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The dimension-3 quark condensate contribution to the renormalized s-d self-energy transition is
evaluated within the framework of on-shell renormalization with respect to the (Lagrangian) quark
mass matrix. This transition is then related to Af =% matrix elements for nonleptonic kaon decay
rates. The contributions to such matrix elements from the (gg) component of the s-d self-energy
transition, when considered in isolation, are seen to generate rates of the same order of magnitude
as the experimental values for K; —yy and Ky — 7 decays.

I. INTRODUCTION

In a recent Letter, Guberina, Peccei, and Picek note
that! “since the ds self-energy [Z.] is a purely AJ =1
contribution, the suggestion [Refs. 2-5] that it has some-
thing to do with the Al =1 rule is very natural. . . Un-
fortunately, when one tries to translate this qualitative
idea into practice one finds that, after properly renormal-
izing the self-energy, the GIM mechanism [Ref. 6] makes
the magnitude of 2, uninterestingly small [Ref. 7].”

Specifically, if one uses the on-mass-shell (OMS) renor-
malization prescription of Refs. 7 and 8 on the d generat-
ed by perturbative electroweak interactions (Fig. 1), one
finds that the constant O(Mp,?) leading contribution to
the self-energy* is subtracted away, leaving only O(M*)
contributions off shell.”

In the present paper, we demonstrate that if nonpertur-
bative quark condensate ({gg)) QCD contributions to
2,y are evaluated using the same OMS prescription dis-
cussed above, then the OMS-renormalized s-d two-point
function can generate a AJ=1 matrix element
(7°|H,|K°) that remains of order M2 in magnitude.
Indeed, for generally accepted estimates of the Lagrang-
ian (current quark) s- and d-quark masses, we find (gq )
contributions to this matrix element (when considered in
isolation) to be somewhat larger than empirical K; —yy
and K¢ — 7w decay rates would suggest.

This strong enhancement of the OMS-renormalized
(gq) component of I, relative to the purely perturba-
tive component of 2, results from the strong momentum
dependence present only in the (gg ) contribution. Thus,
for the former case only do O(M?) terms survive the
OMS 8subtractions imposed by the renormalization condi-
tions.

[(Za@ls(p) 1], =0=[dPNZuP]l,-,, - (A1

The values of m; and m, in the above conditions are as-
sumed to correspond to “current” quark masses, i.e., the
explicit masses generated through Yukawa couplings to
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the electroweak vacuum expectation value (¢). Upon
introducing a scale parameter b to characterize the K-
transition matrix element,

(ﬂOIHWII?O)Iq’zrzoz\/ibm%f,(/f,, (1.2)
we utilize a one-loop Landau-gauge calculation in order
to obtain the following lower-bound estimate for b:

|b| 2 |GpcosOcsinf
X (m {(Cc)—m,{au))/(6V2mym,)|

~1.5X1077, (1.3)

where we have assumed “standard” values m; =10 MeV,
m,~200 MeV, and where we have employed the
“m,—c”  approximation to estimate m,{Zc)
=—(a,/12m){GG )=—0.001 GeV* (Refs. 9 and 10).
The contribution of m, {#u ) in (1.3) is down from that of
m_{cc) by a factor ~ 10, owing to the smallness of m,;
the comparable contribution of m,(#) is ignored be-
cause of the smallness of the product of ¢-d and ¢-s mix-
ing angles. The motivation for our use of the Landau
gauge is to avoid Ward-identity difficulties discussed in
the final section of Ref. 11.

The above value for b is at least a factor of 2 larger
than the value corresponding to observed K; —y¥ and
Kg—mm decay rates. However, given the uncertainties
intrinsic to our one-loop estimate (which neglects com-
pletely interference effects with other |AS|=1 processes),
as well as the uncertainties in the parameters m,, m,, and
m_.{cc ), we consider our result meaningful as an order-
of-magnitude estimate. Our result indicates that the off-
diagonal self-energy Z;(p), upon inclusion of nonpertur-
bative QCD order-parameter insertions, may indeed

1

prove important in explaining the A/ = enhancement

observed in nonleptonic kaon decays. We note that other
1

AI=1 enhancing mechanisms, such as the recent work

on diquark effects!? or the apparently large QCD correc-
tions to “penguin”-type processes,!> may be operating in
addition to the mechanism studied in the present paper;'*
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FIG. 1. Purely perturbative electroweak contributions to the
off-diagonal self-energy =,. x is the scalar partner of the inter-
mediate vector boson W.

a reliable quantitative understanding of the AI=1
enhancement may involve the careful amalgamation of
several complementary effects.

In Sec. II, we calculate explicitly the quark condensate
contribution to electroweak off-diagonal self-energies, fol-
lowing the detailed treatment of electroweak diagonal
self-energies in Ref. 11. Renormalization conditions cor-
responding to (1.1) are then employed to determine the
OMS-renormalized off-diagonal self-energy. In Sec. III,
we relate this renormalized self-energy to the K- transi-
tion matrix element by direct comparison of the one-loop
diagrams corresponding to weak and strong kaon axial-
vector currents; a cutoff-insensitive estimate for the pa-
rameter b in (1.2) is then obtained from the ratio of such
currents. In particular, we demonstrate that the 1/m,
dependence of b (1.3) is explicitly a consequence of the
OMS renormalization procedure and is not a reflection of
infrared sensitivity within the quark-loop graph contain-
ing the 2, transition amplitude. Finally, in Sec. IV we
relate the {gq )-generated K -7 transition matrix element
to K; —vy and Kg—mm decay rates, and we briefly dis-
cuss our results.

II. THE (gq ) CONTRIBUTION TO THE
sd SELF-ENERGY TRANSITION

True standard-model physics is the physics of an
SU@B3), XSU(2), XU(1) gauge theory, in which the
unbroken-SU(3), sector is sufficiently strong to permit the
formation of vacuum condensates. Such condensates,
whose phenomenological utility for QCD sum rules is
well established,!® characterize normal-ordered nonlocal
vacuum expectation values of quark and gluon fields. For
example, a nonvanishing value for the quark condensate
(gq ) necessarily implies a nonvanishing value for the
nonlocal vacuum expectation value of normal-ordered
quark fields:'

—(0]:q,(»)g,(2):]0)

Ci(—imY[y-(y—2)¥
j=0 nr

+0({gG-oq)) .

=(gq)

(2.1

In this expression, n and r are Dirac-spinorial indices, ¢
and g are quark fields of the same flavor and color, and m
is the mass characterizing the operator-product expan-
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sion of the nonperturbative vacuum expectation value
(NPVEYV) on the left-hand side (LHS) of (2.1). The
coefficients C; are given by’

127201+ /201714772, j even,
Ci= (61 = 1) /21G +3) /2]~ 147U 472 j odd.

(2.2)

Since the SU(3) QCD Lagrangian is merely a projection
of the full SU(3) XSU(2) X U(1) standard-model Lagrang-
ian, there is no field-theoretical reason why NPVEV’s
[such as (2.1)] known to enter the Wick expansions of
QCD amplitudes (as in QCD sum-rule applications
pedagogically developed in Ref. 16) should not also con-
tribute to the electroweak amplitudes. In particular,
computation of s-d self-energies (Fig. 2) in which the
NPVEYV (2.1) is coupled to the exchanges of electroweak
bosons'! should proceed analogously with self-energy cal-
culations in which the same NPVEY is coupled to the ex-
change of a gluon.'~!7 The contributions of these Fig. 2
amplitudes are then, respectively, found to be

Sy (p)=(GpMysinfccosbc /V'2)
X{=v* 1=y ) Pw, Py (1—75)} ,

(2.3a)
Sy . (p)=(GpM}sinfccosbc /V2)
X{r* 1=y Pwu(P)lr (1—7s)}
(2.3b)
2, c(p)=(Ggsinfccosbc /V2)
X{[(m,—my)+ysim.+m,)]
XP, (pl(mg—m )+ys(m;+m)]},
(2.3¢)

3 .u(P)=(GpsinOccosbc /V'2)
X{=[lm,—my)+ys(m,+my)]
X?X,u(P)[(ms -—m, )+75(ms +mu )]} ’
(2.3d)

where

s <éc> d S <gu> d

FIG. 2. Contribution to the off-diagonal self-energy =, gen-
erated through the coupling of QCD-generated nonperturbative
vacuum expection values proportional to {#u ) and () con-
densates.
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[Py, ()Y = [ d*y =20 ~2(0|:c, (p)E, (2):/0) DIy (p —2)
-] a j
=(cc) 3 Cj(m.Y vy ] Dy, (p) | (2.4a)
j=0 /4 nr
[Py,c(p)],,=(Cc) 3 Cj(m, Y e D,,(p) (2.4b)
j=0 P nr

In (2.3b) [(2.3d)], the corresponding function Py, , [P, , ] is obtained trivially from (2.4a) [(2.4b)] by replacing {Zc ) and
m, with (#u ) and m,,.

The fermion masses appearing in (2.3c) and (2.3d) are the current masses generated via Yukawa couplings to the elec-
troweak VEV (4 ); we will assume here that the same current masses characterize (2.4) [and the operator-product ex-
pansion (2.1)]. The momentum-space W and Y propagators D y,(p), D, v(p) are evaluated in the Landau gauge to avoid
explicit violation of electroweak Ward identities at the W vertices [{gg ) necessarily breaks SU(2) X U(1) gauge symme-
try].!! Away from the Landau gauge, O(M?) contributions from Fig. 2 will arise explicitly from scalar and pseudos-
calar Ward-identity corrections to the W vertices upon inclusion of O({gq ) ) dynamical components!’ of quark masses.
Substitution of the Landau-gauge propagators'®

v (y—_ 8" p*p’ pp” - 2
Dy, (p)= + - , Dyy(p)=—1/p°, (2.5)
R VA X T VB VA ?
into (2.4) and, subsequently, into (2.3) yields the following {gg ) contribution to the s-d self-energy:
d(p)2,(p)s(p)=(Gg/V2)cosOcsinbc[m, (Tc ) —m,{Tu )]
= 1 —2 mgmg my mg
Xd(p) | |75 +OMy") |[P(1—ys)+ 7 [PA+Ys)———=(1—ys)——=(1+ys) |s(p) . (2.6)
4p 6p 6p

In obtaining (2.6) from (2.4), we have made use of the
identities

3 I 1/p% j=0,
73, (p~H=1-28(pH72 j=1, (2.7a)
P 0, j>2,
1, j=o0,
J 2 P
i p[,l.pv v__ 61’/P’ ]_1’
W | |7 [V T o i=2orjzs,
_24p(p2)—2’ ]=3,
(2.7b)

which serve to truncate the series in j for the contribu-
tions of D, and the (p ~2) portions of D(y,. In (2.6) it is
interesting to note that only the V' — A coefficient has
oM ;/2) corrections, which arise from successive
differentiations of (p>—M3)”! in (2.4a). The leading

p % dependence of all coefficients in (2.6) is to be con-
]

trasted with the much weaker momentum dependence of
corresponding coefficients within the usual perturbative
s-d self-energy transition of Fig. 1. We further note that
if my, m;, and m, current masses are all small, corre-
sponding to a flavor-SU(3) chiral limit, the transition (2.6)
is effectively a V' — A transition [i.e.,, proportional to
P#(1—y5)] for hadronic momentum scales (p2~mp2 ).

Of course, Eq. (2.6) leads to an O(Gy) mixing between
d- and s-quark states, a consequence of the fact that
3.4(p)s(p) and d(p)=,(p) are nonvanishing, respectively,
on the s- and d-quark mass shells. This mixing may be el-
iminated entirely by constructing an “on-shell-
renormalized” (OSR) 2, in which an appropriate set of
V— A, V+ A, scalar, and pseudoscalar counterterms is
added to (2.6). Specifically, the OSR requirements that®

S%R(p)s(p)—— 0, (2.8a)
p—*ms
d(p)z%R(p)—— 0 (2.8b)

p—my

dictate a unique choice of counterterms that alters three
of the four coefficients in (2.6):

d(p)ZOR(p)s(p)=(Gp/V2)cos8sinb(m (Tc)—m,(Gu))

= 1 1 1 _
xXdp)| |=—5——=— +O0(Mz?) [F(1—ys)
P40 " 12m2 12m? w) P
dMs my my —mg mg
1+y4)+ (1—ys)+ + (1+7v5) |s(p) .
12p* pli+ys) 6p? 12ms2 l Vs [ 6p2 12m3 l Vs P

(2.9)
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The p-dependent terms of (2.9) are identical to those of
(2.6), but are now supplemented by additional constant
counterterms to ensure the on-shell conditions (2.8).

It is worth recalling that an identical on-shell renor-
malization drastically diminishes the contribution of (Fig.
1) the purely perturbative sd transition to AS =1 process-
es.” We shall show in the sections following that such is
not the case for the condensate-driven contribution of
(2.9).

III. EMBEDDING X, INTO THE WEAK KAON
AXTAL-VECTOR CURRENT

The weak-interaction s-d transition obtained in the
preceding section can be used to generate a portion of the
weak-interaction AS=1 matrix element (7|Hy|K)

through the divergence of the weak kaon axial-vector
current,19

M,=—i [d*% e"0|T[ A (0HS =K ) . 3.1
J

[ Telys(d+k—m) "y, vk —my) 'Sy (K —m,) " 1d %k

We can model a direct comparison to the strong-
interaction axial-vector current (0| A2+'7 IK %) as

iV2fxg,=—i [d*% e®*(0| 4577 (x)K°)  (3.2)

by, respectively, identifying (3.2) with Fig. 3 and (3.1)
with Fig. 4. We then find that the weak axial-vector
current is approximately

M,=iV2fq,b (3.3)

where b is the ratio of the Fig. 4 amplitude to the Fig. 3
amplitude in the soft-g2 limit. The shaded boxes in both
figures factor out all the strong interactions into a net
pseudoscalar coupling g, 7 s; the corresponding fermion
propagators are thus regarded to have poles at their La-
grangian (as opposed to constituent) mass values.

In this section we estimate the parameter b in (3.3) that
would be obtained by assuming that H5®=!in (3.1) is en-
tirely due to the OSR s-d transition amplitude (2.9).
Specifically, we find that

b= lim
q2—>0

[ Telys(d+k—my) "y, vk —m) " 1d*k

(3.4)

Our use of the soft-¢? limit, as opposed to the kaon mass shell, is intended (in part) to probe any infrared problems that
may arise in our model; the g>=m2 kaon mass-shell alternative is briefly discussed at the end of this section. Although
the logarithmic divergences of both integrals in (3.4) divide out, an approximate evaluation of the right-hand side (RHS)
of (3.4) can proceed through explicit use of an ultraviolet cutoff A. This cutoff can then be eliminated entirely by relat-
ing the A-dependent evaluation of Fig. 3 directly to fx via (3.2):

_ 3v72
—iV3fgg,=lim | 0 | (MG Tely g+ K —my) "y —m,) ]
q2—>0 (277)
3‘/§qu¢; . 1 A2 m32 m3
=— —-(—2—1;)—4—- (lTqu”)(4ms) Eln ;} +2A2 +0 -—? (3.5)

In obtaining (3.5) we have dropped all A~* contributions. The absence of nonlogarithmic contributions and the explicit
value of the A ™2 contribution follows from careful attention to the shift-of-integration-variable surface term®

d*k k d*k'(k'—gqz)
A n A (7 . " ) s ,

- = /2)[1—(6u — )/3A°] . 3.6
f [(k+qz)2—y,2]2 f (k'2_“2)2 (”Tquz [ (6p“—q-z ] (3.6)

Upon assuming that gx,, =8 4 ~2w/v/'N,~3.6," we find that
A’=m?2[exp(843 MeV/m,)—1] . 3.7)
The trace in the numerator of (3.4) projects out only the parity-conserving (PC) pieces of (2.9):

SPC(k)=(Gr /V2)cos0csinbc(m, (Tc ) —m, (7u ) [AKDK+C(k?)],

z:sd

I S
K© K ©O N

------- N\ X Vs .\ X Yu7s

d d

FIG. 3. The kaon-to-vacuum transition of Eq. (3.2).

FIG. 4. The kaon-to-vacuum transition of Eq. (3.1).
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12m2  12m}  4k*  12k* |’
my mg my mg
Ck?)= -5
12m?  12m} 6k* 6k?
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We find after some algebra that this numerator trace is given by

Trlys(d +K—my) "y, vs(k—my) ' (k) K—my)™']
_ 4(Gp/V2)cosBsinfc(m (Tc ) —m,(@u))
(k2—m2)(k*—m2)[(q +k)?—m}]

X {k#[msﬂ(kz)-i-@(kz)](kz—mg)-f-q“[(ms+md Y 2A (k) + (k2 +m my)C(k?)])

1
m

GrcosOcsindc[m {ec)—m, {au)]
3V2k(g+k)P—ml]

u
s

2

-—2+

(3.8b)
(3.8¢c)
mgy 1 1
4 4g, | =+ 3.9
k2 9y my | m, 3.9)

The cancellation of (k*—m?)~! and (k2—m2)~! propagator denominators in (3.9) follows from the on-shell character

of ZOPR(k), as reflected in (2.8).

We then see from (3.9) that the numerator of (3.4) is given by
Tr [ "a*k [y sld +¥—my) 'y y sk —my) 'S4 (k)N K —m) ]

= —[GpcosOcsinbc(m {cc ) —m,{au))/3V2]

1 1 ] pa d*k g, L2
X f 2 2_ 2
m; m k[(g+k)—mj] mg
d*k k
+mde L } .

k4[(q +k)2—m3

The ¢2—0 limits of the three Feynman integrals in (3.10)
are, respectively, given by

fA d4kq“
k(g +ky¥—m}
2 m2
~ irg, [ |2 [+ 241, G
q2~—>0 mgy A
fA d*k k,
k(g +k)—m2]
- , 2 mj
qz:om'qy —3In —3 +1_7X? ,  (3.12)
fA d*k k,
k“[(q+k)2—m3]
1
~ im’qH —— . .13
doo U 2m2 342

An estimate of the numerator of b [Eq. (3.4)] is ob-
tained first from substitution of (3.11), (3.12), and (3.13)
into (3.10), and subsequently from use of (3.7) to elimi-
nate the ultraviolet cutoff A. The denominator of (3.4) is

my

m

& d*kk,
kY (g+k)1?—m2]

2
s

(3.10)

—

expressed in terms of fx and gg,, via the first equality in
(3.5). Assuming m, <<mg << A, we find that

~

GrpcosOcsindc(m (ec) —m,{au))
6‘/5mdms

2
s
mg

X {1+ In +1

S
843 MeV

(3.14)

—e

—843 MeV /m, ]

The first factor in the curly brackets on the RHS of (3.14)
is the answer for b one would obtain from the ratio of just
the divergent parts (i.e., the ratio of coefficients of InA)
occurring in the numerator and denominator of (3.4).
The remaining factor in curly brackets is substantially
more model dependent. Modification of this factor,
which for m; =200 MeV, m;=10 MeV is about 2.5,
occurs if we modify (3.11), (3.12), and (3.13) to include an
infrared (IR) cutoff u. Although all three integrals are IR
finite for nonzero m,, one could certainly argue for the
nonpropagation of quarks beyond a length scale u~! of
order m.~!. Upon incorporation of such an IR cutoff u
within the range m; <up <m,, we find that (3.11)-(3.13)
should be replaced by
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fA d4k q#
p kY (g+k)1?—m2]

2 m m2
~ irtg, |In |2 [+ 24 - T4 (3.15)
qz—»O H A I
4
R d*k k,
e kY (g+k)—m2]
2 m2 m?
~ —irq, |+ | A +—‘2‘———2“-}, (3.16)
a2—0 A M
R d*k k,
v k(g +k)P—m2]
~ g, |- (3.17)
qz_*O”T U 3u?  3A? '

In (3.15) and (3.16), we have dropped terms of order
m}/ut as well as mj /A% similarly, terms proportional to
m2/u* have been dropped from the right-hand side of
(3.17).

Upon substitution of (3.15)-(3.17) into (3.10), one finds
that the net effect of including an IR cutoff u between m,
and my is to replace the second factor in curly brackets in
(3.14) with a factor somewhat closer to unity:

~

GrcosOcsindc(m {(cc)—m, {@u))
61/5mdms
m?

2

2m}

X
3u?

1+

(3.18)

s
843 MeV

For values of u between 25 and 200 MeV, we see that the
second term in curly brackets in (3.18) runs from 2.0 to
approximately 1.0 (we retain our current-mass assign-
ments of m; =200 MeV, m; ~10 MeV). Moreover, if u is
larger than m,, then both the numerator and denomina-
tor of (3.4) will be dominated by terms proportional to
In(A?/u?), in which case the second factor in curly
brackets in (3.18) is effectively replaced by unity.

Our use of the soft-q2 limit in (3.4), (3.5), (3.11)-(3.13),
and (3.15)—-(3.17), motivated by soft-pion reductions dis-
cussed in the next section, leads to a somewhat larger es-
timate of b than would be obtained using the kaon-shell
g>=m} limit. For this latter case, Feynman integrals
analogous to (3.5) and (3.11)-(3.13) develop real parts
corresponding to the breakup of an on-shell kaon into
“physical” on-shell s and d quarks. Confinement disal-
lows such contributions; the remaining imaginary parts
are dominated by A-sensitive logs regulated by the physi-
cal kaon mass, rather than by m; (3.4), m; (3.11)-(3.13),
or p (3.15)-(3.17). The net effect of evaluating the ratio
(3.4) on the kaon mass shell (as opposed to the ¢>=0 lim-
it) is to equilibrate all such logs appearing in the numera-
tor and denominator of (3.4), thereby eliminating sensi-
tivity of their ratio to the actual value of A, and thus
yielding the estimate
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GrcosOcsinbq(m (cc) —m, {au ))
b~ | € . (3.19)
6V2mym,

We thus conclude that the magnitude of the parameter
b characterizing the ratio of weak-to-strong kaon axial-
vector currents (3.1)-(3.3) is approximately given by
(3.19), corresponding to the first term in curly brackets
on the right-hand sides of (3.14) and (3.18). We reiterate
that (3.19) corresponds to the ratio of coefficients of In(A)
in (3.4), and, as such, is not contingent on any further es-
timate of the ultraviolet cutoff (3.7). Moreover, the Feyn-
man integrals characterizing (3.10) are all IR-finite for
nonzero my; the inclusion of a phenomenological IR
cutoff (or the abandonment of the soft-g? limit) serves to
reduce a multiplicative factor of order 2.5 [i.e., the
second term in curly brackets in (3.14)] to unity.

It is particularly worth noting that the factor of m, in
the denominator of (3.19) survives infrared regulation of
the integrals in (3.10). This factor may be traced ulti-
mately to the terms proportional to 1/m}? in the on-shell
renormalized self-energy (3.8). Indeed, such 1/m} terms
are absent prior to mass-shell subtractions utilized to en-
sure the on-shell conditions (2.8), as is evident from ex-
amination of the unrenormalized self-energy (2.6). Thus,
mass-shell subtractions, which are known to suppress the
contribution of the Fig. 1 off-diagonal self-energy to
AS =1 transitions, serve to enhance the (gq )-mediated
contribution of the Fig. 2 off-diagonal self-energy.

IV. APPLICATIONS AND DISCUSSION

The scale of (gg)-generated off-diagonal self-energy
contributions to kaon-decay matrix elements is somewhat
larger than (and certainly of comparable magnitude to)
the scale appropriate for experimental kaon decay rates.
To see this, we first utilize the lower bound (3.19) to esti-
mate the scale parameter b appearing in (3.3). The lead
term in the heavy-quark expansion® allows the following
estimate of the charmed condensate term (which dom-
inates m, {@u ) if m, <10 MeV):

m (¢ )~—(a,/12m){GG ) = —0.001 GeV* (4.1)

for the standard-gluon condensate!® (a,/7){(GG)
~0.012 GeV*. This estimate may also be regarded as a
lower bound, in that recent work has argued for estimates
for (gG) two to five times larger than that utilized in
(4.1).

The fact that the charm-quark term (driven by the
gluon condensate) gives the dominant contribution in
(3.19) may appear surprising. Nevertheless, the usual in-
tuitive biases (often based on decoupling-theorem con-
siderations) against having a heavy flavor dominate a
low-momentum-transfer process have been shown to be
wrong in a number of applications. In b-s penguins and
in B%-BY mixing the top quark dominates, although we
would naively expect it to be decoupled because of its
large mass. In these cases, as in our own calculation, the
breaking of the Glashow-Iliopoulos-Maiani (GIM) mech-
anism by a relatively large disparity in fermion masses
provides the driving mechanism for the process in ques-



tion to proceed. As mentioned earlier, the top-quark
term m,{ft) (=m{(ec)) is unimportant for our effect
because of the smallness of the relevant f-quark mixing
angles. Consequently, the m,{¢c) contribution dom-
inates the process under consideration. If one further uti-
lizes the current-mass values my;~10 MeV, m =200
MeV, one then finds from (3.19) that*?

b=~1.5X10""7. 4.2)

This parameter can then be utilized to generate a por-
tion of the matrix element {7|H}"|K ), as remarked at
the beginning of the preceding section. We employ the
soft-pion theorem to relative the (7H|K) matrix ele-
ment to the divergence of the weak kaon axial-vector
current (3.1):"°

q"M, ~if (7’| H}FIK°®) 4.3)
in which case we find from (3.3) that, for kaon decays
(@>=m}),

(7°|H}C|K®) =V 2bm}E fx /f . . 4.4)

The matrix element in (4.4) is directly tested by the decay
of a neutral kaon into two photons. Assuming this decay
proceeds through an intermediate neutral pion, we find
that

_ 0y (.0 =0
(yy|HEE|RO) = (yy|a°)(#°|H,|K")

mi—m?
—V2bm}kf
=K Gyla) . (4.5)

(mE—mi)f,

The proportionality between measured K; —yy and
7°—yy amplitudes suggests that

16| =~(0.52)[(0.23X 1078 GeV™1)/(0.025 GeV™!)]
~4.8X107%, (4.6)

which is one-third of our estimate (4.2).

The scale factor b can also be related to K3, decays, an
area of obvious interest insofar as the {gq )-mediated s-d
self-energy is a purely AI =1 transition amplitude. If one
accounts for the rapidly varying K° pole in K9, then
pion PCAC (partial conservation of axial-vector current)
and current algebra lead to*2>2*

[ C2rlHRY KO = (1/f (A HRF KO [(1=m 2 /mp)
4.7)

for f,=~93 MeV. Upon further application of (4.4), one
obtains

[(2m|HEY|K°) | =V2bfy(mE—m2)/f2 . 4.8)

The experimental AI=] magnitude of (4.8), 26x10°8
GeV,? suggests a value for b~6.0X107%, a value con-
sistent with (4.6) and less than one-half of our estimate
(4.2).

Consequently, quark-condensate mediated self-energy
transitions appear to give an overly large contribution to
the AI=1 component of nonleptonic kaon decays. We
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emphasize that the results discussed above are obtained
using the same on-shell-renormalization recipe used in
Ref. 7 that is seen to suppress the contribution of the con-
ventional off-diagonal self-energy of Fig. 1. Such
suppression follows from the absence of momentum
dependence in the lead terms of the unrenormalized
Fig. 1 amplitudes, which are entirely eliminated by the
double-subtraction procedure needed to ensure the renor-
malization conditions (2.8). By contrast, the unrenormal-
ized (gq )-mediated off-diagonal self-energy (2.6) of Fig. 2
has a steep 1/p? momentum dependence, which gen-
erates the O(1/m} ;) counterterms responsible for the
1/m, dependence in the scale factor b of (3.19). More-
over, this dependence is insensitive to infrared regulation,
as has been noted in the previous section.

The 1/p?> momentum dependence of the (gq)-
mediated off-diagonal self-energy follows from the 1/p?
dependence within the y and W propagators occurring in
the Landau gauge [Egs. (2.5)]. As remarked earlier, our
use of the Landau gauge was to avoid problematical
(gq ) corrections to the Wgq vertex, corresponding to al-
teration of standard electroweak Feynman rules as a re-
sult of the SU(2)XU(1) noninvariance of the additional
(gq ) order parameter now present in the theory.!! Lan-
dau gauge transversality of the W propagator ensures
that the Fig. 2 Feynman amplitudes are insensitive to any
Ward-identity driven corrections to the Wgqq vertex:

I
AF‘;Vaq(p7kin’kout)~P_2_ 2 (kin)— 2 (koul)
P (@ (g79)

+ys [ 3 (ki) + 3 (kom)H )

(gq) (qq)
4.9)

Such corrections (considered outside the Landau gauge)
provide ‘“constituent-mass” corrections to Wgq vertices
that are currently under investigation.”> The non-
Landau-gauge contribution of such corrections applied to
Fig. 2 processes are comparable in magnitude to the ex-
plicit Landau-gauge amplitude we have calculated above.
Specifically, the W-exchange diagrams of Fig. 2 evaluated
outside the Landau gauge would acquire contributions of
order g*(gq)m?}/p*Mj}, from the vertex corrections
(4.9), a result comparable in magnitude and 1/p? kine-
matic structure to the amplitude (2.6) we obtain in a
gauge (Landau) for which the vertex corrections (4.9) are
irrelevant.

We further note that the s-d self-energy transition am-
plitude we have considered would not occur if the W and
x fields were integrated out in order to generate an
effective electroweak Hamiltonian with local four-
fermion operators, as is the case in the calculation of Ref.
13. Of course, such an approach essentially corresponds
to letting EM}, —p?— EM}, within covariant-(£) gauge x
and W propagator denominators, a simplification that is
inappropriate for the Fig. 2 process when using the M3,-
independent propagator denominators specific to the
Landau gauge (2.5).?® Thus, one cannot integrate out W
or its scalar partner in the Landau-gauge version of Fig. 2
(which is sensitive to the nonperturbative content of the
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QCD vacuum). Nevertheless we reiterate that our result
would be expected to arise from Ward-identity-driven
corrections to the vertices in Fig. 2 that occur outside the
Landau gauge.

Finally, we note that our overly large estimate for the
scale factor b [and matrix elements (4.4) and (4.8)] can be
reduced to phenomenological acceptable values through
use of a larger magnitude for the current quark-mass
values.?’ Indeed, the use of larger quark masses is sug-

gested by earlier work linking the quark condensate to
the dynamical component of quark masses.!”
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