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The charmed baryons A+, , :-+,l, =,l and 0, can only weakly decay to lower-mass baryons and
mesons. We derive relations between the decay rates of these particles based on flavor SU{3). Two-
body and three-body nonleptonic decays are explored along with semileptonic decays.

INTRODUCTION

Measurements of the branching fractions for many ex-
clusive decay modes of charmed baryons are starting to
be made. Although the weak decays of the A,+, :",',+,
and 0, have been observed, only the decays of the A,+

have been studied in any detail. The large event sample
of B-meson decays that will be collected in the near fu-
ture will allow for the study of the decay modes of all the
charmed baryons. Charmed baryons belong to one of
two representations of flavor SU(3): a 3 or a 6. The A,+,
:-,+), and:-„constitute the 3 and the 0„:-,+2, :",2, X,++,
X,+, and X, comprise the 6. Only the 0, and the
members of the 3 decay weakly; the other members of the
6 decay strongly or electromagnetically to the 3. It has
been shown that the flavor-SU(3) representations of
charmed baryons are a good approximation to their mass
eigenstates. '

The masses of five of the particles have been measured
to be (for a review see Ref. 2)

M + =2285.4+0.9 MeV/c
C

M + =2467+3 MeV/c
cl

M p =2472+3 MeV/c2,
cl

Mno =2740+20 MeV/c
C

M ++ =2452. 8+1.7 MeV/c
C

The lifetimes of the four weakly decaying charmed
baryons have been measured as

3.5+1.2. Decay amplitudes factorize in the large-N,
limit (also, the leading 1/N, terms cancel ), so we can
phenomenologically modify the SU(3} prediction for
I (D ~K+K )!I'(D ~tr+tr ) by (fx/f ) —1 7.
The phase space available to the two final states is
different giving rise to modification in the SU(3) predic-
tion of -0.7. These two effects essentially cancel leaving
the SU(3) prediction unchanged. It is unlikely that SU(3)
is this badly broken at the weak-interaction vertex, and
hence there must be a large contribution from final-state
interactions (FSI's). For instance, if there were a reso-
nance in the K+K system (and not the m+tr ) with a
mass near the D-meson mass then this could give rise to
the observed deviation between theory and experiment.
On the other hand, there are cases where SU(3) works
much better than at the 30% level (for instance, the
hyperon-nucleon axial-vector-current matrix elements).

Since the origin of the deviation from the SU(3}predic-
tions in D decays is not well understood, it is possible
that SU(3) may work much better for charmed-baryon
decay rates. Even if FSI's are important for charmed-
baryon decays (the energy of the decay lies in the midst of
the baryon resonances), their effect can be removed (as in
D-meson decays ) and the modified amplitudes can be
compared with the predictions from SU(3}. Since SU(3}
is a better symmetry for baryons than for mesons it is
possible that the effect of FSI's will not be as dramatic for
charmed baryons and then the deviations from the SU(3}
predictions will be significantly smaller than for the D
mesons, Therefore, we feel it is useful to tabulate the pre-
dictions of SU(3) for the decay of charmed baryons.

In the standard six-quark model the coupling of the
quarks to the 8 boson is given by

z +=0.196+0.016 ps, w + =0.57+0. 14 ps,
C

(lb)
—(u, c, t)y"(1 y5)K s W„++—H. c. ,

8'2

2&2
(2)

z p =0.082+0.06 ps, ~ p=0. 79+0.34 ps .
cl C

Flavor-SU(3) symmetry typically works at the 30% lev-
el in low-energy physics. The quantity fthm /f

„

is predict-
ed to be unity in the limit of exact SU(3) but is experi-
mentally determined to be —1.28. However, SU(3)
predictions for D-meson decays are found not to
work well at all. ' An example is
I (D K+K )/I (D tr n), which is predic. ted to
be unity in the SU(3) limit but is measured to be

C) $)C3 S)$3
i 6 ibS ) C2 C ) C2C3 S2$3e C

& C2$3 +$2C3e
ibS )$2 C )$2C3+ C2$3e C )$2$3 C2C3e

(3)

where c; =cos(8; ) and s, =sin(0, ). The angles 8; are all

where g2 is the SU(2)L gauge coupling and K is the
Kobayashi-Maskawa matrix, which can be parametrized
as
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chosen to lie in the first quadrant where their sines and
cosines are positive. With this convention the phase 5
has physical significance and must be fixed by experi-
ment.

Experimental information from nuclear P decay, semi-
leptonic hyperon decay, and kaon decay yields

s) -0.22 . (4a)

The angles 8~ and 83 are small and experimental informa-
tion from 8-meson decays gives, to leading order in small
angles,

and

(sz+s3+2szs3cs)' -0.05, (4b)

s3 &0.05 . (4c)

This paper is divided into two sections: nonleptonic
and semileptonic decays. In Sec. I we examine the
flavor-SU(3) predictions for the decay of charmed
baryons in the 3 and 6 representation to —,

'+ or —', + un-

charmed baryons and one or two mesons. Section II
deals with the semileptonic decay of charmed baryons in
both representations to —,

' and —,
'+ uncharmed baryons, a

(I+,v&) lepton pair, and zero or one meson. The matrix
elements for the decay processes are tabulated in terms of
unknown reduced matrix elements.

18/23a, (mb)

a, (m~)
a, (m, ) -2.5,
a, (mb)

(5d)

H i3(15)=H3i (15)=+1
for Cabibbo-allowed decays,

H f~(15)=H~, (15)= —H J3 ( 5)= —
3J (15)=s,

for Cabibbo-suppressed decays, and

H, ~(15)=H ~, (15)= —s,

(6a)

(6b)

(6c)

for doubly Cabibbo-suppressed decays. Similarly, 8b can
be represented in tensor notation as H' (6) which is sym-
metric on its upper two indices and has nonzero elements

H (6)=+2 (7a)

for Cabibbo-allowed decays,

H (6)=H (6)= —2s,

for Cabibbo-suppressed decays, and

(7b)

in the effective weak Hamiltonian. ' Consequently it is
possible, analogous to octet dominance in the decay of
strange particles, that the sextet component of the Hamil-
tonian may dominate charmed-baryon decays.

The operator 8&z can be represented in tensor notation
as Hb, (15), which is traceless and symmetric on its lower
two indices with nonzero elements

I. NONI. EPTONIC DECAYS
H (6)=+2s f (7c)

(cs )(du ) =8'b'+8'
—,s', (5a)

where

86'= —,
' [(cs )(du ) —(cu )(ds )]

transform as a 6 under flavor SU(3) and

8~Ps'= —,'[(cs)(du )+(cu )(ds)]

(5b)

(5c)

transforms as a 15 under flavor SU(3). The Cabibbo-
suppressed operator has a similar decomposition into 8&"
and 0",5', as does the doubly Cabibbo-suppressed operator
into 8b"' and 8'

—,5'. Perturbative QCD corrections aris-

ing from momentum scales between the 8'-boson mass
and the charmed-quark mass give rise to an enhancement
of the coefficient of 8& over the coefficient 8&z by

It is the interaction Lagrangian density in Eq. (2) that
determines the transformation properties of the effective
Hamiltonian for the weak decay of charmed baryons un-
der flavor SU(3). The hc = —1 nonleptonic decays arise
from weak Hamiltonians with Aavor quantum numbers
(cs )(du ) for Cabibbo-allowed decays, s, [(cd )(du )
—(cs )(su )] for Cabibbo-suppressed decays, and
s f (cd )(su ) for doubly Cabibbo-suppressed decays. These
operator are three different components of the same
Hamiltonian which can be decomposed into irreducible
representations of flavor SU(3). An example of this is the
decomposition of the component of the operator respon-
sible for Cabibbo-allowed decays [denoted with a super-
script (a)]:

for doubly Cabibbo-suppressed decays. [These can be
written with the same tensor structure as the 15 by con-
tracting with the totally antisymmetric Levi-Civita tensor
e,b, to give H f3 (6)= —H3, (6)= —1 for Cabibbo-allowed
decays, H, z(6) = —Hz, (6)= —H»(6) =H3, (6)= —s,
for Cabibbo-suppressed decays, and H, z(6)= —Hz, =s,
for doubly Cabibbo-suppressed decays. ]

A. Two-body Snal states

r'=(:-'„,—:-+„A+), T.b =e.„r',
8 is the baryon octet given by

(9a)

First we examine the process T~BM, where T
denotes the 3 representation of charmed baryons, B is the
lowest-lying —,

'+ baryon octet, and M is the lowest-lying
pseudoscalar meson octet. Some of the SU(3) predictions
for this set of decays have been considered before in Ref.
4. The effective Hamiltonian for the process is given by

Hb, (15)T~bB M, , +Hb, ( ( ~~~b

+cHb, (15)B M'T

+dHb (15)M"B ' T +eH' (6)T„B'M
+fH'"(6) T„MqBb+gH'"(6)B;Mb~T, q,

where a, b, c,d, e,f,g are unknown reduced matrix ele-
ments, T' is the charmed-baryon antitriplet
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Bb =

—A+ —X
6 2

1 o 1 o—A — —X
Process

Squared matrix element
(mod s1 )

TABLE II. Squared matrix elements for Cabibbo-suppressed
decays T~BM in terms of the reduced matrix elements a, b, c,
d, e, f, andg.

—v'2/3A

and M is the lowest-lying pseudoscalar octet
r

o & o
v'6 t} v'2

(9b)

M'=
b

1 p 1 p

&6 v2
sc ' —v'2r3ri'

(9c)

IM(A,+~X n+)I =IM(A,+~X+tr )I (10)

and this is a result of the SU(2}-isospin subgroup of SU(3).
There are several relations between squares of matrix

elements for Cabibbo-suppressed decays, as can be seen
from Table II. They are

The square of the matrix elements for Cabibbo-allowed
processes are shown in Table I. We see that there is only
one relation between the matrix elements of Cabibbo-
allowed decays,

A, A K
A,+ X K+

A,+ X+K
A+ ~pgp
A+ ~pm'
A,+ ~nm+
:-01~X n

0 Ap 0
cl ~
0 yp 0~cl ~
0 AQ~O

0 yO0

~nK

~p ~P P

r+m

pK
:-+,~Ape'

+ yp +

+ y+ 0

+ + 0=,1
—+X

~+ Q:-,
1 ~pK

~+ ~0=,1~" K

—'
I

—a+2b +2c+3d +2e 4f—+2gl'
—'

I

—a —d +2e —2gl

I

—a+d +2e —2gl
—' I2a b+—3c+2d —4e+2f —2gl

b —c—+2f +2gl '
b—+c+2f+2gl'
la+c+2el

—,
'

I

—a b —c—+3d —2e 2f +—4gl'
—' Ia+b —c —d+2e+2fl

—'
I

—a b+c+—d —2e —2fl'

12
—'

I

—a b+ 3c——d —2e 2f —4g—
l

'
la —b+2e 2f —2gl'—

I

—a —c —2el'

I

—a+b —2e+2f+2gl'
lb+d+2fl'

I

—b —d —2fl'
—'

I

—a b —c —3—d + 2e +2f —4gl'

—,
'

I

—a+b+c+d+2e —2fl

2 la b+c+d ——2e+2fl'
—,
'

I

—a b —3c——d +2e+2f +4gl'
I

—a+d+2e —2gl
b+c —+2f +2gl'

IM(:",t x m+)I =IM(:-,t
= K+)I

IM(:"„~n"K )I =IM(:",t~= K )I

IM(:-,t xm )I =IM(:-,t pK }I

p

IM(=-+, =-'K+)I'= IM(A+ n~+)I',

rY)l'

(1 la)

(1 lb)

(1 lc}

(1 ld)

(1 le)

which are all a consequence of the full SU(3) symmetry.
From Table III we see that there are no relations between
squared matrix elements of doubly Cabibbo-suppressed
decays. However, there are relations between the squares
of Cabibbo-allowed, -suppressed, and doubly Cabibbo-
suppressed matrix elements. They are

Process Squared matrix element

TABLE I. Squared matrix elements for Cabibbo-allowed de-
cays T~BM in terms of the reduced matrix elements a, b, c, d,
e, f, andg.

Process
Squared matrix element

(mod s1 )

TABLE III. Squared matrix elements for the doubly
Cabibbo-suppressed decays T~BM in terms of the reduced
matrix elements a, b, c, d, e, f, and g.

A,+ A m+

A,+ X m.+

A,+ X+m.

A,+ ~pK
A,+:"K+
~0 +c1~

0 0 0
cl
0 0 0
cl ~

A K
X+K

~P ~p +
cl +

X+K

6 la +b —2c —2e 2f —2gl'—
z Ia b —2e+2f+2gl'—

a +b +2e 2f —2gl'—
—' Ia +b —2d —2e 2f+2gl'—

Ia+c —2el'
lb+d —2fl'
la+c+2el'

—,
'

I

—a+d —2e+2gl
—' Ia 2b +d +2e —4f —2gl'—

—'
I

—2a+b+c —4e+2f +2gl'
Ib+d +2fl '
b+ c 2f —2gl'— —

I

—c —d —2gl'
I

—c —d +2gl'

A,' ~pKQ
A,+ ~nK+

:-0„~A'K'
:-0„~XOKO

~p 0=cl ~n g
~p=c1~P~
:-Q„~n mp

A K
XoK

X+K
~+ 0=c 1 ~P '9

+ 0-"cl~P~
~+ +=cl ~n Vr

Ic+d —2gl'
Ic+d+2gl'
la +c+2el'

—' Ia 2b+c+2—e+4f —4gl'

—,
'

I

—a+c —2el'

—,
'

I

—2a +b +d —4e +2f +4gl
Ib+d+2fl'

—,
'

I

—b+d —2fl'
—'

I

—a +2b —c +2e 4f —4gl'—
—,
'

I

—a+c+2el'
I

—a —c+2el2
—' I2a b —d —4e+2f +4gl-

b+d +2fl'—
b —d +2fl'—
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:--K+)l'=s', lM(=-'„:--~+)l', (12a)

lM(:",i
2+m' )l =sf lM(:-, i

X+K )l, (12b)

l
M (:-,+,~X+K ) l

=s, lM (A,+ ~pK ) l

lM(=-,+, n~+}l'=s', lM(A,+

r K+)l'=s', IM(:-'„:-~+)l2,

IM(:-'„p~ )l'=s', lM(=-'„

nK') l'=s', lM (=-,',

pK')l'=s', lM(:-,', -r, 'K'')l' .

(12c)

(12d)

(12f)

(12g)

(12h)

Unlike B-meson decays, where the final-state masses
are small compared to the energy released in the decay,
the sum of the masses of the products from charmed-
baryon decay is not always negligible compared to the en-

ergy release. Therefore, SU(3) relations between decay
rates, derived from relations between the square of matrix

I

d f'(a bc) = lM (a ~bc)l d 0,1 , Ipbl

327T2 ma
(13)

where m, is the mass of the decaying particle, pb is the
momentum of one of the final-state particles, d Q is its
solid angle, and M((2~bc) is the matrix element for the
decay a +bc —The. re is also an additional factor of lpb l

occurring in the squared matrix element for decays with
final-state angular momentum l. Any mass dependence
in the matrix element is not corrected for as this is due to
explicit SU(3) violation and not a kinematical effect.
Consequently we find that, for instance,

elements, have significant phase-space corrections. The
exception to this is when a relation is due to isospin,
where the difference between the sum of the final-state
masses is small. To find the relation between the decay
rates from the square of the matrix elements we can use
the expression

I (:-,, X n+)

r,(:-'„=--K')

M +M+
M p

c1

M +M+
M p

cl

'2

M p
cl

M —M +

M p
cl

'2

I+1j2

(14)

where l is the angular momentum of the decay channel
and I I is its contribution to the rate. For this process
both /=0 and l=1 partial waves can contribute. The an-
gular distribution of the decay products from a polarized
charmed baryon can be decomposed to yield the relative
magnitude of the 1=0 and l=1 partial waves, to which
the phase-space corrections can be applied accordingly.
If, however, the angular distribution information is not
available (which is probably the case), then the best esti-
mate of the phase-space correction is to say that it lies
somewhere in the range between its value for 1=0 and
l= l. Thus the fiavor-SU(3) prediction for the above pro-
cess is

1.2r(:-o„:--K')& r(=-'„r-~')

h +111 g++ h e112 g+ h +113 ye+1 1

v'3 ' v'3

h +122 gO h 0133 eO= 1 1

v'3 ' v'3

h
a 123 — yaO h

a222 g —
h

a2231

v'6

(16)
1

3

One of the branching ratios for final states containing a
vector meson has been measured B(Ac+~pK * (892))
=(5.6%3)X10,' ' from which we predict that
B(:",+)~X+K' (892)}-1X10

Next we look at the process T~h *M, where h ' is the
decuplet of —,

'+ baryon resonances with elements

& l.7r(=-o„-:--K+) . h 4233—
3

lM(:-'„rp')l'=lM(:-,', :--K'+(892))l'. (15)

The only decay mode that has been observed is
B(,A+~p K)=(1.5+0.6}X10," ' from which we

predict that B(:-,+, ~X+ K)-3X10 . These expres-
sions can easily be carried over to decays involving
baryons and vector mesons, T~BV. Unlike the pseudo-
scalar mesons, the isoscalar diagonal element of the octet
and the singlet of SU(3} are not the vector-meson mass
eigenstates (0 and P. Consequently relations found be-
tween decays with pseudoscalar mesons in the final state
are preserved for vector mesons in the final state except
for those decays involving g . An example of this is

The effective Hamiltonian for the process is

c(h sabcT He (15)Md+Ph aabcT Hd (15)Me

+yh *' 'H (15)M'Td +5h ""'H' (6)Tb Mg

(17)

where a, P, y, and 5 are unknown reduced matrix ele-
ments. The rates for Cabibbo-allowed decay processes in
terms of these reduced matrix elements are given in Table
IV. There are four relations between Cabibbo-allowed
decay rates. They are
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TABLE IV. Squared matrix elements for Cabibbo-allowed
decays T~h*M in terms of the reduced matrix elements a, p,
y, and 6.

TABLE V. Squared matrix elements for Cabibbo-suppressed
decays T~h M in terms of the reduced matrix elements a, P,
y, and 5.

Process

A+~X'+~0
A,+ 2*+g
A+ r, *0~+
A+~a++K-
A+ g+K 0

A+ =-"K+
+ y4+K 0

+ -40 +c1~
0 @+OK 0

0 -40 0-"c1~=
c1~ 'I

~p ~g — +cl~
:-,1

—+0 K+

Squared matrix element

2a+P —2y —51'

—,', I2a —P—2y —35I'
—'

I

—2a+ p —2y —5I'
lp+5I'

—,'lp+51'
—,
'

I p —2y —5I'
-'la I'

—,
' I2a —P+2y —5I'

—,
' I2a —p+5I'
2a—+P 4y—+ 35I'

,
' I-p+—2y-51'

—,
' I-p+51'
I-p+51'

(18a)

which are due to isospin and

IM(A+~y'+~')I'= IM(A+ &"~+)I'

M(A,' a+'rC )I'=31M(A,'

Process

A,+ 6+m.

A,+ 6 m+

A+~X'+Ko
A+ X"K+

6+K
~+ y4'0 +

cl ~
~+ y4+ 0c1~
~+ ~gp~+c1~
~+ Q+ +K
~+ @4+ 0

cl ~
0 gOK 0

0 y 40~0
~P ~P ~p-c1~-
=01~r*+n.
~0 gQ — +

~0 ~Q —~+
a'K-

Squared matrix element
(mod $1)

a— y— 5—I'
-',

I
+p-yl'

—,
'

I

—2a+P —2y —5I'
—,
'

I

—2a+ p+5I'
—,
' I2a+ p —2y —5I'

lp+5l'
—,
' 12a —P—51'

—,
'

I

—2a-p+2y+5I'
—,
' I4a+P+2y+35I
—,
' I2a —P+ 2y+5 I'

I-p-51'
,' I

—p+2y+5I'
—,
' I2a —P+2y —5I

—,', 12a —P—2y+»I'
—,'6 I2a —P—2y+ 35 I'

—,'12a —P+ 2y —5
I

'
—,
'

I

—P+2y —5I'
', I-p+51'-
-', I-p+51'

—,
'

I

—P+2y —51'

I
M (

=+ x'+ I7 )
I

=
I
M ( =,+,~=" m. + ) I (18c)

IM(:-,t~Q E+)I =3IM(:",)~=' n+)I, (18d) IM(A,+~6,+K )I =IM(A,+ —+b, K+)I (21a)

which are due to the full SU(3) symmetry. Again, phase-
space-correction factors must be applied to these equali-
ties giving, for example,

IM(:-,+i —+b++m )I =3IM(:"+ X'+E )I (21b)

IM(:-', i a ~+) '=31M(:-', (
y" Z+)I', (21c)

(19) M(=+ (21d)

a modification of (0.69) due to the difFering final-state
masses and the fact that the decay is P wave (neglecting
possible D wave contribut-ions).

There are several relations between the squares of
Cabibbo-suppressed matrix elements, as seen in Table V.
They are

TABLE VI. Squared matrix elements for the doubly
Cabibbo-suppressed decays T~h*M in terms of the reduced
matrix a, P, y, and 5.

a'~+)I'=IM(=-,+, =-"'z+)I',

IM(A,' r*+Ic')I'= IM(=-,', a'E'') I',

a+'rc )I', -

IM (=-'„-a'IY')I'= IM (=-'„-=-"z')I',
r*'~')I'=3IM(=' -r.*'q')I'

r*+~-)I'= IM(:-'„a+sr-)I',

(20a)

(20b)

(20c)

(20d)

(20e)

(200

(20g)

(20h)

which are all full SU(3) relations.
There are also relations between doubly Cabibbo-

suppressed matrix elements as seen from Table VI. They
are

A,+

A+
+
c1

~j
cl

~+
leal

cl~+
cl
+
c1
+
cl

~p
cl

~p
cl

~0
cl

~0
c1

~p
cl

~0
cl

Process

~A+K
aOK-
g+ Q

X* K+

~r, *+Kp

~b, +mp

gp~p

-x*pzP

-x'-ac+
gp 0

Squared matrix element
(mod s, )

4lal'
4lal'

2a+p yl'-—
—,
'

I

—2a+P —2y —5I'
Ip+51'

—,'lp+51'
—,
' IP-2y-51'

-',
I

—2a+p-yl'
—,
'

I

—2a+ p —2y+5 I'

—,
'

lp —2y+5I'
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S'~+) f'=2s', fM(A,+ r'+~') f',
fM(A,+ Is, '+~ )f-'=s', fM(A,+ a"K ) f—',
2fM(:-,+, r*+~')f'=s', fM(A,+

fM(=-'„a'K')f'=2s', fM(=-'„-r"'K')f',
r'+~-) f'=s2 fM(:-'„r*+K-)f',

fM(:-'„—+X' m. +)f'=4sf fM(:-,', —+=' n+) f',
fM(=-,+, r "K+)f'=", fM(A,+

fM(=-,', ~"~ )I'="-, IM «+ ~++K )f', -

fM(:-,', ~a'~') f'=s', fM(A,+

I M(A+ ~a+K') I'=st I M(:-+i~r'+K ') f',
fM(= X* K ) f

=s fM("„~X'K ) f

fM(=-'„-a'~-)f'=s', fM(:-'„r'+K-)f',

(22a)

(22b)

(22c)

(22d)

(22e)

(22f)

(22g)

(22h)

(22i)

(22j)

(221)
I

Several relations between Cabibbo-allowed,
-suppressed, and doubly Cabibbo-suppressed decay
modes are found. They are

fM(:"„b,rr )f =s, fM(:-„0K+) (22m)

One of these decay modes has been observed with a
branching ratio of'

B(A, b, + K )=(5 3+2 7)X10 (23)

and hence we can predict, neglecting possible D-wave
contributions, that B (A,+ b, ++a. )-(3.8+2.0) X 10
[-(4.8+2.5)X10 for a purely D-wave process] and
that B(:-,+&~b, + n. )-2.3X10 ( —3.8X10 for a
purely D-wave process).

Next we look at the two-body decays S~BM, where S
denotes the 6 representation of charmed baryons. The
element S33 0, is the only member of the 6 that decays
weakly, the X,++'+' decay strongly to the A,+ in the 3
(e.g. , X,++~A,+~+ ), and the =,+2' decay electromagneti-
cally (e.g. , =,2~=„y).By inspection of the Qo flavor
wave function we see that the only Cabibbo-allowed 6nal
state is = E . We therefore look for relations between
Cabibbo-allowed and -suppressed decay rates. The
effective Hamiltonian for the process is

H,&=ac' IB 'H" (15)S M'+be' IB 'H (15)S M'+ca' IB 'H" (15)S&&M,'

+de'bIB IH,",(15)Sq,MI', +em' IB IH,",(15)S,qMb+ f (B bM, )[H' (6)S,q]

+gB I,M, H' (6)S,q+hMbB, H' (6)S,~+kB bMqH (6)S„+le'IB IH,",(15)MqSI~ . (24)

The squared matrix elements resulting from this effective
Harniltonian are found in Table VII. We see that there
are no relations between any of the decay rates involving
Cabibbo-allowed, -suppressed, or doubly-Cabibbo-
suppressed decays.

If we look at the isospin structure of the doubly
Cabibbo-suppressed sextet component of the Hamiltoni-
an 8~6 '=

—,
' [(cd )(su ) —(cu )(sd )], we see that it is an I=O

operator, whereas 0',z' is an I= 1 operator. Since 0, has
I=O, we expect that the decay to A rl proceeds via 86

TABLE VII. Squared matrix elements for the decays S~BM in terms of the reduced matrix ele-
ments a, b, c, d, e, f, g, h, and k.

Process

nO, -:-OSC'
nO, rOSC'

0,
gO 0 0

c

m. +

0, X+K
0 -A'E'

0, :" E
0, :- K+
gO pO 0

C

0, X m+

0, 2+m.
nO-nay'

0, Xm

Squared matrix element

f

—a b+2kf'—
s' —'

f
2a —c +d +2h 1f'—12

s |—' f

—2a 3b —2c ——2d —3e —2g +4h +4k +1f'

sf~fb —e +2g + If'

s', fb +e —2g —l f

s] fc —d —2h +If'
s',

6 Ic+3d +2e+4g —2h +4k lf'
s', —,

'
f

—2a +c —2d +l f'

s',
f

—b —c 2f —e —2gf'—
s', Ib+c 2f +e —2gl'—

s', —,
' fc+2e —l f'

s, fc 2f +lf'—
s, fc+2f +1f'

s i fd +2f +2hl
s, —f3f +2g +2h +2k f'

$44ff f2
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only, and similarly for the X m. final state, since the weak
Hamiltonian does not have an I=2 component. There-
fore, by measuring the relative rate for an I= 1 decay, for
example, the X g or A ~ final state compared to an
I=O decay, an estimate of the relative contributions from
66 and Ots can be made. This will not be a strong set of
the perturbative QCD prediction since there could be
cancellations between the reduced matrix elements con-

tributing to the decays, but it will give a rough estimate
of the relative contributions. Unfortunately, since these
are doubly Cabibbo-suppressed decays, they will probably
be the last to be measured and hence their predictive
power is somewhat limited.

Consider now the process S—+h*M. The only two
possible Cabibbo-allowed final states are 0 ~+ and
:"'E . The effective Harniltonian for the decay is

H, tt=ah ""'H b(15)S Md+ph ""'H (15)Sb M'+yh "'H (15)S&dM'

+5h "'H (15}Sd,M'+Re h "'H '(6}MjS„+r)e h "'H '(6)MfSb, . (25)

The resulting squared matrix elements are shown in
Table VIII. We see that there are no relations between
any of the Cabibbo-allowed or -suppressed decay modes.
However, there are two relations involving doubly
Cabibbo-suppressed processes; they are

IM(n' S+& )I'=1M(&o, (26a)

IM(n', :-" &+)I'=s f-,'IM(fl', (26b)

B. Three-body final states

H,~=m.+~ +sr'm', (27)

of which matrix elements can be formed to yield

(28a)

and

& olH„I~'~'&=2, (28b)

due to the two possible ways of annihilating the two neu-

In this subsection we will be considering decays of
charmed baryons to final states containing a baryon (ei-
ther in the lowest-lying —,

'+ octet or the —', + decuplet) and
two octet mesons M. As far as SU(3) is concerned the
two meson octets are identical and consequently the
Hamiltonian must be symrnetrized if the mesons are in a
relatively even angular momentum state or antisym-
metrized if they are in a relatively odd angular momen-
tum state. When the Hamiltonian is expanded in terms
of the individual particle operators, and matrix elements
are taken, there are syrnrnetry factors that must be in-
cluded. This is demonstrated most simply by an example.
Consider the Harniltonian

TABLE VIII. Squared matrix element for the decays
S~h M in terms of the reduced matrix elements u, p, y, 5, A, ,
and g.

Process

n0, ~=-*OK '
0, 0 m. +

0 -X*'K'
g0 40~0

g0 40 0

Q, :-* m

Q, ~Q K0-X* K-
0, X*g
n0:-*OK'
n0, :-*-K+
0, X*+~
Q, ~X*
0, 6+K
Q, ~b, K
nO, -X*0~0

Squared matrix element

—,
' I2a+ p+2ql'

lp-2~1'
s i-,

' 12~—y —»—2~1'

s) —,', l4tt+3P+y+45+6A. +6gl'
s'-,'

I

—P—y+2& —2g I'

s, ,
'

lp y+2~-—
s',

I P y+~2+g2l'— —
s', —,

' Iy+26+2XI'
s', —,

'
I

2tt+ y 2—5I'—
s' —,

' IP+y+2A, +2m(I'
s', —,

' IP+ y
—2Z —

2' I'
s', —,

' ly+2A, I'

s4, —,
'

ly
—2kl'

44 I8I2
s44 I8I2
s44 IXI'

tral pions. When we form a rate from these matrix ele-
ments there is an additional factor of —, multiplying the

phase-space integrals from Bose statistics. In the
tables this factor of —,

' has been omitted and so to obtain
rate relations from the squared matrix elements a factor
of —, must be included for processes involving identical
particles. Also, in obtaining rate relations from the ma-
trix elements, phase-space-correction factors must be in-
cluded just as for the two-body decay modes. However
since these factors depend upon the momentum
configuration of the final state we will not calculate them
in this work. Any processes that are not energetically al-
lowed are not included in the tables.

The first three-body decay process examined is
T~BMM, for which there are 19 reduced matrix ele-
ments. The operator Gts contributes 11 reduced matrix
elements and 8& contributes eight. The Hamiltonian for
the process is



1534 MARTIN J. SAVAGE AND ROXANNE P. SPRINGER 42

H„=A T'8 bad, (15)M;M'+8 T'8 'H;(Is)M'M"+C T'8 'H:„(I5)M„'M'

+DI T'B,H,b(15 )M;Md+E~[T'B, H;b(15 )](MIM, )+F~T'8 H (15 )MbMd

+GIT'B,H,",(15)MdMb+IIT'B, aqd(15)M'M +JIT'B,'H(d(15)M M

+K T'8 H (15)M'Md+L T'8 "Hb, (15)M,'Md+ A, [T,bB 'H"'(6)](M M')

+8, T,(,B;H' (6)M, Md+ C, T,bB;H (6)M,'Md+D, T,bB;H '(6)M "M,'

+F T 8'H'"(6)M M'+I T 8 H"(6)M M'+J T 8'H"(6)M"M +K T 8'H '(6)M'M (29)

The matrix elements resulting from this Hamiltonian are
not tabulated in this paper as there are —121 possible de-

cay modes for either angular momentum state.
Despite this large number of operators there are still

relations between some matrix elements for various decay
modes. The relations between Cabibbo-allowed decays
are all due to isospin, examples of which are

)(L=02. . . )f

fM(A,+ X K ~ )f'=fM(:-,+, pK

fM(A,+ pK K )f = fM(:-,+, X+K K ) f

fM(A,+-nK'K ) f'= f(M(:-'-:-'K'~+) f'

$2Z-~'~') f'& '
fM—(A,+ =- K'-~+) f',

2

(31a)

(31b)

(31c)

(31d)

—IM(=, )~= ~ ~ )(L=02. . )l

fM(A, ~& ~ lr )(L=) 2, . )I

(30a) fM(:-', ) pK0~ )I'=1M(:-',
)

&'K K')I',

Kn~')f =2f(M=-'„-=-KO+~ )f',
(31e)

(31f)

= fM(A,+ X+~+7T )(L =l 2 )I' (30b)

for even and odd angular momentum channels, respec-
tively, and

(, 'q' ')f'

fM(A+~r0~0~+) f'& ,'fM(A+-Z ~+~+)f2,

(30c)

(30d)

=s) fM(A+~ K+lr+)(L=) 3 (30e)

More interesting are the Cabibbo-suppressed decays
where there are relations due to the full SU(3) symmetry
which are independent of the relative angular momentum
between the mesons. They are

which are independent of the relative angular momentum
between the mesons. The inequality arises from the fact
that processes involving identical mesons in the final state
can only proceed through even angular momentum chan-
nels. There is a relation between a Cabibbo-allowed pro-
cess and -suppressed process that holds only for odd rela-
tive angular momentum states which is

(:c&:K+~+)(L=),2, . . . )f

fM(:-„XK K+)f =fM(:-„:-K v+)f, (31g)

0 yoK OKO) f2 —fM( 0)~AOK OKO) f2 (31h)

Experimentally, branching ratios for some of these
processes have been measured, 8 (A,+ —+pK n+)
=(2.6+0.9) X 10 (Ref. 5) and 8 (A,+ ~X "sr+~ )

=(10+8)X 10 (Ref. 16) of which the latter appears in
an isospin relation between Cabibbo-allowed decays.

There are 29 reduced matrix elements contributing to
the process S~BMM, 20 of which are from 8)s and the

remaining nine from 86. Only two relations are found:

fM(n', -&+K OK-) f'& 2 fM(n'-X'K 'K') f'

M(n,' pK'K )f'o 'fM(n,' n-K'K') f'

(32a)

(32b)

The first is between Cabibbo-allowed decays and the
second between Cabibbo-suppressed decays. They are
both consequences of isospin. The matrix elements for
the various decay modes are not tabulated.

We consider now the process T~h'MM. There are
12 reduced matrix elements contributing to the decays.
The effective Hamiltonian for the process is given by

H, s.= Agh *'"'H)„(15)MdM~Tg+BIh *' 'H,"b(15)Md' T s+CIh *' 'Hs, (15)M('Mg Td,

+DI[h *' 'Hb, (15)T,d](MgMg)+EIh ""'H,b(15)MdMgTg +F~h *'"'H b(15)MdMgT„

+GIh *'"'Hg(15)Mba Td+Ijh *' 'H, b(15)M'MgTd, +C, h *' 'Hg, (6)MbMgTd,

+E h *' 'H" (6)M'MgT +F h *' 'H (6)M'MgT„+G h *' 'H (6)M'MsT (33)

The results for Cabibbo-allowed decays with the mesons in an even (odd) angular momentum state are shown in Table
IX (Table X). Cabibbo-suppressed decays with the mesons in an even (odd) angular momentum state are shown in

Table XI (Table XII). We see that there are many relations between squared matrix elements for various processes.
For Cabibbo-a11owed decays, we find that there are relations between matrix elements when the mesons in an even or
odd angular momentum state. They are
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~ ~+)(I.=02 )I'=-,'ll(=-,+]-=-' ~'~+)(L=02. . . )I'

&+~+)(L,=o 2, . . . )f

IM(, ]~ ~ ~ )(L, =02

f~( ] 5 E E )(I —] 3 )I
=

&
IM( +]~A+ E EC )(L —] 3 )I

IM(A ~ E ]] )(I=] 3 )I'=-,'Im(:-,; n I( +']]')(I =] 3 )I'

(34a)

(341)

(34c)

TABLE IX. Squared matrix elements for the Cabibbo-allowed decays T~h MM where the mesons
are in a relatively even angular momentum state in terms of the reduced matrix elements Af, Bf, Cf,
D~, E&, F~, G~, I&, C„E„F„and6, .

Process

A+~X +m. m

A,+ X+m m+

A+ ~X"~0~+
A+ ~X "~+qo
A+ ~=-"K+~0
A+:- K n+
A+ a++K-~0
A,+ —+5+K m+

a'K 0~'
A+ ~apK 0~+

A+~X'-~+~+
A+~:-' m+K+
A+ g++ -K 0

=-+, X'+K-~+

+ / 77

:-+-+lL++K K
+ gtKOK 0

+ ~00 0 +
c I ~

:-+,~:-' m+n. +

=-+, O-K+~+
~X +m. K
~X +K m

cl~ 'I ~
a++K-K-

:-,l ~6+K K
X m+K

Z'K'K'
~p ~gp +

p
cl ~ K 1T

Q Kn

Q K

l

4

Squared matrix element

—,
' I2AI+2BI —Cf +4Df Fj 2I—f + C—, +F, I

—,
'

I

—2BI +Ff 2' —2II + 2C—, +F, I'

,' I2Af+2—Bf+4Dl+Ef 2II E,—I'—
,'I —c,—Ef ——F,+c,+E,+F, l'

2BI +—Ff 2Gf 2I—I+2C—, +F, I

Af Cf ]Ff If+C, +—2F, I

—,
'

I 2 Af +Ef 2If E, I— —
—'

I

—Cf Ff +26f ——C, F,I—
—'

I

—Cf Ff +2Gf —C,—F,l'—
-'I —Cf 2EI Ff +—26f —C, —2E, F I2— —

—,
'

I

—CI Ef Ff +2—Gf ——C, E, F,I——
Cf Ef F—f + C—, +E—, +F, I'

—'
I

—2Cf Ef Fi+2—C, +E—, +F, f2

IEi+E, I'
—'

I

—2AI 2Bf Ef +F—f E,—F I——
2Ay 2Bf—3EI—Ff —3Es —3Fs I

'— —

,'12Ai+2Bf+Ef —Ef E, F,l'— — —
—,'IE, +F, l'

4AI 4BI 3EI—+Ff +—3E, +—3F, I

'
IEI+Ff+E, +FBI'

', IEI+Ff+E, +—F, I'

Ef Ff+E, +—F,f]—
4]

I Ef Ff+E, +F,—I]—
Ef Ff+—E, +—F, I'

2Ai Ef+2I, —E,I'— —

6 I

—2 Af +Cf +FI 2GI +2II —C, +—F, I

—,'8 I2AI 3CI Ff 2GI 2If ——5C, —F,I—— —
—
]'2 I 2Bf+Cf+Ef+2—Ff —2Gf 2II —C, +E,I'—

9 I 2 Af +2Bf —Cf Ff +2Gf + C, —F,I—
4lc, +c, l'

,'I2Cf+Ef+Ff+2C, +E, +—F,
l

—,
' fcf+Ef+Ff —26f —C, E, F,I2- —
2cg 3EI Ff+4G—f+2C—,—+3E,+F, I'

6I2Bf+Cf+Ef 2GI+2If —C, E,—l—
) ICf+Ef+Ff+C, +E,+F, l

2BJ 4Df Ef+E,I— — —
' IEf +Ff E F I— — —

Ef+E,I'—
—,
'

f

—2' 4Df +Ff F,I'— —
'IF, FI'--
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There are also many relations that are independent of the
relative angular momentum between the mesons; they are

IM(A,+ &++K m )I =
—,
' IM(A, b, K m' )I

(34d)

Turning now to the Cabibbo-suppressed decays, again
there are many relations between squared matrix ele-
ments. All except one of the relations between the
squared matrix elements are independent of the relative
angular momentum between the mesons. The relations
are

IM (A+ ~x'+g'~') I'= IM (A+ ~x"g'~+ )I', (34e)

IM("+~=' m n+)I =
—,'IM(:",+i —+0 K+@+)I

&
—,'IM(=-+, =-'-&+~+)I'

(34g)

(34h)

IM(A+-x*'~'~+)I' -'IM(A+-x'-~+~+)I' (34f)

IM(:-+ 6++K K )I' 'IM-(=+ I).+K K )I'
IM(A+ x'+K+@ )I = 1M(=,+i 5+K m+)I

IM(A,+-x'-K'~+) I'= IM(=-,+,

IM (A+ ~6+77 'I) )(L —
~

= IM( &+t~x +71 7p)(g =~ 3 )I ~

(35b)

(35c)

(35d)

TABLE X. Squared matrix elements for the Cabibbo-allowed decays T~h MM, where the two
mesons are in a relatively odd angular momentum state in terms of reduced matrix elements 3f Bf,
Cg, D&, E&, F&, Gf, I&, C,', E,', F,', and G,'.

Process

A+ X'+~-~+
A+ ~X"~0~+

c

A+ X"~+qp
A+ =-"K+~0
A+:" K m+

A,+ 6 ++K m.

A,+~5+K m+

A+ a+K 0~0

A+ ~aPK P~+
c

A+ ~a++~-K '
A','-=-'-K'-'

+ g4'+ OK 0

~+ @4+K— +

+ 0]0~+
:-+)—+5++K K

+m K

X +K
0 y+OKO 0

cl 'I ~
X* m+K

~p ~g — 0 +c1~ g 77

~+K-K'
X K

~P ~+0 — +
c I ~ lT 77

~p ~Q — p +
cl + 7T 77

Q Km+
n-K+~0

Squared matrix element

912AI + Cf + C,'+2F,'+2G,'I
—,
'

I

—2 Af —28f Ef +2If +—E,'I
—,
'

I 2 Af'+28f'+ Ef' 2If E,'I— —

9 12 Af + Cf + C,'+ 2F,'+ 2G,'I

—,'12 Af F) 2If +F—,' I

'—
—'

I 2 Ag+ EJ' 2II E,'I— —

,' I c,' +F,'+—c,'+-F,'+zG,'I'
—,
'

I
cf'+ Ff'+ C,'+ F,'+ 2G,

'
I

~

IEf+E,'I'
Ef Ff +E'+—F'I—

—,'8 I 2 Af'+ 68f'+ 3Ef'+ Ff'+ 3E,'+ 3F,' I

—,'12Af +2BI+Ef Ff E,' F,'I—— —
21 —2Af Ef +FfI—3

—,', I

—4AI 3EI+Ff +3E,'+—3F,'I'

IEf +Ff +E,'+Fs'I '

6 I

—48f Ef' Ff +E,'+ F—,
'

I

'—
E, F, +E, +F,I'--

61
—2Af —Cf +Fr 2If + C,'+F,'+2G—,'I'

—,', 12 Af —Cf Ff 6If + C,' F—,'+ 2G,'I— —

,', 14Af+28f+cf+—Ef' zIf c,'+E,' 2F;—2G—,'I'— —

,', 14Aj +6BI Cf +—3Ef 6II + C—,
' 3E,'+ 2F—,'+2G,'I'—

912Af +Cf —C,
' —2F,' —2G,' I'

—,
'

I Cf Ef +Ff —C,'+ E—,' —F,' —2G,'
I

'
—,', I

—2Cf +3Ef Ff +2C,
' 3E,'+F,'+—4G,'I'—

~ IEf+Fj +E,'+F,'I
28f + Cf Ef +2II —C,'+ E,' 2—G,'I'——

28f Ef +E,'I'— —
—'

I
Ef' Ff E,'+ F,'I'——

Ei +E,'I'—
,' IFj F,'I'——
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TABLE XI. Squared matrix elements for the Cabibbo-suppressed decays T~h MM, where the
mesons are in a relatively even angular momentum state in terms of reduced matrix elements Af, Bf,
Cf Df Ef Ff Gf If C„E„F„and6, .

Process

A+ S+~0~0

A,+ 5+m+m.

A+ —+6+K+K
A+ a+E0Eo
A+ ~F0~0~+
A,+ 5 m. +g
A+ aoE 0E+
A+ ~X"K+~0

c

A+ X"K0~+

A,+ —+X +K+m

A+ X +Kmc
A+ ~a++~-~0
A+ 6++K E
A,'-~"~'--
A,+ 6 m+m. +

A, X* E+n+
~+ g+E 0 0

:-+,~h+K m+

+ gOE 0 +C1~
:-,+1-+X K K+
:-+,~X "gOn. +

:-+ X'+E-K+
:-+,~X'+gOm'

6++K m

=-+,-a++E-qo
cl ~
+ y+0 0 +c1~
+ ~40K+ 0
cl ~~

:-+,~X* m+~+

=,+1~6++K m
+ y++K 0Ko

+ ~40EO +
c1

a+E0~-
=-:,-a+E-~0

hE m

r"E0EO

r "m-OgO

r*+E-Eo

:-O„~r'+m m'

:-',~aoE-~+
r*oE-E+

c1~ 77 77

Squared matrix element
(mod S1)

—, I Af+Bf+2Df+Ef Gf —If +—C, +E, +F, I

' I28f+—Cf+3Ef+Ff+2If —C, +3E,+F, I

—' I2Af+28f —Cf+4Df +Ef Ff+—26f 2If——C, —E, F, I'—

—,
'

I 4Df +Ff 2If +—F, I

—,
' I28f+4Df Ff —F, I—

Cf —Ef —Ff —2Gf—+3C, +3E, +3F, I

48f 3Cf 3Ef —Ff +—26f 4If —+ C, 3E—, Fs I—
3 I 28f +—Ff 2If +—F, I

,', I4Af—+28f Cf+—3Ef 2Gf —2If+—3C, E,I—
6 I4Af +28f —Cf +Ef 2Ff +—2Gf 2If —C—, E,I—

3 I

—2Af 28f —C—f Ef +26—f —C, +E, I2

—,'12Af +28f Cf Ef—2F—f +2—Gf C, E,—I

'—
~ I

—Cf Ef F,—+2G—f —C, E, F,—f—
IF, +F, I'

6 I

—Cf+3Ef+Ff+2Gf C, +3E, +F—, I

4I —Cf Ef Ff+—C, +—E, +F, I

-'fc —c I'

6 f

—2Af 28f+Cf —Ef —26f—+C, E, 2F, I2— —
—,', I

—2Af —28f+Cf +3Ef +4Ff —2Gf +C, +3E, +2F, I'

3 I 2 Af +28f + Cf +Ef —2Gf +C, E,I—
—,
' ICf +Ef+Ff —26f+C, E, F,I— —

6 I

—4Af —28f +Cf Ef +2Ff —
2Gf+2If +—C, +E, I

9 I 4Af 28f ——3Ef +—26f +2If —2C, F,I'—
—, I

—2Af 28f+Cf 4—Df Ef+—Ff 2G—f+2If +—C, +E,+F, I

—'
I

—2Af+Ff+2Gf+2If —2C, F,I—
-'

I Cf Ef —2Gf + C—, —E, I'
—' ICf +3Ef +2Ff —2Gf+C, +3E,+2F, I

ICf 4Df +Ef +2If —C, +E, I'

,
' Ic, C, +E, +—F,f'—

6 I28f +2Cf +2Ef+Ff+2If —2C, F,I—
—, ICf Ef Ff —C, +—E, +—F, I'

4fc C I2

IFf+F, I'
-'f —28 4D, +F,+F f'—

4Df Ff F, +—2If I'——

,
' I28f Ff +—2If F,f'— —

2Af+2Cf+Ff+—2If+2C, +F, I'
—'

I

—2Af —Cf Ef —2Gf +2If ——3C, E,I'—
—,'8 I2Af+3Cf+3Ef +2Ff 2Gf 2If +C, +3—E, +2F, I2—

6 I 28f —Cf Ef 2G—f 2If —3—C, —E, 2F—,I'——
28f +3Cf +3Ef+—4Ff —2Gf 2If +C, + 3E, +2F—, I

—, I

—2Af 28f+Cf 4Df—+Ff+2If+C—, +F, I'

,', I4Af+28f+Cf+—3Ef+2Ff
2Gf 2If +3C, +3E, I2

3 I

—2Af +2Cf+Ff+2If+2C, +F, I'

4Af —3Cf 3Ef Ff 2Gf +4If——5C,—3E—, F,I——
4fc, +c, f'

6 ICf+Ef+Ff —26f —C, +E,+F, I

3 I28f+Cf+Ef —26f +2If —C, E,f'—
6 I

—28f +Cf —8Df Ef —2Gf +2If —C, +—E, I

2

28f Cf 8Df Ef +26f +2If + C, —E, 2F,l2——
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TABLE XI. {Continued).

Process

r*on- m+

:",l~X K K+
~0 '4 — + 0=,l~X m

:-' Kom+

Squared matrix element
(mod s, )

—'
I

—28f + Cf —8Df Ef——2Gf +2If C,—+E, I'

ICI+Ef+Ff 26—f C,—E,—F, I'—
—,
'

I Cf Ef—+Ff —2Gf —C, +E, F, I—'
—,', I

—Cf —3Ef+Ff+2GI+C, +3E, F, l'—

—'
I

—Cf+Ef+Ff+2Gf+C, E, F—, l-
' I28—f +Cf +Ef —26f +2II C,

2BI+—Cf +Ef +2Ff —26f 2II —C—, +E, I'

—'
I

—Cf Ef +—Ff +26f + C, +E, F,I—
—' ICf Ef+F—f —26' —C, +E, F,I—

TABLE XII. Squared matrix elements for the Cabibbo-suppressed decays T~h MM, where the
mesons are in a relatively odd angular momentum state in terms of reduced matrix elements Af', Bf',
Cf' Df Ef, F&, G&, I&, C,', E,', F,', and G,'.

Process

A+ S+~oqo

A,+ b, +n.+m

A+~a+K+K-
A+-a+K 0K0

A,'~aomom'

A+ ao~+qo
A+ aoK0K+
A+ a*0K+~0

A,+ X* K m. +

A,+ ~X* K+m
A+-r*+K0~0
A+-a++~-~0
A+ 6 +K K

A,+ ~X* K+n+
-+,~~+K 0~0
~+ g+K 0~0

:-+,~aoK 'm+

X*K K+
+ y+0~0 +

=-+,-r,*+K-K+

~+ g++K — 0

~+ g++K — 0cl~ I

e + ~g —~+ +
7T

:-+,-a++K 0~-
:-,+, ~X*+K K

6+K ~

Squared matrix element (mod s l )

—,
' I2Af —Cf +3Ef Ff —C,'+—3E,'+F,' —2G,'I

—'[2 Af +28f Cf +E—f Ff 2If I

——C,
'—E,' F,' —2G,'I— —

3

—,
' IFf 2If +F—,'I

,
' I28f+—Ff+F,I

—' I4AI+48f —Cf +3EI F,
' 4If ——C,

'—E,' F,' —2—G,'I—6

—,
' I4Af —Cf + 3Ef —3Ff —C,'+3E,'+F,' —26,'

28f Ff—+2If F—,'I—
—,
' I28f+Cf+Ef+2FI+2If

+ C,
' —3E,' —2F,'+ 26' I

—' I28f +Cf Ef +2If+ C—,'+E, +2F, +2G, I

—,
' I2AI +28f + Cf +Ef +C,

' E,'+2G,'I'—
—' I2AI+28f +Cf+Ef +C,'+E,'+2F,'+2G,'I'

—'
I Cf+Ef+Ff + C;+E, +F, +26~

I

IF, +F, I'
—'

I Cf 3Ef' Ff + C,.
' ——3E,' —F,'+ 2G,

'
I

'—
',

I E~+Ff Ef -Fs'I'—
—' I2Af 28f +Cf Ef +—C,

' E,'+—2F,'+26,'I—

18

3 f2Af 28f —Cf—Ef ——C,'+ E,' —2—G,'I

3 I4Aj+Cj+Ej Ff+C,' E,'+F,—'+26,'I~—
'

I 28f + Cf E—f'+ 2If'+ C,'+ E—,'+ 2F,'+ 2G,'I

9 I Cf 2FI' C +3E +F 2G

,
' I2AI+28f —Cf—+Ef Ff—

,' I
2 Af Cf + 3Ej —Fj C—,'+ 3E,'+ F,'—2G—,'I'—

Cj+Ef' C +E 2G'I2

48f 2Ef 4II—+2F,'I— —
—I28f +Ff' 2If 2E' F'I

', IEI +Fj E,' —F,'I'— —
F,'+F,.

'I'
~

I
28f' +Ff' +F'I. .

,
'

I Ff »I'+ F,'I'——
—,
' 28f+Ff 2If+F,'I'—

f f f—' i 2 A
' —F' —2I ' F,' I

2—
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TABLE XII. (Continued}.

Process

~p
cl

~p
cl

~p
c1

~p
cl

~p
c1

~p
cl

s p
cl
0
cl

K
b, +K
aPK P~P

AK q
X*+K K
X*++ m

~X*+~ m

5 K m'+

r*PK-K+
r"n- ~+
a-K P~+
r*-K PK+

~p + p=,1~X
r* cpm

p ~+p +K m

p 4p p pK m

~p ~g — + pK
~p ~g — Q +=, )

—+" K m

Squared matrix element (mod s
&

}

—' l2Af'+ Cf'+Ef'+2II —C,'+E,' —2G,'l

—' l4A f'+ 28f +Cf +Ef 2If——C,'+ E,' 2F—,
' 2G—,'l'

4Af' 68f +Cf 3Ej +6If C' 3E' 2F' 2G'l

(8 l4Af'+Cf'+3Ef'+Ff' C +3E'+F 26
C,'+—E,'+F,' 4I,'+—C,'+ E,'+F,'+ 26,'l'

—,
' l28f —Cf +Ef 2If +—C,

' E,'+2G—,'l'

28f —C—
g E~ —2If'+—C,'+ E,'+ 2G,'l'

6 l
28f' ——Cf Ef 2—If +—C,'+ E,'+ 26,'l

l

—Cf +Ef Ff'+—C,
' E,'+ F—,'+ 2G,'l'

—,
'

l

—Cf Ef F—f + C—,'+E,'+F,'+2G,'l'

—,
' l28f —Cf +Ef —2If +C,

' E,'+26—,'l'

—,
'

l

—Cf Ef' Ff +—C,'+—E,'+F,'+26,'l

Also, there is a large number of relations between
Cabibbo-allowed and -suppressed squared matrix ele-
ments. The relations between matrix elements when the
mesons are either in a relatively even or odd angular
momentum state are

~ )(c=o z

,'s( IM(A,'~-~'K '~')(L =o 2, 1 (36a)

the process S~h 'MM, 10 are from 8&~, and the remain-

ing six are from 86. We find that there is only one rela-
tion between matrix elements and it is between Cabibbo-
allowed decays with the mesons in an even angular
momentum state

IM(~o-X'+K oK -) I'=2IM(halo

There are no relations between decays with the mesons in
a relatively odd angular momentum state. Consequently
the only relation is

IM (:-,'(~:-"K'~')(L =0,2, . . . (l lM(Q, ~X'+K K )l ~2lM(Q, ~X' K K )l (37)

=2s( lM( &(~X K 77 )(L =o 2 (36b)
and this is due to isospin. The matrix elements for these
decays are not tabulated.

IM( „~h K m )(r=o z.
=s', lM(:-'„-a"KK )(,=„,l'. (36c)

There are also a few relations that are independent of the
relative angular momentum between the mesons; they are

lM(A,+~5, m. +a+)l ~12s lM(A,+~X* m rr )l

(36d)

lM(:-„b,K m. +)l =3s, lM(:-„X'~ K )l

(36e)

lM(:-, (~b, K n+)l =2s lM(:-„~X*m K )l

(36f)

Through a cancellation within each operator cornpris-
ing the Hamiltonian we find that the Cabibbo-suppressed
decay "„~X*g m. proceeds entirely through even an-

gular momentum channels.
There are 16 reduced matrix elements contributing to

II. SEMII.EPTONIC DECAYS

A. Three-body 6nal states

For the process T~BI v( there is only one SU(3)
singlet possible from 3 38 and consequently only one
reduced matrix element. Thus, the effective Harniltonian
for semileptonic decay can be written

Heff aH, (3 )T"B bl +vI ~

All the matrix elements are related and we find that

(38)

The operator responsible for the semileptonic decay of
charmed baryons is (cs)(l+v&) for Cabibbo-allowed de-

cays and s, (cd)(I v() for Cabibbo-suppressed decays
where I denotes e or p (r is too massive to participate)
and v& its associated neutrino. The operator transforms
as a 3 under fiavor SU(3) and the Hamiltonian has
nonzero elements H3(3)=1 for Cabibbo-allowed decays
and H2(3) =s, for Cabibbo-suppressed decays.
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IM(:" ~:- I+v )I =IM(:-,+&~" I+vi)l =—', IM(A+~A I+vi)l

—IM(:-„~XI+v, )l
s,

A'I+v, ) I'
si

, IM—(:-+~r'I+v, ) I'= , IM—(A+ nI+v, ) I' .
si Si

(39)

Experimentally, only a few inclusive branching ratios
have been measured they are

B ( A,+~A e +X)= ( 1.1+0.8 ) X 10

B(A,+~pe+X)=(1.8+0.9)X10

B(A,+~e+X)=(4.5+1.7) X 10

(40a)

(40b)

(40c)

where X denotes unidentified hadrons and v, .
The only SU(3) singlets that can be constructed for the

process T h *1+vI are

There are many relations between the squared matrix ele-
ments for various decay modes, as shown in Table XIII
for Cabibbo-allowed decays and in Table XIV for
Cabibbo-suppressed decays. Many are due to isospin, for
instance,

IM(A,' r'~'I'v, )I'= IM(A,' X'~ I'v, )
'

X ~'I'v, )l', (46)

but some are due to the full SU(3) symmetry, for exam-
ple,

(3)Tdh e bc and e b h e~b Hd(3)Td (41) A'~-I+v, ) I'= IM(=-0„-X-qoI'v,) I' . (47)

H,„=13e'fHf(3)S„Bbl +vi . (42)

It is obvious from the flavor wave function of the 0, that
it cannot Cabibbo-allowed decay to a member of the
baryon octet and that it will only decay via a Cabibbo-
suppressed mode to = 1+vi', consequently there are no
relations possible. This, however, is not the case for the
process S~h'I+vI where both Cabibbo-allowed and
-suppressed decays are possible. The effective Hamiltoni-
an for the process is

H,~=yH, (3)Sb,h "'I +v, ,

from which we find that

(43)

IM(n', -n-1+v, )l'= —,IM (n', -=-'-1+v, ) I' .
si

B. Four-body final states

both of which vanish since h * is totally symmetric on its
three indices. Hence we would not expect to see any lone
decuplet resonances produced in the semileptonic decay
of the charmed baryons in the 3 representation.

Turning now to the 6 representation and the process
S~BI+vl,we see that only one nonzero SU(3) singlet can
be formed from the available tensors, giving the effective
Hamiltonian

There is only one nonzero matrix element that can be
constructed for the decays T~h *Ml+vI, and so the ma-
trix elements for all the decay modes are related. The
effective Hamiltonian is

H,ff=ae, b, h "'T M'H (3)T+vI, (48)

+Pe"fs H (3)MbB dT+V

+y e' fS,bHI (3)B;M I +vi . (49)

The results of which are shown in Table XVII, from
which we see that the only relations between matrix ele-
ments are those due to isospin, such that

where a is the unknown reduced matrix element. The
relative squared matrix elements for Cabibbo-allowed
(-suppressed) decays can be found in Table XV (Table
XVI). Phase-space-correction factors must be applied as
in the previous cases. By coincidence, the Cabibbo-
allowed processes with the largest matrix elements are
those that will be modified the most by these corrections.

Turning now to the 6 representation and the decay
process S~BMI+vi we find that there are three reduced
matrix elements that can contribute and so the effective
Hamiltonian for the process is

H,fr=ac"fS Hf(3)B M I +7

Returning to the 3 representation of charmed baryons
and looking at the decays T~BMI+vI, we find that
there are three reduced matrix elements that can contrib-
ute to the decay process. The effective Hamiltonian for
such decays is

2IM(n', :--~'I v, )I'=IM(n',

(Soa)

(50b)

H, e =& [ 'TH(3)]( BdM,")I +vl+bT'B, MbH, (3)l +vi 1+vi)l'=IM(&', & &'1+vi)l'.
+cT'M, B bH, (3)I +vi . (45) (50c)
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TABLE XIII. Squared matrix elements for the Cabibbo-
allowed decays T~BMI+v( in terms of the reduced matrix ele-
ments a, b, and c.

Process

A, A g I+v,

A,+ X m. ~1+v

A,+~X m+ 1+v(
A,+ —+pK I+v(

A,+:- K+1+v,
A -„OK01+

:-,+l ~X+K I+v(
=-+ AOK'I'v,

+ X0K 01+

+ — +I+
:",+) —+" ~1+v(
:-,l

—+A K I+v(
=-O„~XOK-I'v(

0 — Or+
7T i V(

:-0:-Om- 1+v

Squared matrix element

—,
' I3a +2b +2cI'

la+bi'
la+bi'
la+el'
fa+cf'

fbf'

—,
'

I
b 2c I

'
—,'Ibl'

—,
' I2b —cf'

6 fb —2cf

—'
I 2b —c I

—,
' Icl'

Icf'

Two reduced matrix elements contribute to the process
S~h 'I vi for which the effective Hamiltonian is

H„=SI-b'S„M'H„(3)T+V,

Process

A+ ~X*0m'I+V(

A ~X* n. +I+V(
A+~:-* K+I+V(
A+ X4+ —

I +

A+~- K I+v(

~+ ~+0 Or +
cl ~~ '(T l Vl~+ ~4 — + 1+

c+1~0 K I v
0 40 —r+

:-0,~:-' mOI+v(

n-KOI+v,

X'-K'I+,

Squared
matrix element

the matrix elements of which are shown in Table XVIII.
We see that there are relations not only due to isospin but
some due to the full SU(3) symmetry. We find that

2IM(Q, ~:-' K I+v, )l =2IM(Q, ~:-' E I+vi)l

=IM(Q', Q ~'I+v, )I',

TABLE XV. Squared matrix elements for the Cabibbo-
allowed decays T~h Ml+v( normalized with respect to the
process =,

&
X K I+v(.

+gh "'S,dHb(3)M, I +v(, (51) (52a)

TABLE XIV. Squared matrix elements for the Cabibbo-
suppressed decays T~BMI+v( in terms of the reduced matrix
elements a, b, and c.

3IM(Q, ~:-' m I+v, )l =6IM(Q, ~:-' n I+vi)l

=IM(Q, Q E I+v, )I',

Process

Ac ~POT I V(

A,+ ~nm. I+v(
A' A'K'I+v,

A,+ X K+ I+v,
A+-XOKOI+v(

:-+,~XO~OI+ v(

:-,+1~X+m. I+v(
:",+1~X m. + I+v(

c l +pK I vl
:-,+, ~nK 'I+V,

:-+, :-'K'I+v(

=,)~X q I v(
+ 0 0 +

=-+, A0~0I+v,
A0m I+v(

:-01 XONE I+v,
:-'„~Xg0I+v(

X m I+v,
K I+v(

:-,l ~nK I+v(

Squared matrix element
(mod s] )

fbf'

—,
'

fb —2cf'

—,'Ibl'
—,
' I2b —cf'

Icl'
—,
' Icl'

—,
' I6a+b+cf'

—,
' I2a+b+cl'

la+bf'
la+el'

fa+cf'

fa+bf'
,', fb+cf'—
,', Ib+cl'—
,' Ib+cl'—
—,
'

Ib —cl'

,'Ib+.I'—
—,
'

Ib —cl'

(52b)

Process

A+ ~a0mOI+v(
A+ X*OKOI+

(

A,+ 5 ~ I v,
A+~X* K+I+v(
:-,+, ~5+K I+v(
:-+,-aOK 'I+v,

X vl I+
+ X0 01+=cl ~

:-+~X' ~+I+V(
=+ ='-K+ I+=c l

~-"
6 K 1+v(

K I+v,
X* ~OI

X* vyOI+v(

c 1
+ X (T I V(

=cl ~=* K I v(

Squared matrix element
(mod s& )

2
4
1

6
2
2
2
3
1

2

2
2
2
6
1

3
1

2

TABLE XVI. Squared matrix elements for the Cabibbo-
suppressed decays T~h MI+ v( normalized with respect to the
process =,&~X* m I+v(.
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TABLE XVII. Squared matrix elements for the decays

S~BMl+v, in terms of the reduced matrix elements a, p, and

r. Process Squared matrix element

TABLE XVIII. Squared matrix elements for the decays
S~h Ml+v, in terms of the reduced matrix elements 5 and g.

Process

Q, :- K I+v,
:-'K I+vr

Q, :-m I vr

Qc~A K I+vr

Q, XK I+vr

Q, X K I+vr

Squared matrix element

ly I'

ly I'
s21 lail12

sf ,' la-2—P+2yl'
silal'

s
& 6 I

—2a+P —2y I

s21 lpl2

s'lpl'

Q, :- K I+v,

Q, ~:- K I+

Q ~=* ~ I+v

Q, ~Q K I+vr
Q~X K I vr

Q, ~X K I+v(

—,
' Is+ pl'

—,'15+pl'
-'lb+pl'
s'-'I5I'

s', —,', la —2gl'
s2 —' I&I~

s'lfil'
$21 2

g21 2

and also one purely isospin relation

2IM(Q, ~X' K 1+vi)l =IM(Q, +X K—I+vt)l

(52c)

CONCLUSIONS

We have examined the predictions of flavor SU(3) for
the weak nonleptonic and semileptonic decay of charmed
baryons in both the 3 and 6 representations of SU(3).
The matrix elements for Cabibbo-allowed, -suppressed,
and doubly Cabibbo-suppressed decay modes were
parametrized in terms of reduced matrix elements which
have been tabulated explicitly. At the present time only a
few decay modes (Cabibbo-allowed) have been experi-
mentally observed; in the future when a larger event sam-
ple has been collected the relations derived in this work
can be tested and/or used to reveal some of the underly-
ing dynamics responsible for charmed-baryon decay.

The predictive power of SU(3) invariance is, in some
cases, somewhat limited due to phase-space-correction
factors that must be included. However, these uncertain-
ties can be eliminated by experimentally determining the
relative contributions from different angular momentum
channels.

The role of final-state interactions in charmed-baryon
decay is not known. Their importance depends upon the
spectroscopy of hadrons near the mass of the A,+. The
existence of many resonances may cause deviations from
the SU(3) predicted amplitude for an observed final state.
It is not a test of SU(3) at the weak vertex to compare

these predictions with experiment before removing the
FSI and phase-space corrections. In the future there
could be sufficient experimental data on the decay of
charmed baryons to allow the FSI to be removed and
hence allow the SU(3) predictions to be tested. '

If the sextet component of the Hamiltonian dominates
nonleptonic decay processes, as hinted at by perturbative
QCD, then this will be directly observable by the absence
of I=1 final states in the doubly Cabibbo-suppressed de-
cay of the Q, . Sextet dominance will also give rise to new

relations between decay rates. These new relations be-
tween two-body decay modes have been considered previ-
ously in Refs. 4, 19, and 20 and can be derived from this
work for all nonleptonic processes by neglecting the con-
tribution from 8&&.

An interesting prediction of SU(3) is that the 3 cannot
semileptonically decay to an h '1+v& final state because a
nonzero SU(3) invariant cannot be constructed. Also, all

the matrix elements for the semileptonic decay of the 3 to
Bl+vI fina states are related. This is also true for the de-

cays of the 3 to h 'Ml+v& final states.
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