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Current-quark model in a Po condensed vacuum
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In this work we assume that quarks are described by Dirac spinors, with current masses which
eventually can be set to zero, interacting through a confining and chirally invariant potential. Other
than the strength of the interquark potential and the current masses of the quarks we have no free
parameters. 'Po quark-antiquark vacuum condensation is allowed and the mass gap equation is
solved for the chosen potential. The solution, and even the mere existence of it, depends quite
sharply on the chosen potentials. Vacuum condensation is shown to be responsible for partial con-
servation of axial-vector current and for the constituent scale. The mass gap equation also ensures
us that quark annihilation is obtained in a consistent way. In our formalism quarks and antiquarks
appear explicitly, which greatly simplifies the derivation of both the Salpeter equations for meson
bound states and the resonating-group-method equations for meson decays and scattering.

I. INTRODUCTION

The commonly used adiabatic and non relativistic
quark models are simple to use but they have limited
theoretical support and either leave many problems unex-
plained or use many ad hoc parameters. We know that
the constituent quark mass is not fully understood' and
that the origin of the hyperfine quark-quark potential is
not clear. Moreover, the small mass of ~ is not easily
obtained. Recently, using a resonating-group-method
calculation, we have shown that this class of model
failed to reproduce phase shifts in E-1V exotic scattering,
and thus fails to extend beyond simple spectroscopic cal-
culations.

On the other hand, the success of PCAC (partial con-
servation of axial-vector current) provides evidence that
the splitting between the masses of 'So and 5, mesons
need not be explained by the use of a hyperfine potential
but can be accounted for as a manifestation of the Gold-
stone mechanism. We also know that most hadrons are
broad resonances and coupled-channel equations are,
therefore, mandatory. For mesons it has been shown, as-
suming an annihilating quark-antiquark amplitude, that
no hyperfine potential is needed as splitting appears natu-
rally when the coupling between resonances and open
channels is turned on. However, the strength and form
of this amplitude was introduced in an ad hoc fashion,
without linking it to the assumed confining potential.
This prompted us to see whether the quark-antiquark
creation and annihilation amplitudes yielded by the
confining potential had any bearing on the observed ha-
dronic spectra. As a test, a preliminary study of the de-
cay of P into kaons was made.

The success of this test motivated us to engage in a
complex project (see Fig. 1) to study consistently the
dynamical symmetry breaking of chiral invariance, the
bound states of quarks and antiquarks (bare mesons), and
finally real mesonic resonances. This paper is devoted to
studying the effects on quarks of the quark-antiquark
condensate. Unlike previous works that use Feynman
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FIG. 1. Diagram of the organization of this project.

field operators 4 (Refs. 9 and 10) we work in the more ex-
plicit formalism of quark and antiquark field operators
b~dt, that is more usual in condensed-matter physics
than in particle physics. In this equivalent formalism,
not only are calculations simpler, but we are able to inter-
pret clearly the condensed pairs in the vacuum. This
framework also greatly simplifies the study of Dyson
equations for quark-antiquark systems, and this is funda-
mental for our project.
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In this work, we will be making two assumptions. The
first is that quarks have zero or, at least, a small current
mass (as is indicated by QCD sum rules) and, second, that
they are bound by a specific confining potential. Other
than the strength of the potential and the current masses
of the quarks we have no free parameters. Then chiral
symmetry is shown to be dynamically broken and the
vacuum to be a condensate of Pp quark-antiquark
Cooper-like pairs. Among the innumerable mesonic
bound states, supported by the confining potential, and
indeed found in nature, the ~ plays the special role of be-
ing the Goldstone boson. ' As a bonus, indeed as a
consequence of the chiral-symmetry-breaking mecha-
nism, a quark-antiquark annihilation (and creation) term
is also obtained.

We choose the simple A, A. color-confining' '" poten-
tial. A fundamental assumption of PCAC is that any
quark-quark interaction that comes from the Lagrangian
of QCD should, in principle, be chirally invariant. This
motivates' " the use of the "Coulomb-like" potential
(with Lorentz structure y, y } and the "vectorlike" po-
tential (with Lorentz structure y, y), that are chiral in-
variant and candidates to reproduce the results of the
quark sector of QCD sum rules. ' A third potential is
motivated"' by a calculation in a quenched lattice
gauge theory' showing that the instantaneous part of the
confining potential is scalarlike (chiral noninvariant). Be-
ing instantaneous, this class of potentials is not covariant.
This fact constitutes another approximation.

As is well known, we can have particle-antiparticle
creation even in the presence of stationary (instantane-
ous, "nonrelativistic") potentials. This is the typical case
of strong external fields. In QED itself, it has long been
recognized (first by Schwinger) that strong electric fields
which extend over a sufficiently large area of space can
continuously produce electron-positron pairs.

Related to this phenomenon we have (at least theoreti-
cally} electron-positron pair production in the presence of
a strong and localized well produced, for instance, by a
heavy, positively charged, ion (in fact by the suin of two
overlapping heavy ions). In all the cases mentioned
above, retardation and magnetic effects are negligible or
small and yet we have pair production of electrons and
positrons. This is due to the fact that such a strong well,
and the correspondingly large binding energy, "plunges"
into the Dirac negative-energy continuum, therefore mix-
ing the free positive and negative Dirac solutions. Com-
mon to all these cases is the fact that we have a natural
privileged nonrelativistic frame: the center of mass of the
external potential. Admittedly, such a frame is not readi-
ly available in the case of quark-antiquark systems. If we
were in QED such a system would display, no doubt,
strong retardation effects. But this need not be the case,
at least for bulk properties, with the confining phase of
QCD. Being non-Abelian, the gluons interact among
themselves and get modified to such an extent that they,
too, together with the quarks, get confined.

Many other models inspired in QCD, addressing the
long-wavelength (and stationary), confining regime of
QCD, exist in the literature. In a certain sense, every-
thing happens as if the quarks have dug a hole in a

color-electric confining vacuum. The bigger the hole, the
bigger the energy it will cost to dig, which means that
quarks cannot be pulled apart indefinitely. In this picture
a privileged frame appears: the center of mass of the
quark-antiquark system, the vacuum-plus-a-hole "provid-
ing" the external confining field. But, and this is the
essential point, be it a bag model, vacuum dielectrics, or
strong potentials, whatever confines the quarks also
violates (at least spontaneously) chiral symmetry; it is
bound to upset the Dirac sea, and (ultimately} is responsi-
ble for quark-antiquark annihilation (creation): To put it
shortly, it seems that what confines also produces meson-
ic decay. Our work is precisely concerned with the decay
phenomenological consequences of a specific confining
mechanism, but the methodology and the formalism
could be applied to other mechanisms as well. Whatever
picture nature has chosen to confine quarks, we feel that
in view of the complexities of the gluonic sector of QCD
and, due to the absence of any "real" derivation of realis-
tic effective quark microscopic interaction from QCD, it
seems reasonable to start by studying a simple stationary
confining potential. In any case our work provides a nat-
ural framework to implement retarded (and magnetic)
corrections if need arises. To include box diagrams sys-
ternatically, one could follow a treatment similar to the
one adopted by Gross" to treat the deuteron.

A separate issue, in addition to the theoretical uncer-
tainties mentioned above (which are common to all phe-
nomenological models we know), consists in the correct
treatment of center-of-mass boosts. We have not, in this
work, attempted to solve the covariantized mass gap
equation. We know that center-of-mass boosts will have
some influence on the mesonic decay. Because of this,
and at this stage, we have decided to study an extreme
limit in order to encompass the uncertainties brought in
by having a no covariantized mass gap equation. This
limit is discussed in Ref. 16.

In Sec. II, we study the vacuum condensation of Pp qq
pairs. Section III is devoted to show how spinors and en-
ergy projectors are rotated, using a Valatin-Bogoliubov
canonical transformation. In Sec. IV, the Hamiltonian is
discussed, both in the original and in the Valatin-
Bogoliubov (VB) rotated forin, whereas in Sec. V the
Feynman rules are given. We study the solution of the
mass gap equation both for a linear and for a quadratic
confining potential in Sec. VI, and in Sec. VII we discuss
the quark constituent mass. We give our conclusions in
Sec. VIII.

II. VACUUM CONDENSATION WITH Po qq PAIRS

A. Generator of the condensed vacuum

In this section, and following rather closely the BCS
theory, we study the condensation of qq pairs in the vacu-
um. These pairs must have the vacuum J quantum
numbers 0++ and thus can only have LJ equal to Pp.
In this way we differ from the usual superconductivity
case where Cooper pairs are 'Sp bound states of two elec-
trons. The generator of the new vacuum is defined to be
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Qo= g Jd'kkkc, 'fk
cf

dQ
t

C,fk (bk, bk )~fM

cf

(2.1)

with a similar expression for the Hermitian conjugate Qo.
In expression (2.1), c stands for the color and f for the
flavor index. The operator Qo transforms as a singlet
both in color and in flavor. The matrix I contains the
Pp coupling,

and thus, the two vacua are orthogonal if the condensa-
tion angle pk differs from 0:

(0Io&= g
cfk

1+cos2$k
dk =0. (2.7)

In a broader sense it can be proven that the Hilbert space
one builds from Io) is orthogonal to the usual Hilbert
space containing Io). Hence the assertion that, whenever
one has vacuum condensates, one must go beyond pertur-
bation theory.

1 1 0
M =(—&6) & k0'

l
0'2 m 0 0 ' cr& 02 0

L

(2.2)

B. The Fock-space operators b and d, in the new vacuum

The annihilator of the new vacuum Io) is not bk but is
instead

k„+ik„

M=@ k(iaz) .

and has the following interesting properties:
—k„+ik„k,

M=
k,

(2.3)
S =e(d A)

7 ~ =c'—c,
together with the relation

bk =SbkS bk Io & =o

Using a simplified notation,

(2.8)

(2.9)

The new vacuum Io) is generated from the trivial (empty)
vacuum IO) as

b

d —M*
pe

M~0 be

A5„„dt (2.10)

(Q —
Q )

Io)=sIo&, s=e (2.4)
we are able to relate the two sets of Fock-space operators

(2.5)

After expanding SIO) and reordering the powers of
(C —C), we get

cfk

1+cos2$k
2

+
2

Sln2$k
~cfk

This new vacuum IO) is of the form exp(C —C)IO),
where it can be quite easily shown that

(c'—c)Io) =c'Io&,
(c'—c)'lo& =(c"—2)I»,
(c'—c)'Io) = —4c'Io) = —4(c' —c)Io) .

b b
=exp(PA) t exp( —PA)

cosPI

sinPM"

AI I=exp(P A )exp

0 —M b

o

—sinPM b

cosgl d

b

(2.11)

+ C fk dkIO),
1 —cos2$„

(2.6) or, when written in full,

bcfko.

bcfk cr

dcf —kp

cf —kp

cosPk 5,

sing~„*,

sing~„,
0

cosfk 5„„
0

cosPk 5, —sing~*,

—sing~ „

cosfk 5p

bcfke

bcfke

dcf —kt1

A~
cf —kU

(2.12)

III. ROTATION OF SPINORS AND
NEW ENERGY PRO JECTORS

d kQ(x)= g I [u, (k)bk, +U, (k)dt k, ]e'k'".
2~3

(3.1)

Following Ref. 10, the Feynman field operator is
defined to be

We want this form to be invariant under the VB transfor-
mation. In other words, we want that (we will use
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simplified notations)

ub+vd =u b+v d (3.2)

If the quarks have an initial current mass m, we should
start with

In order for this relation to be true, we must compensate
for the rotation of the operators b and d, by counterrotat-
ing u and v. To accomplish this, we define the new spi-
nors as

u, (k)= (E+mP+lk a k)up&2E(E+m) S

1
u, (k)= (E —mP —1k l

a.k )up&2E(E+m) S

(3.10)

cos{()I
sinPM

—sinPM' u

cos{tI u
(3.3)

We will be working with fermions with very small masses
and thus it is convenient to use a definition' for the spi-
nors u(k) and u(k) which is diff'erent from the usual
definition of Bjorken and Drell, ' where, for instance, the
energy projectors were given by

A—+„=—,'(+cosh8+P+sinh|) a k)P,
(3.4)

My=arctan —+2/ .
k

(3.11)

The spinors and energy projectors are now

They are equivalent to the preceding formulas (3.9), when
one replaces the vacuum angle 2p by the mass angle
arctan(mlk). Therefore, whenever the vacuum con-
denses, we are going to obtain a total rotation angle p,
which is the sum of the mass angle plus the dynamical
angle,

cosh0=—sinh0= —-=~ .
Pl

Clearly, this normalization is not very convenient. For
the massless case we prefer, then, to use the noncovariant
projectors

1
u, (k) = {1+sinyP+costa k)up

2(1+sin{ad)
S

1
&,(k)= (1—sinpP —costa k)vp

&2(1+sing) S
(3.12}

+ —u u (3.5)
A z

=
—,'(I+sinqP+cosqa k) .

We also prefer, as was done in Ref. 10, to use for v (k) the
momentum with a sign opposite to the usual one. We
have, in the massless case,

1
u, (k) = —(1+a k)up

S

In the remainder of this paper, we will use the simplified
notation S =cosy and C =sing. Because we will be al-
ways working in the condensed vacuum regime, the tilde
will also be suppressed. A set of useful properties, of
which we will make repeated use, is listed below:

1/2

1
v (k)= —(1—a k)vS PS '

(3.6} (u;u)= Ay(up, 'up }

where charge conjugation imposes the condition

v, ( —k)=+iy2u, '(k) .

In particular, for k =0, we have

0

(3.7)

up =( iaz)u p—,

1 (v'1+&+v'I —Sa k}(u;v } .
2

IV. NORMAL-ORDERED HAMILTONIAN
OF {QUASI) QUARKS

{3.13)

0
up) =

0

0
0

VP)
—

0

1

up) —
0

Vp)
=

(3.8)

In this section we introduce the microscopic Hamil-
tonian

H = fd x g (x)(mP —ia V)g(x)

+ fd'x d'y gt(x)AQ(x) Vc(x —y)g (y)Af(y)

+ fd'x d'y 1( (x)aA, Q(x) Vv(x —y)p (y)aA, Q(y)

+ fd'x d'y 1(t(x)PA/(x) Vs(x y)f (y)PA/(y—)

Using these definitions, we apply the VB rotation on u
and v, to obtain (4.1)

u, (k)= 1

&2[1+sin(2$ ) ]
X [ I +sin(2$ )P+cos(2$ )a.k]up

1
u, (k)=

&2[1+sin(2$)]

X [1—sin(2$}P—cos(2$)a.k]vp

(3.9)

In expression (4.1), Vc, Vz, and V~ stand, respectively,
for the Coulomb, vector, and scalarlike potentials. As we
said, these potentials are considered to be instantaneous
and, therefore, only the space dependence needs to be ex-
plicitly written in (4.1). The time dependence, which is
trivial, will be considered in Sec. V when dealing with the
Feynman rules. In formula (4.1), A. represents the color
Gell-Mann matrices, and a and p the Dirac matrices.
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H =Ho+:H~. +:H4. . (4.2)

We need to write the Hamiltonian in normal-ordered
form with respect to the new vacuum. It is true that one
can consider, in addition to a four-fermion interaction,
other types of microscopic interactions. An example of
such interactions [to lift the U„(1) symmetry] is studied
in a very interesting paper by Bernard et al. ,

' in the
framework of a Hartree-Fock, Nambu —Jona-Lasinio
model. Of course, it will be very interesting to go
through the last stage of "resonances in the condensed
vacuum" —see Fig. 1 (which also introduces, via coupled
processes such as u ~sK+~u, flavor mixing) to study
the inAuence of such terms in the scattering phase shifts.
Unfortunately because of the lack of a "fool-proof"
derivation (from QCD) of these effective terms, appropri-
ate parameters have (as they were in the aforementioned
paper) to be introduced. Then considering such six-
fermion microscopic interactions will amount to putting
bounds on such constants. In view of the already in-
volved calculations, we preferred to defer the considera-
tion of such terms to a forthcoming paper.

As is well known, the Wick contraction technique
offers' the handiest way to perform such a task. The
Hamiltonian turns out to be decomposable in three
terms: one without operators (Ho); another containing
two operators (Hz); and still another (H4) with four
operators, i.e.,

In short, if we use the simplified notation

H = T(q"rcj +q'r yves"ry) (4.3)
and knowing that the traces of the Gell-Mann matrices
are zero, we obtain the terms

H, =q'rcq+q"rev. j'rq,
H, =y'scq+q'ryv j'ry+q'rqv y'rq,
H, =y'rqv q'rq .

(4.4)

The fact that the normal ordering depends upon the vac-
uum can be clearly seen in the expression for the Wick
contraction:

(x)ft(y) f A+e ik(x —y)d k

(2n )
(4.5)

where A+, the positive-energy projector, depends explic-
itly on the chiral angle.

Because of the fact that the traces of the Gell-Mann
matrices are zero, there are no tadpolelike terms in (4.4).
In this way the terms Ho and H2 appear as a sum of
single-flavor terms. This will imply that for each flavor
there is an independent mass gap equation. We will now
evaluate the above-mentioned terms Ho, H2, and H4,
where for the sake of simplicity we omit the Aavor in-
dices.

For the c-number Ho, we obtain

d k d k'
Ho=3 f Tr[(mP+a k)A& ]+2f 3 Vc(k —k')Tr(A& Az )

(2m )' (2n )'

+ Vv(k —k')Tr(aA& aA& )+ Vs(k —k')Tr(PAI+, PAk ) (4.6)

Because of the fact that the Dirac and Pauli matrices have mull traces, we get

d k d k'
H, =f, (2C„6E„), C„—=f, [Vc(k—k')+3V„(k—k')+ Vs(k —k')],

(2m. ) (2~)3
(4.7)

where Ek will turn out, as we will see later when studying 82, to be the energy of a quark. Ck does not depend on y
and is, therefore, independent of the vacuum structure. Ho is the constant energy of the vacuum. The fact that it seems
to be infinite should not worry us because a constant shift of this energy is not physically observable. For the term H2,
with two operators, we have

Hz= f d x g (x)(mP i aV) ((—1)x

d'k+ f d x d y t/i (x)f I Vc(x —y)e'"'" "'(A& —
A& )+ Vz(x —y)e'"i" "'[P(A& —

A& )P]

+ Vs(x y)e'"'" '[a (A& ——A„)a]] P(y) . (4.8)

After expanding the f, and performing the space integrations, we obtain

d k
H, =f, [u,t(k)b,t(k)+U,t(k)d, ( —k)]H„[u, (k)b, (k)+U, (k)d,'( —k)],

(2m )

where Hk has the form

Hk = gkp+gka k

(4.9)

(4.10)
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and

Ak ~+3 3 Vc k —k' 3Vv k k +~s k —k' sin
d jc'

1 k' A. A.

B/, =k+ ,
' f—,[Vc(k —k') —V„(k—k') —Vs(k —k'}]cosip„.k k' .

(4.1 1)

Expanding the spinors, we obtain

d'k
H2 =f E/, g [b, (k)b, (k)+d, (k)d, (k))+ g (cosy/, A/,

—sinip/, B/, )[M„b, (k)d, . ( k)+—M,', d, ( —k)b, (k)],
(21r)

(4.12)

and the dispersion law for a quark (or an antiquark} now reads

EI, =sin%I, A & +cosrpI, BI, (4.13)

Notice that the second term of Eq. (4.12) has the form of the vacuum generator Qo (see Sec. II). This second term,
known in the literature as an anomalous Bogoliubov term, destabilizes the vacuum. Hence, we must get rid of it. The
simplest way of achieving this is to set'

[cosip/ A/ sinlp/ B/ ]=0 . (4.14)

This is, precisely, the mass gap equation. In Sec. V, this equation will be studied in detail. Having (4.14) in mind, H2 is

simply given by

H2= f d k E/, (btb/, +d/, d1, ), A/, =sing/, E„, B/, =cosi/p/, E/„E/, =(A/, +B/, )' (4.15)

For the term H4, we have

H4=: ,' f d x—dy 1(t(x)AQ(x) Vc(x —y) 1( (y)AQ(y): .

Now, if we expand g(x) in terms of b„and d„, we obtain several terms with four fields:

d3k, d k2d k3d k„f 5 (k, +k3 —k2 —k4) Vc(k, —k2)
(2n )

(4.16)

X[ut (k, )bt, +v, (k, )d 1, , ]A[u, (k2)b1, , +U, (k2)d 1, , ]

X[us (k3)b1, s +U, (k3)d 1, s ]A, [us (k4)b1, s +U, (k4)d 1, s ]: . (4.17)

After evaluating the inner products of spinors u (k) and U (k}, we will be able to find ten different four-quark amplitudes
ultimately responsible for mesonic decays. An example is shown in Fig. 2.

Such amplitudes can be summarized, for all intents and purposes, by a much more restricted set of vertices. These
vertices are depicted in Fig. 3. Figure 3(a) represents the interaction with a quark, whereas Fig. 3(b) represents the in-
teraction with an antiquark. Figure 3(c}depicts the creation of a qq pair and Fig. 3(d) the annihilation of a qq pair. We
recall that both quarks and antiquarks propagate forward in time and have the same dispersion law [see (4.15)]. As a
diagrammatic convention we choose that the time fiows from right to left (in the bra-ket direction).

It is sufficient, in regard to Eq. (4.17), to consider the following vertex:

:g," (k, )g, (k ):=2:[u, (k, )b1, , +U, (k, )d 1, , ][u, (k2)b/, , +U, (k2)d 1, , ]: . (4.18)

Then, the terms depicted in Figs. 3(a), 3(b), 3(c), and 3(d) correspond, respectively, to

[u, (k, )u, (k2)]b/, , b/. . . —[U, (k, )U, (k2)]d 1, , d

[Us (kl)~s (k2)]d —k s bk s ~ [~s (kl )vs (k2)lbk s d —k s

(4.19)

It suffices to perform the above inner products to obtain the momentum dependence of these microscopic vertices.
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They are

ut (k)) u, (kq) =
—,
' [[Ql+S)+I+S2++1 —S)+1—S2(kt k2)]5, , ++1 —S)+I—S2(io"k) Xkq}, , I,

—v, (k~)v, (k2)= —
—,
' [[+l+S)+1+S2+Ql—S)+I—S2(k).k~)]5, , ++1—S~+1—S2(iver k~ Xkq),", [,

(4.20}
u t (k, )v, (kq) = —

—,[(Q 1 —S)g 1+S2k,—Q 1+S,g 1 —S2k2).(oia 2), , ],
vf (k))u, (kq)= —,'[(Ql —S,+1+Sqk, —Ql+S, +1—S2k2) (oioq),*, ] .

V. FEYNMAN RULES

In this section we define the Feynman rules to be used
later when deriving the Salpeter and RGM equations.
A possible set of Feynman rules, see Ref. 10, is given
below.

(i) Fermion propagator:

(2n) 5(to to)—5 (aa'. )—[D( k, w)],

with

i (Ek —m)t
bk~= f ~ bj, e2'

we obtain

X5(w —w')
W Ek + l 6'

B. Vertices

S(k, w, k', w', Ek)=(2m} 5 (k —k'}

(5.4)

(5.5)

w Ek+i eA—(a)

(ii} Four-fermion amplitudes:

i(2m) 5(t—v)+to~ —tv, —to~)5 (k, +k~ —k, —k~)

X ~4V(k, —k2}g [A,'];;[A,']," . (5.1)

To define the new Feynman vertices, we must extend
:84. to different times. As the potential is instantaneous,
we have

i H;„,=:— x x' t t' xt xt
~ Vc(x —x')5(t t')g (x'—, t')Ag(x', t'):,

However, it is more convenient when deriving the Dyson
equations for mesons, to introduce an alternative, but
equivalent, set of Feynman rules. where the time-dependent field operators now read

(5.6)

A. Propagators

The time dependence of the Fock-space operators b

and d is rendered, after getting rid of the anomalous Bo-
goliubov terms, quite trivial:

f(x, t)= g J [u, (k)bk, +v, (k)d k, ]
(2n )

—I(Nt k'z)Xe (5.7)

After we integrate over the space and time variables, we

bt =e' 2bte
kt k k (5.2)

We define the propagators, for quarks and antiquarks, as
follows:

time flow:

S(k, k', t', t}= (0~ Tb„., b„,~0)

=&,oiTd„, dkt io& . (5.3}

kl, wl k2, w2 -k2, -w2 1 ~ wl

Using the Fourier transforms of b«and dk„
1 k2 wl -w2 kl —k2 wl —w2

b 1 d3 b4 b

k=k)-k2

kl- k2 w1-w2

(c)
"1 k2 wl -w2

(d)

FIG. 2. A qq annihilation in the potential H4. FIG. 3. Vertices in the potential H4.
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—[U, (k, )U, (k2)]d
(5.8)

[ut (k, )U, (k2)]bi", , d

Finally, for each insertion of a potential line, between two
of these vertices, one should consider the function

V(k —k') g (k');;(A, ')J (5.9)

where k and k' are, as usual, the momenta flowing in the
potential line. As we have already said, although the po-
tential is not quantized, and in fact we are dealing with
four quark amplitudes as a whole, it is not difficult to see

can see that the vertices obtained in the formalism of the

bk are, with the exception of an extra Dirac 5 in the en-

ergies, the same as those already obtained in expression
(4.19):

[u, (k, )u, (k2)]bi, ~, bi,

that we can subdivide these amplitudes in two quark-
quark-potential subvertices, each of them conserving
both momenta and energy. The different two-fermion
vertices are shown in Fig. 3, and their coefficients have al-
ready been calculated in the study of H4.

VI. MASS GAP EQUATION AND SOLUTIONS

cos+k ~k Slnf k~k (6.1)

If we consider a potential with components of the form
Coulomb+ vectorial+ scalar (see Sec. IV), we are thus led
to the equation

The mass gap equation can be derived in various
different ways. Some authors derived it as the condition'
for the vacuum energy Ho to be minimum, or in the form
of a Dyson equation for a fermion propagator, or else as"
a Ward identity. We obtain the mass gap equation sim-

ply by imposing' that the nondiagonal terms in Hz cor-
responding to the direct creation (or annihilation) of a qq
pair must be zero. The equation is

d k'
k»nq» —m cosq» 3 f 2 I[Vc(k —k') —3Vv(k k }+Vs(k —k')]sinq» cosq»

(2n )

—[ Vc(k —k') —V„(k—k') —Vs(k —k'))cosy» sing»k k ') .

This is, clearly, a nonlinear integral equation.

(6.2}

A. Linear potential

The linear potential has been "derived" from QCD in the framework of lattice gauge theories in the quenched ap-
proximation. It also corresponds to the intuitive model of flux tubes. Although these potentials contain also a I/r
term, here we will only be considering the linear confining term. If we choose the potential (where Eo already contains
the color contribution of —', },to be of the form

V(x) =Fox

then the Fourier transform of this potential reads

V(k)= E-28m
'k4

If we parametrize the different components of the potential as

c=y~ Vv= —&V Vs=«
then the mass gap equation becomes, after integration over the spherical angles,

Eo 4
k sinq2» —m cosy» = dq q sing (y+3v+o ) cosy»

2m. (q2 I 2)2

(6.3)

(6.4)

(6.5)

2k +2q 1 +k—cosy& (y+v —0 ) — ln
k (q' —k'}' k' Slngk (6.6)

This integral exists only when

y+3v+cr =y+v —cr . (6.7)

Otherwise the nonintegrable term in 1/(q —k) cannot be
canceled. Thus, for a pure linear potential, only the
Coulomb-like term with an equal mixture of scalarlike
and vectorlike terms may exist (chiral angle different

I

from zero), if the vacuum is to be condensed. Although
this conclusion is reached in the BCS level of approach, it
presumably means that in the other cases, we have a
strongly broken chiral symmetry, and therefore it is only
natural that the chiral angle should be zero. The mass
gap equation for the linear potential case has been stud-
ied in the literature but the situation is not yet clear. Un-
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like Ref. 10, we find that there is no solution for a
Coulomb plus vectorlike component. Although the solu-
tion probably exists for the simple Coulomb-like poten-
tial, we find that the existing" solution does not verify
the mass gap equation.

V(x) =Kox

Then the Fourier transform is

(6.8)

B. Quadratic (harmonic-oscillator) potential

This type of potential' has the simplifying feature of
supporting a simple differential mass gap equation in-
stead of an integro-differential one. Also, one hopes that
these potentials are still close enough to the "real physi-
cal potential" to give us a sufficiently good illustration of
the chiral physics involved in hadronic spectroscopy and
scattering. The extension of this potential to more "real-
istic" potentials will be mainly a matter of cumbersome
calculations and, in principle, will not involve "new phys-
1cs.

We introduce the potential as (where Ko already con-
tains the color contribution of —', )

either yo and q&0 vanishing (which will correspond to the
trivial noncondensed vacuum), or else

2ya= +a. , (6.13)

y +2v+ ( v+ cr )cos2yA0 . (6.14)

In principle, (6.11) could still have a solution when both
sides vanish, and in this way the above condition is not
absolute. However, we found no exception when solving
it numerically. As we just showed, cos2y takes all values
from —1 to 1, thus condition (6.14) reads

and we will choose, for consistency, the positive ya. This
is because we want to reproduce the nonrelativistic limit
of a very massive quark. If we also require that the ener-

gy of one quark should be bounded from below we need,
for large k, the limit of cosy to be one. This means that
the limit of y, for large k, is zero.

The mass gap equation, being nonlinear, has no obvi-
ous analytical solution. We will solve it numerically. Be-
fore doing this, we can determine the set of parameters

y, v, ~ allowing a solution. The most stringent condition
on these parameters is that

V(k)= —Ko(2m. ) bi,5 (k), (6.9)
y+2v y+2v

& —1 or 1&.+~ ' ' .+e (6.15)

and the Dirac delta allows us to transform (6.2) into a
differential equation.

If we parametrize the potential as

Vc=y~ Vv= —vV Vs=«
and working in units of KD = 1, we get

(k y')'[ y+2v+(v+cr)cos2y]

=2k sing —2mk cosy

+(v+cr)k y' sin2y —(y+v cr)sin2q—.

(6.10)

(6.11)

(y+v —0 )sin2yo=O,

yo(y+2v)(1+cos2yo)=0 .
(6.12)

In this way (except for some very particular values of
y, v, cr that would not give a numerical solution) we have

It is convenient to define the boundary conditions of
(6.11) before attempting to solve it. If we suppose that y
has no pole at the origin, expanding it in a power series of
k, q=yo+yok+qro'k +, and replacing it back in

the mass gap equation, we obtain an infinite set of recur-
sive relations, of which we write the first two

Some particular cases of inequalities (6.15) are given as

y =1, v=0, cr =0,
y=1, v& —1 or —

—,
' & v, o.=0, (6.16)

C. Numerical solution of the mass gap dift'erential equation

The solution y(k) of the equation

y=1, v=0, —1&a &1 .

We see that although the Coulomb-like and vectorlike
components are not very restricted, a pure scalarlike
term or even a dominant scalarlike term seems (at the
BCS level it is not) not to be allowed. It presumably
means that in this case, the chiral symmetry is strongly
broken, and therefore the chiral angle is null. One should
also keep in mind that the solution y must correspond to
the minimum of Ho (for example, the potential cannot be
repulsive for Po qq color singlets). This constitutes a
true constraint on the parameters y, v, a (for example, it
excludes y =1 and v( —1). We do not verify the results
of Ref. 10 for the Coulomb-like plus vectorlike case
(y= 1 and v&R).

+
—2y' 2k sing& —2mk cosy' —k y' sin2&p(v+o )

—(y+v —cr)sin2y
k k [y+2v+(v+o )cos2y]

(6.17)

starts at y=m. /2 and has to converge to y=0. %'e use
the Runge-Kutta method to obtain, starting with
g(0)=n. /2 and y'(0) arbitrary, the whole of p(k) and
y'(k). In this iterative method we used a step of 0.004 in
units of Ko (the error is of the order of the step to the

fourth power). Equation (6.17) being nonlinear, it is
difficult to shoot directly at the value of qr'(0) yielding
q&( ao ) =0. Our function would rather oscillate around ~
or ~ However, if—we. know a k such that y(k) is al-

ready close to 0, then the equation is almost linear in the
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(6.18)
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1.2-

.8-

4-

.8 1.e 2.4 3.2

FIG. 7. Solution of the mass gap equation when not only the
Coulomb-like term is present but also a vectorlike one. The
corresponding parameters are (m =0, y =1, v=1 or 0 or —0.3,
cr =0). We also show the solution for the pure vectorlike poten-
tial.

0
0 .8 1.6 2.4 3.2

FIG. 8. Solution of the mass gap equation when a scalarlike
potential is added to the Coulomb-like one (m =0, y=1, v=0,
0 =0 or 0.1 or 0.5 or 0.65).

In Fig. 7 we show the inhuence of adding to the
Coulomb-like potential a vectorlike component (m =0,
y =1, v= 1 or 0 or —0.3, o =0}. For positive v the solu-
tion is now smaller than before, while for a negative one
the effect is the opposite. We also show the solution for a
pure vectorlike potential.

For a pure scalar potential we have no solution. How-
ever, a small admixture of this potential with the
Coulomb-like potential admits a solution. In Fig. 8 we
show such a solution (m =0, y =1, v=O, o =0 or 0.1 or
0.5 or 0.65). This case is interesting for it breaks the
chiral symmetry like the massive case, and thus a small
admixture of a scalar potential could provide another
source for chiral-symmetry breaking.

VII. SINGLE-PARTICLE ENERGY
AND DYNAMICAL MASS

Following the discussion in Ref. 10, we will also take
the interquark confining potential to be the limit of a se-
quence of deeper and deeper potentials (but} going to zero
whenever r~~. This is the proper definition of a
confining potential allowing for in and out free states, and
amounts to subtract, from any of the potentials men-

tioned in Sec. VI, the appropriate infinite positive con-
stant to ensure this. As was stated in Refs. 10 and 11 this
constant, apart from ensuring that the quark self-energies
are infinite, has no effect on the hadronic complex masses
(for decay widths we checked this explicitly} and also
leaves the mass gap equation invariant. Then, for calcu-
lational purposes other than the quark self-energies,
which are not physically observable, because they are not
infrared finite, we can drop these constants. But in doing
so, it should be kept in mind that the quark quasiparticle
self-energies will appear shifted downwards, from their
"physical infinite value, "

by an infinite constant amount.
Examples of such shifted self-energies are given below.
They are simply related with a physical quantity called
excitation energy [E(k)—E(0)].

In the case of the general quadratic potential, the
single-particle energy is given by'

(7.1)

In Ai, we use the 5 function in the potential to remove
the integral. Making use of the mass gap equation to re-
place y", we get

m y+3v+o, 2 cosy y+3v+o 2k sing& —2mk cosy+k tp' sin2y(v+cr) —(y+v —o }sin2y

sing 2 2k 2 sing y+2v+(v+cr )cos2q&

(7.2}

It is easy to obtain this function numerically after finding
(see Sec. VI) the functions y(k} and y'(k}. In what fol-
lows, we shall restrict ourselves to the study of a
Coulomb-like potential for massive quarks ( m =m,
y =1,v=O, cr =0). The energy is now simply

&2 cos p2

Ek =Ko ~ »ng —
—,'y' +k cosy —

z
(7.3)

This function is shown in Fig. 9 for different masses
(m =0 or 0.01 or 0.1 or 0.5 or 1 or 2 or 3}. In this pic-
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5.5
~+lg (0) —2q&'(0)]k2+O(k4 (7.4)
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Ek=k . (7.5)
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sorbed in the vertices 5.8)

W Ek+lE'
(7.11)

&H& &H&

&H&
p wave

We are left with the pole Ek, and, in the usual fashion, we
parametrize its Taylor expansion with

5- 5-
S wave

kE„=—p+, +O(k ) .
2m

(7.12)

In this way, the second naive definition of m is reinter-
preted as being the chemical potential. m can now be
defined as the effective dynamical mass:

Kom*= -=0.02EO .
2(c —2c)

(7.13)

If we take for Eo a reasonable value between 300 and 600
MeV, this dynamical mass is clearly smaller than the con-
stituent quark mass which is close to Ko. However, the
constituent mass is defined from the masses of bound
states of quarks in nonrelativistic models (m„„„is ap-
proximately a third of the proton mass or half of the p
mass). This is further evidence that our model is not like-
ly to have nonrelativistic bound states.

VIII. CONCLUSION

For a dominant scalarlike potential we found no vacu-
um condensation both for a linear and a quadratic
confining form for the potential. This is, for instance, the
case of the model in Ref. 13, where the spin-orbit corn-
ponent in the Fermi-Breit quark-quark potential van-
ishes, while having a large spin-spin term.

On the other hand, had we chosen a hyperfine spin-
spin potential large enough to accommodate, for in-
stance, the m-p mass difference, such a potential would, as
we have shown in Ref. 4, produce hadron-hadron phase
shifts in complete disagreement with the experiments.

Also, adding a constant shift to the interquark poten-
tial in order to better fit the center of gravity of hadronic
masses would not do. We have shown that such potential
shifts cancel against corresponding one-quark energies.

In a quark model with a chirally invariant confining
potential, we find that the vacuum is condensed and is
not chirally invariant. In the limit of massless quarks,
the Hamiltonian is fully chirally invariant, and the break-
ing of the chiral symmetry by the vacuum, implies that
all ground-state pseudoscalars are massless (their number
is nf). In this limit the only scale that we have is the
scale of the confining potential. This scale appears in an-
gular and radial splittings in hadronic spectroscopy. The
mechanism of ~-p mass splitting is illustrated in Fig. 11.
In Fig. 11(a) we show the expectation values (in S-wave
and in P-wave harmonic-oscillator wave functions of run-

0
K

I

2

(a)
2

(b)

FIG. 11. (a) Mean value, in S-wave and in P-wave harmonic-
oscillator wave functions, of the quark and antiquark energies
and of the harmonic-oscillator potential. (b) Mean value, in a
Gaussian wave function, of the energy of the qq in the S-wave
and P-wave cases.

ning parameter a ) of the sum of one-particle energies of
quark and antiquark and the potential between those two
particles. In Fig. 11(b) we show the total expectation
values of the single particle and potential energies. The
result of the dynamics is that, while mesons without
space excitations are massless, all the others show the
scale of the potential. We obtain correctly the bound-
state masses with the Bethe-Salpeter equation, and it
turns out that all bound states (except pseudoscalars like
the tr) are coupled to radial or angular excitations. This
is an explicit example of PCAC at work.

In nonrelativistic quark models two more scales ap-
pear, the so-called constituent quark masses and the
hyperfine splittings. The constitutent quark mass is typi-
cally m /2 and the hyperfine splitting scale is
m —m =—m

p
Thus in the chirally invariant Hamiltoni-

an model, these two extra scales are superAuous because
they are absorbed into the potential scale.

The current-quark masses explicitly break the chiral
symmetry of the Hamiltonian. The masses of pseudosca-
lar mesons are, in this case, nonvanishing but they show
only indirectly the scale of the current-quark masses.
The mass increase of these mesons (in fact their own
masses, the increase being from zero tnass) is of the order
of the corresponding increase in quark and antiquark
single-particle energies E(k ) from the massless quark
case (k is the mean value of k in the meson in question).
This energy shift is, in general, di5'erent from the current
masses m and m .q'
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