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A new relativistic definition of the reduced mass (p») of a qq pair, so as to be in conformity with
the standard Wightman-Garding definition of its relative four-momenta q„, is introduced into the
kernel of an ongoing Bethe-Salpeter (BS) program on a two-tier basis. The new definition of p» (in-

volving the hadron mass M) is found to produce a natural Regge asymptotic behavior (M'-N) in
the hadron mass spectra, while retaining the property of an asymptotically linear (-r) confinement
in the three-dimensional structure of the BS kernel. The relativistic structure of p» is responsible
for a significant improvement in the fits ta the ground-state masses of qq and Qq mesons as com-
pared to its nonrelativistic definition m~m2/(m, +mi). The leptonic decay constants fr and the
charge radii thus calculated are also in excellent agreement with data (n., k) where available, while

fr predictions for Qq mesons have good overlap with recent lattice predictions. Further, the scal-
ing property (-k„') of the hadron's electromagnetic form factor at large k is a consequence of the
"on-shell" form of its null-plane wave function. All these results (which are indicated in the barest
outline) are preceded by a perspective summary of the theoretical premises and practical working of
the BS equation with a four-fermion interaction kernel as a necessary background on a two-tier
basis.

I. INTRODUCTION

In some recent publications, ' we have attempted to
give an exposition of the contact with data of a null-plane
formulation of hadron dynamics based on the Bethe-
Salpeter equation (BSE) with a Lorentz-invariant vector-
type kernel. The model which works on a two-tier basis
is characterized on the one hand by a covariant three-
dimensional formulation of the BSE, using the null-plane
ansatz (NPA) and, on the other, by a reconstructed four-
dimensional BS wave function so as to restore the (virtu-
al) qq degrees of freedom [suppressed during the three-
dimensional (3D} reduction], and is directly adapted to
the language of standard 4D quark-loop diagrams. The
first stage is appropriate for "on-shell" manifestations,
viz. , the mass spectra of qq' and qqq hadrons, while the
second stage concerns various "off-shell" applications
typified by different types of hadronic transition ampli-
tudes. Nevertheless the seemingly unconventional na-
ture of the two-tier BS approach vis-a-vis more orthodox
perception does call for some elucidation as regards to
observance of the basic rules, so as to avoid possible
misconceptions on its raison d etre. To this end, we offer
a fresh resume of the theoretical premises and practical
working of the BSE together with the logic of its adapta-
tion to the present two-tier form.

Another aspect concerns the need for a more conscious
incorporation of internal relativistic kinematics in the
spatial structure of the four-fermion kernel which in-
volves the reduced mass p, 2 of the constituent quarks as a
proportionality factor of the spring constant in accor-
dance with a standard theoretical [albeit nonrelativistic
(NR)] picture. In view of its pivotal role in determining

the anatomy of a general-relativistic interaction, a relativ
istic definition of p, 2, which must be in consonance with
the Wightman-Garding definition of the internal four-
momentum q„of the system, seems to be extremely desir-
able on grounds more general than the imtnediate (BS)
model under study. In this paper we offer a theoretical
motivation for this quantity in the context of the BS mod-
el, together with the structural changes in the kernel
necessitated by its introduction which ensures among
other things an explicit Regge asymptotic behavior
(M -N} in the mass spectrum. The bulk of this investi-
gation constitutes an expose of the above two items in the
rest of this section. The immediate numerical conse-
quences of the new definition of the reduced mass, vis-a-
vis its traditional NR definition, are merely collected
(without derivation) in the form of a few tables (Sec. II) in
respect to mass spectra, f values, and charge radii
(small-k behavior) of P mesons. For large k, on the
other hand, it is noted that the scaling behavior (-k„}
in the hadron's electromagnetic (e.m. ) factor is a conse-
quence of the on-shell form of the null-plane wave func-
tion in this formalism.

A. Perspectives on BSE

The conventional BSE which is rooted in field theory is
a ladder approximation to the detailed Schwinger-Dyson
equation involving irreducible vertex functions of arbi-
trarily high order. A ladder approximation may be per-
ceived in concrete terms in a QED-like theory which al-
lows a systematic classification of higher-order kernels,
the consistency of which can be monitored (in a perturba-
tive manner) by a coupling constant (u) to any desired
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order of accuracy beyond the lowest order (one-boson-
exchange) kernel. Such methods are useful for providing
consistency checks on, e.g., Lorentz and gauge invari-
ance, especially if a 3D reduction of the BSE (in the in-
stantaneous or null-plane approximation) has to be per-
formed, as has been the case in most practical applica-
tions. For a systematic discussion of such problems in
the QED context, see a recent review. [In principle it
would also be natural to take a similar view in a QCD-
like treatment, were it not for the uncertainties which
the much larger value of the corresponding coupling con-
stant (a, ) would entail].

An alternative point of view for the formulation of the
BSE would be in terms of a single effective kernel arising
out of a corresponding four-fermion Lagrangian in the
Nambu- Jona-Lasinio (NJL} sense (including its
ramifications on dynamical symmetry breaking). In this
kind of treatment the entire information on the dynamics
is in principle contained in the effective kernel which
makes it logically rather inconsistent to ask for its
higher-order corrections. It is quite another matter if the
theoretical value of such effective kernels in a BSE is far
below the standard of a full-fledged QED-like field

theory. Nevertheless this is the kind of price one would
expect to pay for insisting on a BS-type language for the
nonperturbative sector of QCD at today's state of its art.
And indeed, several BSE formulations in the NJL' spirit
of chiral-symmetry breaking (CSB) have been in evidence
in the QCD context, " as an alternative to the one-pion
exchange (OPE) and allied languages. ' Another advan-
tage of the BSE formalism is that its effective 4D kernel
can be attuned to the successful Coulomb plus linear po-
tentials' by first giving them a suitable Lorentz-invariant
generalization.

8. 3D and 4D aspects of BSE

The present approach to the BSE which was motivated
by similar considerations was designed to make simul-
taneous use of both its 3D and 4D aspects. The 3D form
which has had a long history by itself, ' provides the
basic dynamical equation for the lowest Fock component
in the quark structure of hadrons, and is particularly
relevant to their observed mass spectra which seem to
resist a 4D (Wick-rotated) description. ' On the other
hand, the 4D form formally incorporates another impor-
tant feature, viz. , the higher Fock components which
would be suppressed during the 3D reduction. ' This
aspect can be seen more clearly by analyzing the full con-
tent of the 4D BSE as a chain of 3D equations ' con-
necting successively higher Pock components, much like
the Tamm-Dancoff equation of the 1950s. And it is these
higher Fock components which provide a field-theoretic
orientation to the BSE in its full 4D form, thus liberating
it from the possible stigma of a "fixed-particle basis"
which the BSE (without the higher Fock components)
would otherwise connotate in a 3D form. Both are, of
course, fully relativistic in content, the 4D form being ex-
plicitly Lorentz invariant, while the appearance of the
corresponding property in the 3D form depends on its ac-
tual formulation. '

In the BS program under study we have employed an
alternative strategy of reconstructing the 4D wave func-
tion' ' (as a means of identifying the hadron-quark ver-
tex function} in terms of its 3D structure. This is a rather
crucial step which restores, albeit in a perturbative
fashion, the effect of higher Fock states to provide access
to different types of transition amplitudes through ap-
propriate 4D quark-loop diagrams. Such a point of view

is perhaps not entirely new, for the possibility of the 4D
BS amplitude containing higher Fock components was at
least indicated by Karmanov' within a simple-minded
Wick-Cutkosky model. On the other hand, the more
general nature of the connection between the 3D and 4D
amplitudes (especially the reconstruction of the latter in
terms of the former), 's in the context of an arbitrary
kernel, does not seem to have been recognized in con-
ternporary literature. It may be asked whether such a 4D
wave function which merely incorporates the higher
Fock components on a rather selective basis would be
physically more meaningful than its 3D form with a
fixed-particle basis. A possible answer in the first place
lies in the recognition that a perturbative connection be-
tween the 3D and 4D forms is in keeping with the picture
of a gradual unfolding of the higher Fock components
since a suppression of their effects seems to be strongly
indicated by the O(3}-like structure of the observed mass
spectra. Second, a 4D wave function which is recon-
structed from its 3D form so as to satisfy the 4D BSE
thus incorporates the higher Pock components on a
definite field-theoretic basis (albeit perturbatively), and is
not merely an ad hoc construct. This feature seems to be
particularly relevant for providing a nontrivial connec-
tion between spectroscopy and transition amplitudes and
hence a rich observational basis for a closer look at the
detailed anatomy of the confining potential. Indeed the
only firm knowledge available on the latter is an asymp-
totically linear ( —r ) flavor-independent behavior, 20

which by itself says very little about its detailed structure
at nonasymptotic distances, which may well be strongly
influenced by other available length scales (e.g., quark
and hadron masses).

C. Two-tier BS program

Before addressing this question of r dependence in
greater detail further below, we first recapitulate the
main points of our two-tier BS model. ~6 The QCD
motivation of the otherwise empirical confining kernel is
limited to a color dependence (-—,'k, —,'A, 2) and a vector-
vector ( VV) -type ( —y„"'y„' ') structure, ' analogous to
one-gluon exchange (OGE). For a (qq) system involving
spin- —,

' constituents, the vector-vector form of
confinement, unlike a scalar-scalar form simulates to a
significant extent the operative aspects of gauge invari-
ance that are usually sought to be incorporated through
standard phase integral structures involving gluon
fields. (Gauge invariance for a pair of spin-one constit-
uents again favors the vector-vector form except for a
simple modification arising from the effect of the contact
g interaction. ) A second advantage of the vector-
vector form is that the 3D content of the corresponding
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BSE would remain essentially unaltered by the replace-
ment VV~ —,

'
( VV —A A ) which makes for approximate

chiral invariance, thus making the VV form more analo-
gous to the NJL spirit.

A third advantage of the VV form is that it ensures a
common sign for the qq (color-singlet) and qq (color-
antitriplet) interactions, unlike the scalar form which
gives opposite signs for them. In this way the VV form
is compatible with the possibility of a common origin for

qq and qqq confinement, while a scalar form is not.
An additional point about the QCD motivation in our

BS kernel is an empirical ansatz of its proportionality' to
a, among other things. This does not preclude a more
complicated dependence on a„but is merely intended to
suggest that any additional dependence is probably weak-
er (say, lna, ). This ansatz has also received strong obser-
vational support from the data on all quarkonia (from
light to heavy) to provide an integrated view of the spec-
troscopy. ' We should like to emphasize in this connec-
tion that the formal analogy of the confining term with
the OGE with respect to color and spin does not connote
a lowest-order ladder approximation in the usual OGE
sense, since the spatial structure given to the former
confining term abundantly simulates the features of
higher-order ladders.

linear (-r ), fiavor-independent, behavior, but does not

by itself tell much more about its structure at nonasymp-
totic distances, which is presumably a matter of deeper
theory, such as the role of background fields, together
with appropriate feedback from data. In this regard we

are able to provide a forrnal defense for the assumption of
a harmonic kernel, since it has been known to arise
from background gluon fields in the vacuum as the
lowest-order term in a Fock-Schwinger gauge expansion
of the latter. ' The same result, viz. , an r behavior for
small r has been shown to emerge from the Bethe-
Salpeter equation for a qq system wherein the
confinement is sought to be simulated3 (instead of being

put in by hand) through the replacement of the quark
four-momenta p„by p„—g A „—,'A, ( A „=background
gluon field) in the inverse quark propagators appearing
on the left-hand side of the BSE. A very similar con-
clusion has also been reached through path-integral tech-
niques with background fields. " These two theoretical
constraints, viz. , linear ( r) -behavior for large r, while

remaining harmonic (-r ) for small r, the kernel in this
model, had led us to suggest the following interpolating
formula which explicitly satisfies both these constraints:

(2n ) V(r) = 3cg—

D. Spatial structure of BS kernel Co
X r(1+Mmmm r)

While the requirement of Lorentz invariance for the
BS kernel is trivially satisfied for the OGE part, it proved
less trivial for the confining part and took quite some
time to implement since this program was begun ' with a
3D harmonic kernel as an instantaneous approximation
to its (yet to be discovered) 4D form, since the obvious
4D generalization CI 5 (q —q') did not suffice. Eventual-
ly a Lorentz-invariant generalization of a rather interest-
ing representation for r was found in momentum space
as'

with the spring constant defined as'

2 = 2 2
~qq 0120 ™'12 ) P12™12 1 2

a, (Q )= —(1ng /A )

m] 2=m] 2/m]2, m/2=m]+m2 .

(1.3)

(1.4)

(1.6)

5 4n . 5 4ir
11m

3 2 2
m

3 2 2«-05m m +(q—q') ~-05m m +(q„—q„')

which turned out to be ideally suited to a 3D reduction
through the null-plane ansatz (NPA), in the following
sense: In the NP scheme that has been employed, the
third component of the internal three-momentum q is
defined as q3 =Mq+ /P+, where M is the invariant mass
of the composite and P„ its four-momentum. This
NPA argument eventually proved to be more generally
applicable to the 3D reduction of any Lorentz-invariant
kernel of the form E(q —q') as IC (q —q') with the third
component defined as above. ' This permits a simple
NPA generalization of any NR potential V(r) to qualify
for insertion as part of a BSE kernel, merely through a
reinterpretation of the third components of r and V, as"

(1.2)

As regards the actual parametrization for V(r) the
only tangible theoretical constraint is an asymptotically

Operationally the small value' of Ao (=0.0283) pro-
duces an efFectively harmonic kernel for light quark
(u, d, s) spectroscopy (characterized by small m, m2) in

conformity with the earliest findings, ' while the large
value of m, m2 (despite the smallness of Ao) ensures an

almost linear confinement for bb quarkonia. Note also
the proportionality of the r terms to p&2 in both the
numerator and denominator of (1.3), in conformity with

more general considerations usually employed for r po-
tentials in the NR limit. Note further that (1.3) is linear
and flavor independent in the r ~ ao limit, in conformity
with lattice QCD theory.

K. Scope of this investigation: relativistic reduced mass

Further sharpening of this structure (which is the main
theme of the present investigation) requires an interplay
of additional theoretical principles and data on mass
spectra and possibly beyond. An important theoretical
principle in this regard is the Regge asymptotic behavior
M -N, a requirement which has so far been only ap-
proximately satisfied by (1.3) since it gives merely
M -N for both meson' and baryon spectra. This has



NULL-PLANE BETHE-SALPETER DYNAMICS: MASS. . . 1607

necessitated a reexamination of the parametric structure
of (1.3} so as to conform more closely to the accepted
norms of Lorentz invariance. Thus, e.g. , a natural
Lorentz-invariant generalization of m», the sum of two
quark masses, is the invariant hadron mass M since in the
NR limit

M=m»=m]+m2 . (1.7)

q„=m2p&„—m &p2„,

m, z
=

—,
' [1+( m f

—m z ) /M ],
(1.9)

(1.10)

which not only satisfies the condition P q =0 exactly but
also agrees with (1.6) in the NR limit (1.7}. Nevertheless,
the NR spirit has continued in (1.3)—(1.6) through the ap-
pearance of the factor m» whose natural Lorentz-
invariant extension appropriate to a qq composite is
m» ~M. In the initial stages we had refrained from this
generalization so as to avoid invoking the hadron mass M
(to be eventually determined) at the input level. Howev-
er, the empirical success of the model already
achieved' warrants a closer look at the observational

In a similar way, the fractional momenta m» of the two
quarks p,„,pz„ in a hadron which are defined in terms of
the total (P„)and relative (q„) four-momenta as

p,„,pz„= (m, , m 2 }P„+lq„

have the values (1.6) only in the NR limit. These
definitions are not satisfactory in the relativistic regime
since these do not permit the condition P q =0 to be
satisfied for on-shell quarks (rn;+p; =0), except for
equal-mass kinematics (m, =m2). The correct values of
m

& z come from the Wightman-Garding (WG)
definition of the relative four-momentum q„:

effect of this nontrivial theoretical refinement which
comes more under the head of relativistic kinematics
than of real dynamics. Thus the WG-inspired refinement
(1.10) in the definition of m, 2 calls for a matching re-
placement

m»=m/+m2 M

in (1.3) and (1.4) to yield a WG-motivated definition for
the spring constant, viz. ,

co =4m ~m2Mcooa, (M ) (1.12)

with the hadron mass M replacing m, 2 consistently in
(1.3). This also implies the following definition for the
relati Uistic reduced mass:

p, 2=m, m2M . (1.13)

Slight precaution is needed before this definition can be
applied to all situations, including states (mostly pseudo-
scalar mesons), where M & m, +m 2. This is achieved
through the simple expedient of M —+M&, where M& is
the larger of M and m &+m2 in the relevant equations so
that, e.g. ,

to' =4m, m, M) cooa, (M') ), etc. (1.14)

The new WG-inspired definitions of m
& 2 also induce a

corresponding change in the structure of the one-gluon-
exchange interaction ( VooE) for which we advocate the
full package of short-range (-r ) corrections to the
Coulomb interaction and not merely the spin-dependent
Fermi-Breit term considered earlier. ' The complete
structure of this operator (cf. Ref. 21) on a given state P is
now

VooE(r)P =—cr 4M rn
~
m I2+4 —'V

1 a
a

4L S —+—4m(1 ——', cr, crz)5 (r) — (3cr& roz r —
rr& crz)

1 1

r r

A major consequence of these WG-inspired replacements
is found to been explicit Regge-like behavior M -N for
large excitation quantum numbers N, compared to the
M -N trend' found with the formulas (1.3}—(1.6).
With these WG-oriented structures, the following items
have been specially investigated in this paper.

(a) A recalculation of the mass spectra of qq and Qq
mesons which are expected to be sensitive to these WG
modifications compared to the (equal-mass) heavy (QQ)
quarkonia which, being more nearly NR systems, should
be much less sensitive to these changes.

(b) A complete (new} calculation of the ll decay ampli-
tudes (f ) of P mesons, especially of the Qq type, which
are particularly sensitive to the NR (1.6) versus WG
(1.10) definitions for the fractional momenta m, 2.

(c) A fresh evaluation of the pion form factor F (k„)
at high energies to bring out the feature of a basically
k„behavior at large k„.

P
D+ P(q) = ~'-D(q)P(q), (1.16)

D+ =2P+[q —&(M, m, , mz)/4M2] . (1.17}

The expression for D is omitted for brevity except to
note that all internal three-vectors A (=q, tr, L, . . . )
have their third components defined as 33=A+M/P+,
which is consistent with the Lorentz-invariant on-shell

Since the calculational techniques of the model in
respect to qq states have been provided in earlier publica-
tions' and partly summarized in a recent review, we
shall omit all these details and merely draw attention to
the effect of the WG-inspired definitions of the m, 2 and
the relativistic reduced mass p, 2 on the basic structure of
the model, as well as the numerical results thereof in
respect to the above items in the form of a few tables.
The 3D form of the BSE now reads
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TABLE I. Predictions of mass spectra (in MeV) of qq {1 =u, d) and SS states and their comparison with earlier BS predictions
(Ref. 1) as well as data (Ref. 38).

Meson

H(140)
p(775)
b] (1235)
f, (1284)
a2(1320)
p'(1~)
rr, (1680)
p3(1690)
f4(2030)
p5(2350)
a6( )

N ~ (Ref. 1)

163
915

1182

1352
1590
1532
1682
2009
2288
2571

M [BS (WG)]

140
776

1142
1190
1310
1544
1516
1662
2038
2365
2710

Il (WG)

0.0310
0.0692
0.0899
0.0922
0.0939
0.1058
0.1095
0.1100
0.1239
0.1364
0.1389

$(1020)
f (01300)
fi(1420)
j"2(1525)
P'(1680)
QJ(1850)
fg(2230)

1051

1364
1460
1644
1776

990
1245
1353
1468
1696
1802
2157

0.0840
0.0962
0.1020
0.1070
0.1124
0.1203
0.1352

TABLE II. Predictions of mass spectra (in MeV) of strange, charm, and beauty states and their comparison with earlier BS predic-
tions (Ref. 1) as well as data (Ref. 38).

Meson

E (496)
E (892)
Q|(1270)
Q2(1350)
E (1430)
E'(1460)
L (1770)
E (1780)

(2060)

M (Ref. 1)

565
983.5

1312

1412

1595
1738
2064

M [BS (WG)]

510
87

1229
1272
1393
1406
1596
1741
2113

P (WG)

0.0467
0.0765
0.0948
0.0988
0.1027
0.1027
0.1176
0.1180
0.1292

D (1869)
D (2010)
D, (1971)
D,'( ~ .
8 (5271)

( ~ 0 ~ )

2010
2098
2113
2198
5253

1868
1946
1966
2041
5272
5373

0.0716
0.0905
0.0895
0.1082
0.0692
0.0862

TABLE III. Predictions of f~ values {in MeV) of p mesons in the BS model together with the lattice QCD results for their compar-
ison. The notation NR and WG refer to the nonrelativistic and relativistic definition for the reduced mass. All numbers are normal-
ized to the value off+ (=133MeV) for II+~@+v.

Model

BS (NR)
BS {WG)
Lattice QCD (Ref. 40)
Lattice QCD (Ref. 41)

157
134

(Input)
141.42(21)

164
166
161.04+0.05
155.56(+21)

110
158
174.26+46.00

200{20)

D,

161
191
234.9+2.14

47.7
94.9

105.17+30.00
130(20)

B,

78.0
114
155.31+48.00
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TABLE IV. Predictions of charge radii of I' mesons in the

BS model, together with experimental data (in fm). The nota-
tions WG and NR refer to the relativistic and nonrelativistic
definitions, respectively, for the reduced mass.

I' meson

K
D
D,
B
B,

r (WG)
(Present)

0.695
0.422
0.295
0.308
0.185
0.189

rp {NR)

0.458
0.425
0.267
0.289
0.156
0.191

Expt. results
(r )

0.663+0.006'
0.58 +0.04

(I, =y, form. , iy e for p, etc. ) . (1.18)

For the structure of the BS norrnalizer X' ' which is
proportional to P+' (Ref. 4), see Refs. 3 and 6. Finally,
two kinds of wave functions at the 3D level have been
employed, viz. , the on-shell form P and half-off-shell form

P, both of which are functions of q„, but defined strictly
on the 3D surfaces P q =0 and Pz+mi =0 (m2 =mass
of the lighter quark}, respectively. ' (We have not so far
succeeded in achieving a full 4D extension of P so as to
be valid over all space. )

II. RESULTS AND CONCLUSION

A. Mass spectra of qq and Qq, mesons

These results are summarized in Tables I and II for
m, =mz and rn, rn2, respectively, together with the
data and the old BS prediction employing the nonrela-
tivistic definition of the reduced mass. The input param-
eters are

condition A„P„=O. Likewise, the hadron-quark vertex
function I (q} which can be deduced from the recon-
structed 4D form of the BS wave function ' is

I (q)=NH 'I";D+(q)$(q)/2ni

f p„= 3f d'q Tr[S~(p, )P(q)SF( —p, )(T„T,] . (2.3)

The half-off-shell form (I) of the 3D wave function, with
the lighter quark (mass mz) on shell, has been employed
for reasons discussed elsewhere. The results of the rela-
tivistic versus nonrelativistic definitions of p&2 are sum-
marized in Table III, together with recent results ' ' of
lattice QCD for comparison. Comparison with other
models may be found elsewhere. The main conclusion
is that the WG definition p, z not only results in a marked
improvement with respect to its NR definition, but also
has a significant overlap with lattice QCD values. ' An
in-depth discussion of the significance of f values, espe-
cially of the Qq system for which direct data are not
available, is given elsewhere.

C. Electromagnetic form factors of yseudoscalar mesons

Calculation of e.m. form factors of pseudoscalar
mesons for equal-mass kinematics are already given in
Ref. 3. The corresponding details for unequal-mass kine-
matics may be found elsewhere. For small k, the be-
havior is mainly controlled by the charge radii or the
respective P mesons, the result for which are summarized
in Table IV together with data. ' It is again seen that
the pion radius is significantly improved with the WG
definition of p, ,2 thus ensuring a good fit to the data' up
to k =0.2 GeV (Ref. 42). Note that this is achieved
without invoking vector-meson-dominance (VMD) con-
tributions which seem to be needed for a pointlike
Nambu-Goldstone pion. The present model which is
more in the Nambu —Jona-Lasinio spirit and is con-
sistent with a composite pion picture, has no provision
for additional VMD contributions.

As a last point, we should like to comment on the pre-
dictions of this model for the large-k behavior of the
pion form factor (for details see Ref. 42). In this regard
the half-off-shell form (((t) which is responsible for good
fits at low k, predicts too rapid a fall with large k as no-
ticed by others. On the other hand, the on-shell form
((}I))given by

cop= 158 MeV Cp =0.27 A p =0.0283 (2.1)
Tt3=expI —[qi+(q+M/P+ ) j/2P I (2.4}

m„&,m„m„mb =(265,415, 1530,4900) MeV . (2.2)

The most striking feature seems to be an improvement
in the ground-state masses which may be attributed part-
ly to the relativistic (WG) definition of p, z and partly to
the full OGE package. For excited states, there is not
much to comment upon, except to note that these are
now in conformity with Regge asymptotic behavior
(M -N) unlike the older ones' (M -N ~ }. Compar-
ison with other contemporary models is omitted for brev-
ity.

B. Leptonic decay constants (fp )

These quantities are defined in terms of the BS vertex
function I (q) in Eq. (1.18}as

has the right ingredients in principle for producing a scal-
ing behavior, viz. , F(k }-k at large k, for any had-
ron (pion included). Numerical fits to the pion data at
large k (which are possible), however, requires addition-
al assumptions bearing on the variation of the mass of the
pion at high k, for which arguments have been given in
the literature [for details see Ref. 42].

To summarize, the concept of a relativistic reduced
mass within the BS framework has played a most helpful
role, not only in providing a better analytical structure to
the various predictions, but has also resulted in
significantly improved fits to the data on mass spectra
and electroweak transition amplitudes. The details may
be found in Ref. 42.
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