and of the p+
to m+m. decay we obtain the results of Table I.

VI. MATRIX EI.EMENTS OF GREEN'S FUNCTIONS

With a separable potential, the T and S matrices are
functions of the matrix elements of the free Green's func-
tion:

(
a 1 a
010 E+ E E 4010

A B

TABLE I. The size a amplitude V of the creation overlap
[see Eq. 15.17)] is given for the decay of P to K K or K~KL
and the decay of p to m+m. . The overlap for p is larger than
for the p by a factor around 1.6 (in excess of the v 2 that comes
from the flavor). Because the contribution of the negative-

energy components almost cancel numerically, the main reason
behind this result is that the normalization of the positive-

energy components of the m. wave functions is almost double the
normalization of the K positive-energy wave functions. Had we

not taken the covariant assumption and maintained the full p/2
dependence in the spinors, then V would be typically larger by
a factor 3/2 and a would be smaller by a factor of 2/3. We will

fix K0 by reproducing the energy and width of the p and p reso-

nances. As the energy shifts are proportional to V' and the

imaginary energy shift is in first-order proportional to a, it is

clear that this would overestimate the results by an order of
magnitude. This also shows that mesonic decays constitute an

extremely sensitive test for our model.

"d
3v'~a'

that has a complex pole at
1/2

E2
4

—m

k4e —k /a

E+ie 2V k—+m
(6.1)

so that the overlap is given by

p 00

3v'~a' "o ' 1/2

4
—m +is

E+2v k +m k4/2k e
E2k+ —m
4

(6.2)

(6.3)

where I, is the principal value of the integral and I2 is an

integral in the complex plane. (See Fig. 10.) The real in-

tegral I, is easily determined numerically. It is con-
venient to decompose it in two terms:

When E & 2m the pole is not met by the integral. The in-

tegral is real and can be directly calculated.
When E )2m, we can calculate this overlap by decom-

posing it in two integrals:

(
1

polo @ ~ ~ @ polo) Il 12—
A B

Resonance
Eo

350

360
370
380
390
400

410
420
430
440
450

460
470
480
490
500

510
520
530
540
550

168

176
184
193
202
209

218
226
235
244
252

261
270
279
288
298

307
315
323
335
344

618

634
648
663
678
694

709
724
739
754
770

785
801
816
831
848

863
878
894
910
925

458
475
492
509
527

544
562
580
598
616

633
651
668
687
705

723
741
759
777
795

571

587
603
620
635
652

668
684
700
717
733

749
766
781
797
814

830
846
862
879
895

2 2p 1

3v'~a' 0 k —p

E+2 k+m k4 —k a E 3 —p/a + g, J' dk
k+p 3&7ra' 3p

k 4 —k'/a'
e

E+ie 2V k +—m
(6.4)

where the term Ep'exp( —p'/—a ), which has a vanish-

ing principal value in the first term, was added to remove

the pole of the integrand.
Because the integrand is a real and analytical function,

the complex integral I2 is exactly i~ times the residue

(half of the result for a complete contour of the pole)

2v'E'
(6.5)

3'

The integral is only complex when p is real (E & 2m). In
this way, the bound states only get an effective imaginary
mass ( and become a resonance) when the coupled chan-
nels of two bound states are above threshold. This
method can, of course, be applied to any matrix element
of the free Green's function in a compact form factor.

In the nonrelativistic limit of E =2m and a &&2m, we
have approximately, in the main integration region,
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ljygyg (g)

FIG. 10. Contours for the integrals Il and I2.

k2Vk +ping
m

(6.6)
5

K~1019 5NeV

K~101$.8 MeY

f~1618.6 HeV

and the value of the integral can be obtained with the
complex error function 8': E 1018.5 MeV

[ ,'+Z —+i&nZ W(Z)], Z =
3(x a

(6.7)

~O
I I I

FIG. 11. Argand plot, given by our model, for E K P-
wave scattering in the neighborhood of P resonance.

VII. RESULTS AND CONCLUSION

A. P Resonance and K+K p-wave scattering

Our results are good with KG=402. 6 MeV: We obtain
with our model a real energy shift of —94 MeV in M4,
and

B. p resonance and m+m p-wave scattering

The experimental mass and width for the p are

Mp 770 MeV Fp 1 53 MeV (7.4)

I&= 1019 MeV, 2 = 1.32 MeV,
(7.1)

With the value of ED=402. 6 MeV that we obtained for
the P resonance, we obtain for p a real energy shift of
—328 MeV and

It% toK~KL
2

2
=0.86 MeV . M =742 MeV, I =146 MeV (7.5)

As the imaginary energy shift —iI /2 is very sensitive to
a [see Eqs. (4.4) and (6.5)], a shift of 19% in a reproduces
well the experimental results

M&=1019 MeV, I, =2. 18 MeV .

I ~„K E =1.52 MeV .
(7.2)

m„=1.08 MeV, md=1. 74 MeV, m, =39.0 MeV .

(7.3)

Also, we used drastic approximations to make the model
more covariant, and a small combination with 15% of the
noncovariant overlap would reproduce the correct re-
sults. Moreover, we did not consider direct K-E interac-
tions, and a small E-E attractive potential of the order of
10 MeV would agree with experiments. In this way the
experimental results are within the errors of our approxi-
mations.

In Fig. 11 we show the argand plot for K+E p-wave
scattering. The plot lies inside the unitarity circle be-
cause the channel EASEL is open. Note that this plot
verifies the width of the P that we obtained directly in the
pole of the T matrix.

A potential strength Eo=402. 6 MeV corresponds to
the current quark masses of

5(arg(a) )

5(E) F=E
(7.6)

which is correct for a Fermi-8 reit resonance. This
checks our method.

C. Conclusion

This paper, together with Refs. 2 and 3 are part of a
project to understand some basic aspects of hadronic
physics. Assuming a microscopic interaction for quarks,
using the same Feynman rules at each stage, we succes-
sively so1ved the mass gap equation, the Bethe-Salpeter
equation for the bare meson masses and, finally, the
RGM equations controlling mesonic scattering and de-
cay. Except for the current quark masses and the poten-
tial strength we have no free parameters. The main con-
clusions of this paper are summarized below.

which are not far from the experimental results of (7.4).
For p, the background coming from direct ~m interaction
is probably larger than the background for P. Also, our
approximation of covariance is probably worse for m-~

scattering than for K-K scattering. Thus we were not ex-
pecting such excellent results.

In Fig. 12 we show the argand plot for ~+a p-wave
scattering. We find that the argand plots for the reso-
nances p (Fig. 11) and tI) (Fig. 12) satisfy the relation
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FIG. 12. Argand plot, given by our model, for m+~ P-wave

scattering in the neighborhood of p resonance.

It is inescapable that bare meson wave functions, i.e.,
prior to decay, have two components. This fact implies
an essential departure from the Schrodinger equation.
The lighter the current quarks, the higher the degeneracy
between these two components. In the limit of massless
current quarks, and for the case of pseudoscalar mesons,
these two components are, with a possible difference of a
phase, identical. The nonrelativistic limit is obtained
when one of the components (in the text, the P ) tends to
zero. In turn, the double component nature of the
mesonic wave functions entails a quite specific normaliza-
tion. Again in the limit of pseudoscalars with massless
current quark masses, it is shown that the norm of each
component diverges when the wave function is normal-
ized to 1. This is a direct consequence of the degeneracy
between the "positive-" and "negative-energy" corn-
ponents of the wave function. In particular we obtain
that the norm of P+ for the m is almost double than the
one for the E. This plays an essential role in the good re-
sults that we obtain for the decay of p and P resonances.

For the potential adopted in this work, all the bare S-
wave function components, "positive" and "negative en-

ergy,
" are very close to the Gaussian form. This allows

us to use Gaussian wave functions when evaluating over-
laps. The sizes of these Gaussians, the parameters a, de-
pend directly on the size, in momentum space, of the re-
gion supporting the corresponding nonvanishing chiral
angle. This is clearly seen in the case of the Goldstone
pion wave function, that is simply given by the sine of the
chiral angle.

The coupling of resonances with the corresponding
rnesonic asymptotic states is done in the framework of
the RGM Schrodinger-type equation. But this does not
involve any approximation other than the instantaneous
approximation to the potential we use throughout this
work. The RGM equations are the dynamical equations
for coupled-channel systems of bound states and reso-
nances. They are simply obtained when one substitutes,
in the Dyson equations for the corresponding S matrix,
the appropriate separable expansion in term of poles and
the solutions of the Bethe-Salpeter equation. In our case

we recall that we have a condensed vacuum, with Pp
pairs, and relativistic quarks; the rnesons have "positive-"
and "negative-energy" components. Still the RGM equa-
tions are the correct equations to describe the decay of
resonances into mesons, provided we use the correct ex-
pressions for the relativistic kinetic energy. Because the
potential is confining, we find no explicit evidence of
quarks in the final RGM equations, which seems to be
correct in low-energy particle physics.

Apart from the implicit dependence of a on the chiral
angle, this angle enters directly, through the microscopic
vertices, into the evaluation of the overlap. Because of
the ambiguity raised by the noncovariance of the adopted
instantaneous potential, we were forced to make the as-
sumption that to each quark there corresponds a vacuum
(chiral) angle centered in the center of mass of its parent
meson. Otherwise energy shifts between bare rnesons and
resonances would be too large.

We get, approximately, the right mass and width for
the p, with the same parameter KD that gives the correct
width for the P (and fixes the quark masses). Taking into
consideration the corresponding different chiral angles
which are, themselves, functions of the current quark
masses through the nonlinear mass gap equation, this
gives us the assurance that this kind of model might have
something to do with the real physical world.

The overlap potential, responsible for the annihilation
(creation) of the two asymptotic mesons into (from) the
resonance, depends quite heavily on the cluster sizes of
the asymptotic mesons. This dependence of the imagi-
nary part of the energy shift ( the width of the resonance)
going like a . The real part of the energy shift is less
sensitive to this parameter. It goes like a . That we
could get, simultaneously, sensible results for the p and P,
constitutes another source of confidence in models of this
kind.

Our strange-quark masses, when compared with other
values in the literature are smaller by a factor of I/5.
Presumably, covariance of the potential together with a
more realistic form, of the type linear plus Coulomb,
could improve on this value.

Adopting a covariant form for the potential and imple-
menting at the same time a more realistic form for this
potential are, we think, the prerequisites for a program
towards the understanding of hadronic physics. It will be
successful if it succeeds in explaining not only the wealth
of data on hadronic masses, but also things such as the
coupling of mesons to baryons, N-N scattering, and so on.
We believe that, not withstanding the obvious shortcom-
ings of the simple microscopic potential adopted in this
work, many of the above conclusions will survive in a
more realistic case. They show a picture quite different
from the usual one given by the nonrelativistic quark
model.
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