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We apply the general parametrization method [Phys. Rev. D 40, 2997 (1989)] to the radiative de-

cays of the light vector mesons. The ratios I (co~my)/I (palmy) and I (g'~py)/I (g'~coy),
corrected for the difference in momenta, are predicted to be 9 (to all orders in flavor breaking) plus
possible contributions from gluon annihilation diagrams. So far there is no evidence (inside 15%
errors) for gluon effects in the above ratios; P~rt y leads to the same conclusion. We show that if
the gluon diagrams are indeed negligible, the parametrization of the V~Py decays (which is exact
and thus includes automatically configuration mixing and all the complexities of the Fock expansion
of the hadron states) coincides with the results of the nonrelativistic quark model (NRQM); this
clarifies again why the NRQM works, independently of the internal v/c of the quarks. Another
NRQM result shown here to be exact (to second order in fiavor breaking) is

A (E* ~K y)/A (If: +~E+y) = —(1+x)/(2 —x) (with x =pq/p~) for the y=decay amplitudes
of K* and E*+ (in this case the gluon diagrams are absent).

I. INTRODUCTION

We extend the general parametrization of Ref. 1 to the
VPPy transitions ( V and P are a vector and a pseudo-
scalar meson of the lowest nonets). Once more the aim is
to separate the features specific of the nonrelativistic
quark model (NRQM), which has been used repeated-
ly to treat the V~Py decays, from those following
from "first principles" or, more precisely, from a relativ-
istic field theory satisfying two general conditions: (1)
that the electromagnetic current is carried only by the
quarks, and (2) that the only j(, SU3 (fiavor) matrix in the

strong-interaction Lagrangian is A, 8, from the flavor-
breaking mass term. In QCD these conditions are
satisfied because gluons are flavorless and neutral and no
l SU3 (fiavor) matrix enters in their coupling to quarks.
The main results of this paper are listed in the summary
and in Sec. XI.

II. SOME NOTATION

In the following A; will be used always to indicate a
vector meson (V) of the lowest nonet and B, a pseudosca-
lar meson (P):

A;=p, to, ttj, K', K *,K*+, B, =—rr, ri, ri', K,K,K

The matrix element for the transition A, ~8 +y in the rest system of A,. is

M;= f dt exp( —tkt)(j)(P) f d'rexp(ik r)j(r t) d(0)) e,
+2E (P)

(2)

where j(r, t) is the quark electromagnetic current and e, k, and k the photon polarization, momentum, and energy;
~BJ(P) & and

~
A;(0) & are, respectively, the true states of the pseudoscalar meson with momentum P and of the vector

meson at rest; EJ(P) is the energy of the P meson (until further notice we assume V to be heavier than P); [2EJ(P)]
in (2) is required by Lorentz invariance if, as we do, we normalize both ~BI(P) & and

~ A;(0) & to one meson per unit
volume in the rest system of A, .

We express the exact states ~B~.(P) & and
~ A, (0) & (each of which should be thought as a superposition of an infinite

number of Fock states with quarks, antiquarks, and gluons) as

I A, (0) &
= Vly„0) &, IBJ(P) &

= Vly, (P) &, (3)

where Vis a unitary operator transforming the lq-lq model states ~P„&,~Ptj & into the exact states
~ A,. &, ~B, &. (Note:.

I 1

the same V is used for the operator V and the vector meson V, but there should be no risk of confusion. ) Thus (2) be-
comes

M; = f dt exP( —ikt) de (P) Vt fdtrexP(ik. r)j(r, t)V $„(0)) e .
+2E (P)

(4)
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We have written Eqs. (2) and (4) in some detail because, at variance with the cases dealt so far in Ref. 1, here the
difFerence in the three-momenta of the initial and final states, 0 and P, respectively, must be considered. The model
Hamiltonian & operating in the one-quark —one-antiquark sector can be taken in the form

%=8(P)+K(p)+X(r), (5)

where 1 and 2 are, respectively, q and q; 8, K, X are three functions of the arguments indicated (P=lp, +p2I,
p =

—,
'

Ip, —pal, r = lr, —rzl ) that we do not need to specify here; they are assumed to be the same for all mesons of the P
and V nonets; the common mass Mo of the model mesons is

Mo =C(0)+eo,

where eo is the lowest eigenvalue of K(p)+X(r).
In (4) it is

j (r, t ) =exp[i(Ht —G r)]j(0)exp[ i (Ht ——G r)] .

(6)

(7)

In (7) H and G are the exact (strong) Hamiltonian and momentum. Note that G commutes with V, whereas H of
course does not. This is evident from the construction of V [Ref. 1(a)] and corresponds to the fact that the momentum
of the model state can be the same as that of the exact state, but its mass or energy, obviously, is not the same. Indeed
the model states of the nine P and V mesons at rest are all degenerate eigenstates of the model Hamiltonian & at the
common mass value Mo (6),

&lp„(0) & =M IP„(0)&, &lg (P) &=[M +6'(P) —8(0)]lg (P) &,

whereas the exact states at rest, related to the model states by (3},satisfy

HIA;(0)&=M(A;)IA;(0)&, HIB, (0)&=M(8, }IB,(0)& .

(8)

(9)

Here M( A, ) and M(8, ) are the exact masses of V and P mesons, respectively. For the states with momentum P it is, of
course,

HIB, (P)&=[P +M (8 )] IB (P)&:E (P)IB (P)& .

Inserting (5) into (4) and using Eqs. (7) and (8) we have

M., = (2m }'5")(P+k)5(M,—k —E,(P))(pj) (P)l V j(0)Vl{t)„(0)& e .1 1

+2E (P) J

(10)

In the following, whenever this does not introduce ambiguities, we write M, for M( A,. ) and M, for M(8, ); more gen-
erally the index i will refer to a vector meson and j to a pseudoscalar one.

III. THE MODEL STATES

We record, for clarity, the model states of the P and V mesons; with the model Hamiltonian (5) they are indeed (com-
pare Ref. 1) the simplest possible ones compatible with the good quantum numbers. Suppressing the color factor, that
here does not intervene, lp „(0)& and If') (P) & are taken as

J

lp„(0) &
= IX(A;)q(r) & =g g q)(p)Xp„,(A;)atop, b'

pp, I0&,
P PlP2

lysj(P) &
= Ix(Bj)q(r)exp() P R) &

X X q'(P)Xp)p2( j )ap+(P/2), p)
—p+(P/2), p2 I

P PlP2

(12)

(13)

In the second form of IP„&,lgt) & in (12) and (13),
t J

IO&—:IO(q), 0(q ),0(gluons) & is the bare vacuum of quarks,
antiquarks, and gluons [the quarks and antiquarks to, JV,

and P, A; A, have renormalized "constituent"
masses —Ref. 1(a)]; a and b are creation operators
of a quark and antiquark, respectively, with masses as
stated above, momentum p, and in the spin-Aavor state p,
P is the momentum of the pseudoscalar meson: for a

transition A; —+Bjy itis(writing P=IPI)

P= P,, =(M, —M )/(2—M;) . (14)

In (12) and (13) p, and p2 are indices referring to the
spin-liavor state of the quark (1) and antiquark (2); here,
and in the following, l always refers to the quark (q) and 2
to the antiquark (q); X are the spin-liavor functions

P IPP
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[with spin one for the V mesons ( A; ) and spin zero for
the P mesons (8 )]; in spite of the fact that our procedure
is relativistic, the spin of the model states is described by
Pauli two-component spinors [ V operating on the model
states also leads from Pauli to Dirac spinors; compare
Ref. 1(a)]; p(r) and its Fourier transform y(p), equal for
all states, that is, independent of the indices i and j, is the
rotation invariant (L =0) space (or momentum) part of
the model wave function, that of the lowest level of & (5).

There is a constraint on the flavor part of the spin-
flavor wave functions y for the mesons of isospin

I =0; this constraint is obvious in the nonrelativistic
quark model (NRQM); but our parametrization is model
independent; thus here we must show explicitly how it
arises. The argument is this: As stated, there is freedom
in choosing the model Hamiltonian and, therefore, the
model wave functions; but, once chosen, they must be the
same in any calculation referring to the same hadrons. In
particular, for the mesons of the nonet, the model wave
functions are restricted by the requirement that

&y„(0)l V HVly~ (0))=M(A, ),
(15)

&y, (0)~ V'HV~y, (0))=M(a, ),
where H is the exact Hamiltonian of the strong interac-
tions. The problem of parametrizing the masses of the
vector and pseudoscalar mesons of the nonet was treated
in Ref. 1(c); we showed that, correct to first order in
flavor breaking, the flavor part of the model wave func-
tions for the g and g' is

sin8t —= —0.39 (that is, 8t, -=—23') . (18)

Thus we must select the flavor factor for g and g' as
given by Eqs. (16) and (17). As to the 1 =0 vector
mesons, their masses are rather well represented by an
"ideal" mixing angle Ov, corresponding to

to=(1/&2)(PP+ JVJV), (19)

(20)

and given by

Hv 35 3 (21)

We will always use in what follows this "ideal" Ov, ex-
cept, of course, for p~n. y which depends just on the
small deviation (8V —35.3') of the exact angle 8'i, from
the ideal one. j.n the linear case L it is

8* =37'+1.2' . (22)

IV. THE GENERAL EXPRESSION
OF THE MATRIX ELEMENT

We also noted that with the usual definition of the pseu-
doscalar mixing angle 0&, g = —q, sin8&+ g8cos8& and
7) ='t)icosOp +'gssin8~, where ri&

= ( 1 /&3)(PP
+JVJV+A.A, ) and ps =(1/&6)(PP+ JVJV—2A,A, ), the wave
functions (16) and (17) correspond to

ri =0.603(PP+ JVJV) —0.522h Z, ,

rt' =0.367(PP+ JVJV)+ 0.854hZ .

(16)

(17)
Using (12) and (13), the matrix element

(&)l &tj(0)Vlf„(0)) (11)

&4s.(~) I' j(0)I'lP~ (0))= g g p'(p')y'. (&, )F ~ (p', p, P)y (A;)g(p),
PP~P2 p'P, P2

where the operator F ~ (p', p, P) is
P )P2~P IP2

(23)

(24)

We now evaluate the matrix element (23}. Because y(p) has been chosen rotational invariant, only the projection of
F, , (p', p, P) on the states with L =0 in the p, p' space contributes after performing in (23) the sums over p and p'

P&P2 P&P2

(that is, the integrations over d p and d p'). On defining

(&)=g g q'(p')F, , (p', p, &)p(p),
P P

(25}

&y, (F)lI'j(0) Vly„(0)) = y y y*, , (~, )~, , (p)y„(~, ) .
PIP2 PIP2

(26)

The fact that only the L =0 part of F, , (p', p, P}contributes to (23), corresponds to the omission in the NREM of
P)Pp P)P2

the part of the magnetic current due to the orbital angular momentum. But one important point must be added. The
model states have a q&(p) with L =0, but the states obtained applying V to the model states are exact; they include, in
particular, all kinds of configuration mixing. Thus, whereas in the NRQM treatment the orbital angular momentum
part of the transition current is omitted invoking the long-wavelength limit and neglecting configuration mixing, here
we do not introduce such assumptions.
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Consider now 9(P}=—9, , (P) in (26); 9'(P) leads from a spin-one to a spin-zero state; in the spin space of 1 and 2,
P1P2 P1P2

9'(P) must thus be a vector, constructed in terms of the Pauli spin matrices tJ, and tr2, call S„ the set of such possible
spin vectors and I the set of the possible flavor operators that act in the flavor space of the quark and antiquark; both
will be listed in Sec. VII where also the multiplicative constant present both in S„and I (f) will be fixed; the set of all
operators 0 in spin-flavor space is

n„.=s„-r. . (27}

We anticipate that (Sec. VII) the spin part S„is the same in all Q„„s,whereas for the flavor operators I „there are vari-
ous (seven) choices; thus the index p can be omitted and (27) is rewritten

o.=s r. .

In this notation the most general 9'(P) is

9'(P)=g [h, (P)Q„+g„(P)PXQ ] .

(28)

(29)

Here h „(P)and g „(P)are coefficients depending on P; the sum over v in (29) extends to all possible spin-flavor operators
Q„. For a transition between two mesons A, and B, with the same parity (magnetic transition) the first (h„) term in
(29) must vanish and 9'(P) becomes

9'(P) =g g„(P)Q„Xk, (30)

where P has been replaced by —k [Eq. (9)]; recall that eXk is proportional to the magnetic field of the photon. We
rewrite (11)after insertion of (30) in (26) and of the latter in (11);putting

~(B,A, }=gg„(P)&X(B,)IQ.lX(A, )&=gg (P)g g 1' (B, )(Q } ~ g„„(A;),
V V P 1P2 P1P2

(31)

we get

M; = (2m. )
4 1 1 5' '(P+k)5{M; —k E(P)}A(—B A, ) kXe .

v 2k +2E(p)
(32)

Introducing the abbreviation

Q,(B,A, )= &y(B—, )IQ„Iy(A;) &,

(31) becomes

(33)

At(B A;)=egg, (P)I „(B,, A;) .

V. THE GENERAL COVARIANT MATRIX
ELEMENT AND THE PARAMETRIZED ONE

(39)

At(BJ A;)=gg„(P)Q„(B A;) . (34)

S=—,'(tr, tr~) . — (36}

The factor —, in (36) is a convenient normalizations factor;
we now introduce the abbreviations

e=&a(B, )lSlx(A, ) &,

r.(B,, A, )= &g(B, )ll,,lg(A;) & .

(37a)

(37b)

Because the spin-flavor functions y can be factorized in a
spin factor a. times a flavor factor g, each Q„(B,A, ) (33) is
the product of a spin matrix element &t~(B, )lSl~(A;)&
times a flavor matrix element & g(BJ ) l

I „lg( A; ) &:

Q.(B,A, }=&.(B,}ISI~(A, ) &&g(B, )lr„lg(A, }& (35}

In Sec. VII we will see that the spin operator S in (28) is

We now compare the decay matrix element (32) [with
At(8 A, ) given by Eq. (39)] with that derived uniquely
from the requirement of relativistic invariance (our treat-
ment is noncovariant, but relativistic). For a V;~Piy
transition there exists only one possible vertex: namely,

G; d~At3B„V,Pe tt„„, (40)

where A, V, and P are the electromagnetic, vector, and
pseudosca)ar fields, e &„ is the Levi-Civita symbol, and

6, is a real constant, with the dimensions of a magnetic
moment, depending on thei,j pair; G,J=G&(pi p2 p3) is
a Lorentz invariant that can depend only on invariants
constructed with the four-momenta p, , p2, p3 of the three
external "legs" of the V~Py diagram; because it is

p, +p2 =p3, only two such invariants exist, the masses of
the vector meson and of the P meson, so that

Thus, G,. —:G,)(M, ,M ) . (41)

Q (B, A, )=eI „(B,, A;),
so that At(8, A, ) in (32) is

(38) Calculate now the matrix element (call it M, ) from (40)
in the frame where the Vector meson is at rest; normalize
the vector field V of the ith meson in (40) so that the
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At'(B A;)=e'G; (M M )(M /2)' (43)

Here as above, the indices i and j refer, respectively, to
the V and P mesons; e' is a unit vector specifying the po-
larization of the V meson; it is equal to e [defined by Eq.
(37a)] if S is defined by Eq. (36). Identifying M, ', with M,,
and thus M'(B, A; ) (43) with M(B, A; ) (36) we obtain

(M, /2)' GJ(M;, MJ )e'=.g g„(P)Q„(BJA;), (44)

matrix element for destruction of a V meson at rest (one
per unit volume) with spin up is

( I/&2)(0~( V„—i V~ )~ A, f & =( I/+2M; ). As easily
checked (Appendix), it is

M,'; =(2n }
1 1 fi"'(P+k)

&2k +2E,(P)

X5(M; —k E—(P))At'(B A, ).k Xe,
with

[with difFerent coefficients g„(P)]. We conclude that we
can multiply the right-hand side of (44) by an arbitrary
function of M;, M [changing the g„(P)'s but] without
changing its general structure; thus the paradox has
disappeared.

We clarify, at this stage, the meaning of (45). Assume,
for instance, that we were able to perform a QCD calcu-
lation (and that QCD is the correct theory); after fixing
once forever the I 's (as listed in Sec. VII), the calcula-
tion would lead to a definite set of g„(P)'s on the right-
hand side of (45). It may happen that some g„(P)'s con-
tribute negligibly compared to others; then the neglect in
(45) of such "small" g„(P)'s may lead to relationships be-
tween decays that are approximate predictions of QCD.
If, as is the case, we are unable to perform the QCD cal-
culation, but we can make a reasonable guess on which
g„(P) s are negligible, we will find again such relation-
ships. This will be essentially the use of Eq. (45), by
which (we shall see} many results of the NRQM will be
reproduced.

or, simplifying,

(M;/2)' G; (M, ,M )=gg„(P)I,(B,A;) . (45)
VII. THE LIST OF OPERATORS Q„

IN THE SPIN-FLAVOR SPACE

A. Flavor structure

VI. AN APPARENT PARADOX
AND ITS SOLUTION

Call 4 the mass renormalized [constituent —compare
Refs. 1(a)—1(c)]quark fields,

and, in terms of the Gell-Mann SU& (flavor) matrices A.i
and As [Xi=Diag(1, —1,0) and As=Diag(1, 1, —2)], in-
troduce the projection operators H",II,H on the
P, JV, A, fields given, of course, by II =

—,'(2+3ii+ks),
II =

—,'(2 —3i,&+A,s), II =
—,'(1 —Xs). Introduce also the

"charge" combination Q of the above projection opera-
tors:

g 2 IIP ] IIA' i IIA.
3 3 3 (46)

In terms of Q the electromagnetic current j„(x)in (2) is

j„(x)=:%(x)y„g'jp(x): (47)

The operators H, II, II defined above, give one when
applied either to a state containing a quark or an anti-
quark of the appropriate flavor:

(48)

and zero otherwise; with the above definition of Q the
charge of an antiquark is (

—g). The flavor-breaking part
of the mass term in the Hamiltonian is

Am fd r 4(r)II"O(r). (49)

As noted in Ref. 1, the only flavor operators in the La-
grangian are Q and II and they cominute. Because of

The equation (45) is our main equation; it expresses the
coefficient G,, of the relativistic vertex (40) in the
parametrized form; it is an exact result. Before proceed-
ing to list the flavor operators 1, on the right-hand side
of Eq. (45) [and show that (36) is the only possible S in
(27)] we must, however, clarify a point in Eq. (45) that, at
first sight, is puzzling.

Indeed we would have expected G; (M;, M, ) [as well as
M ~ G; (M;, M )] to be a general function of the two

masses M and M;; but the right-hand side of (45) does
not appear to confirm this expectation; it seems that
M ~

G; (M, , M ) depends only on P =
PJ, =(M~-

—M, )/2M;. We will now prove that there is, in fact, no
inconsistency. Here we summarize the proof, referring to
the Appendix for more details.

The masses M~ (or M;) of a P (or V) meson of the nonet
are [as shown in Ref. 1(c)] the eigenvalues of a linear
combination of spin-flavor operators; these operators be-
long to a set (call it SF) in the one-quark —one-antiquark
spin-flavor space. In the space of the spin-flavor func-
tions, SF is a closed set: (SF}"consists again of operators
belonging to SF; this means that an arbitrary function of
the masses can be written as a linear combination of
operators belonging to SF. Now consider Eq. (44}: If we
multiply one of the 0„'s in (44) by any operator in SF, we
produce only a combination of the same 0„'s (insofar as
the calculation of a V~Py matrix element is concerned).
Thus no contradiction is present in (44) [and therefore in
(45)]; indeed each operator 0„ in (44), multiplied by an
arbitrary function of the masses of the P and V mesons,
becomes again a linear combination of Q 's; under such
multiplication Eq. (44) continues to have the same form
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this (and because we calculate only to first order in elec-
tromagnetism), the end result for V j(0)V and thus for
each 0 in (34) must be linear in Q, no matter how com-
plicated the calculation of V j(0)V in (11). Therefore the
flavor structure of each 0 will be a linear combination of
terms of the form

Q, ; Q, II'„; Q, 11', .ll,', (50)

where the indices i, k have the values 1 (quark) and 2 (an-
tiquark).

The list (50) of the flavor operators is complete if both
the mesons V and P in the V~Py transition have isospin
I =1; if either V or P, or both, have I=0, additional
flavor structures can intervene. In writing them we fol-
low the same line of Ref. 1(c) (Sec. III) expanding a little
on some points.

As an example take the co~gy transition; the flavor
factors of co and g are co = (1/&2)(PP+ JVJV) and

g = «( I /v 2)(PP+ JVJV)+ t AI. with r and t two
coefficients related to the pseudoscalar mixing angle Oz.
The flavor part of the matrix element (34) for the co~gy
transition is thus

Assume now, for a moment, that the only flavor opera-
tors in V j(0)V were those listed in (50); consider first the
part

& ( I /&2)(PP+ JVJV) l V j(0)V
l
(1/&2)(PP+ JVJV) &

& r(1/+2)(PP+ JVJV )+ t Ak,
l
V j(0)Vl(1/'i/2)(PP+ JVJV).

(51)

lP,P,+JV,JV, +~,X, &,
3 3

lw&=lk, X, &

(52)

[lz'& is normalized to 1 (&z'lz'&=1), whereas lz &, used
in Ref. 1(c), was normalized to 3 (& z lz & = 3 )].

Then to the flavor operators (50) we should add

(Q, +Q, )lz'&&z'l+lz'&&z'l(Q +Q )

(Qi+Q&)lz'&& w + Iw &&z' (Q, +Q2),

z'&
& wl(Q, +Q, )+(Q, +Q, )lw &&z'l,

(Qi+Q2) w && lw I+ lw && wl(Qi+Q2) .

(53a)

(53b)

(53c)

(53d)

Note the following. (a) With the definitions (46), (48) the
total charge of the quark 1 and antiquark 2 is Qi —

Q2
(not Q, +Qz); for neutral states, as are those with I =0,
the total charge is zero; this is why we did not list opera-
tors with Q, —Q2. (b) It is lw && wl =lit II2 so that the
last operator (53d) is already included in (50); thus in the
list only the first three operators (53a)—(53c) survive.

One more remark. Because any purely gluonic state is
a flavor singlet, one might object that we should keep
only operators constructed with lz &, not with lw &. This
is not so; the flavor-breaking term due to the quark mass
difference affects also the amplitudes of the gluon annihi-
lation diagrams; thus the operators (53b) and (53c), which
are of first order in flavor breaking, can intervene. [We
did not include i( lz & & w

l

—
l
w & & z

l ) in the list because its
matrix elements between states with a real-flavor wave
function vanish. ]

of (51); the operators (50) connect only PP with PP and
JVJV with JVJV; no one of the operators (50) has a matrix
element between PP and JVA; in the complete expression
(51) there is no matrix element connecting PP+JVJV to
A, A, . But in QCD there exist diagrams that annihilate qq
I =0 states into gluons and then give rise, from these
gluons, to other I =0 states. Because of the emission of
the photon (that can change the isospin by one unit) the
above gluonic diagrams can play a role both in transi-
tions between two mesons with I =0 and in transitions
I =0 to I = 1 (respecting, of course, charge conjugation).
Examples of such processes are (we indicate a gluon with

g)

B. Spin structure

Only three spin operators exist:

~1~ 2~ 1 + +2

S=—,'(o, cr, ), — (36)

However, we will show that [as already stated in Sec. V,
Eq. (36)] only the difference of cr, and o z,

0-3g -~'+r 0 2g+r n+r

co~3g ~7T +p, co~2g +p ~ 'l7+ p .

will enter in 0, (28), if we recall that 0 must then be in-

serted in (31). To see this use the fact that B is a
singlet-spin state; therefore,

In other words, these annihilation processes are of course
contained in the exact transition operator V j(0)V but
are not represented by the flavor structures (50). To
which flavor structures do they correspond? To answer,
let us first introduce the I =0 flavor kets:

2Jly(B, ) & =(o'i+cr2ly(B& ) & =0 . (55)

As to cr, X o 2, it can be transformed as follows [in the for-
mulas below I (f } is any flavor operator in the variables 1

and 2]:
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&X(8, )l(~ Xt,)r(f)IX(~;) & =&y(8, )12JX~,r(f)lr(&;) &
—&X(8, )l~ X~ 1(f)IX(~;)&

—2i &y{8 )lo' I'(f)ly(a, ) &

= —
& y(8, ) I (,—cr, )I (f ) Iy( &; ) & . (56)

Therefore one is led again to a, —oz and Eq. (36) is
justified.

Another remark on the spin operators. The fact that
the most general spin operator in (28), tr, —o 2, is linear in
the quark and antiquark does not imply that at some
stage of the simplification of the complete field-
theoretical calculation we do not encounter expressions
of the form

tr, (cr, n, ) or cr,(o, cr, ) (57)

that contain simultaneously the variables of the quark
and of the antiquark. Of course it is

o,(o, trz)=o 2+i(o'l X~~), (58)

and the (o, X o 2) term reduces to o, —02 [Eq. (56)]; thus
we are back to (54). But note that the overall coefficient
in the final result multiplying cr&

—
F2 can receive a con-

tribution also from two quark terms such as those on the
left of Eq. (58).

0„=-,'(a, —cr )I „(f)—=SI'„(f) (v=I, II, 3, . . . , 7),

C. The spin-flavor operators

We now list the possible 0,'s. The result is simplified

by the fact that V j(0)V must be odd under charge conju-
gation C; indeed j(0) is odd; V, being constructed in
terms of the strong-interaction Hamiltonian, is invariant
under C; in the 1q-1q sector, C amounts to the inter-
change of I and 2.

Because o.
&

—o2 changes sign under C, the only com-
binations I'(f ) of the flavor operators that multiply
(tr, tr2) m—ust be symmetric on exchange of 1 and 2; on
the basis of (50) and {57) the complete list of the 0 's is
thus

=&y(8, )l(g, ~, —Q,~, )IX(&;)&, (61)

where in the last step we used &y(BJ ) Ia,
+~,Iq(~, ) & =0.

With the seven 0„'s above (60a) —(60g) the calculation
of any transition reduces to that of (39),

At(8, A, )=egg, (P)I „(8,A;),

to be inserted in (32); before doing this we write

g„(P)=M' 'p„f„(P) (v=I, II, 3, . . . , 7) . (62)

Here M is a mass, to be fixed in a moment, the p 's are
the dimensions of a magnetic moment, and the f,(P)'s
are adimensional and normalized so that

In the last form of (60c), Q stands for total charge and S
for strangeness. We have amxed the first two 0 's and
I 's in the above formulas by roman indices I and II to
avoid confusion with the indices 1 and 2 that in this pa-
per are used to indicate quark and antiquark. In square
brackets we noted the order in flavor breaking (0 means
flavor symmetric). The expressions 0, to Q~ are (or can
be) present in the conventional NRQM description, while

05 to Q7 correspond to gluonic diagrams; usually they
are neglected in the NRQM treatment of the V~Py de-
cays.

Note, incidentally, that it is possible to display the 0, s

in an additive form similar to that of the NRQM. Indeed
—,'(Q, +Q2)(o, —tr2) can be rewritten, when dealing with

its matrix elements between a spin lan-d a spin Osta-te, as

—,
' &y(8 )I(g, +Q~)(a, —a'z)Iy(&;) &

=-,'&x(8, )lg&t 1 Q2tr2 Ql 2 Q2 1IX(

(59)
f,(0)=1 . (63)

with

I t=(Q&+Q2) [o1

I tt=(Q)+Q2)(ll)+II, ) [4m/m~],

r, =(g, —Q, )(ll', —II', )
—=gS [bm /m, ],

14=(Q, +Q2)II, II, [(Am/m„) ],
I =[{Q +Q )I '&& 'I+I '&& 'l(Q +Q, )] [0],

(60a)

(60b)

(60c)

(60d)

The f,(P)'s can be interpreted as form factors; although
we work with a relativistic theory, they depend only on P
and have thus a nonrelativistic structure, typical of the
NRQM.

Changing M in (62), we change the scale of the magnet-
ic moments p, we choose M to reproduce, as closely as
possible, the results of the NRQM: M=2Mv, where Mr
is the average mass of the vector mesons. Thus At(8 A;)
becomes

At (8, A; ) = (2M' )' 'e g p, f {P)I (8, 3, ) .
v=I

16=[lz'&&wl(g)+Q. )+(Q, +Q, )lw&&z'I] [&m/m, , ], Equivalently from (45) we get

(64)

(60f}

I', =[(Q, +Q, )lz & & wI+ Iw & &z I(g, +Q2)] [bm/m, ] .

7

6( M', M')= (2M, /M)'"g ~„f,{P)I.(8, g, ) . (65)

(60g) If we replace Mr/M, in (65) by one, and keep only the
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terms (60a) and (60b) (pr and p»), Eq. (65) becomes identi-

cal to that of the NRQM treatment of the V~Py de-
cays (then pr was taken to be 2.79 proton magnetons,
from fitting the proton and neutron magnetic moments).

VIII. SMALLNESS OF THE
GLUONIC CONTRIBUTIONS: THE

(m —+my )/(p wy ) AND (g' —+py )/(q'~a)y )
RATIOS

%e recall two facts on the ~~'r'I/', palmy decays.
(a} Nonviolated SUs (flavor} implies that palmy is a

pure octet~octet amplitude and co~a.y a combination
of an octet~octet and octet-+singlet amplitudes. Thus
SUs (flavor) invariance alone does not relate the two am-

plitudes At(con ),At(pn )

(b) The NRQM omits the gluonic part of the transi-
tion; it predicts Pco~ny)/I'(palmy)=9 (aside from
the slight difference in momenta).

What does the present parametrization says Only Qr
and 05 contribute to the co~my, p~n. y decays; thus it
1S

At(co, m) =e(2Mv)r/2[prfr(P)+ ~ psfs(P)],

At(p, m)=e(2M~)' (1/3)prfr(P) .

(66)

(67)

(68)

Any deviation from 9.5 of the right-hand side of (68) is a
measure of the gluonic annihilation contribution to
co~ny With the p. resent data,

To write (66) and (67) we used for co the ideal 8', that is,
we wrote its flavor state as (1/&2)(PP+ JVJV). The main
interest of Eqs. (66) and (67) lies in how large is the devia-
tion from 9 of the ratio between the rates of I (co~ny)
and I'(p~ny); with a factor 1.06 for the difference of
momentum in the two cases (when the data will improve
this should be recalculated because p is very wide) it is

Pco~m'y) 2Psfs P

} rfr(P)

[&co my)/P p ny)],„,=9.9+1.6, (69)

IX. THE /~way BRANCHING RATIO

A confirmation of the smallness of the gluonic annihi-
lation diagrams comes from the P~n y decay. It is
known, indeed, that the order of magnitude of this decay
can be reproduced by the small deviation of 0& with
respect to its ideal value [compare (22) and (21)]. The
theoretical uncertainty (particularly from the form factor
and also from 8V) is comparatively large; still, because a

the gluonic contribution to the above ratio [the term pgs
in (68)] stays inside the error; one would like to know if
QCD explains this smallness. Note that (68) is an exact
consequence of any relativistic field theory that satisfies
the assumptions stated in Sec. I; it is correct, in particu-
lar, to all orders in flavor breaking.

The smallness of the gluonic effects appears also in the
ratio of the g'~py and g'~coy decays (these are
P~ Vy instead of V~Py but, as we shall see, the above
treatment applies also to them); from the third and fourth
rows of Table I (Appendix), these decays are seen to
depend on Q, and Qs, Q6, Q7; the ratio
I (g':py)/I (g'~coy } is experimentally (30+1.6)/(2. 7
+0.5}=-11.1+2. The error in the denominator is still
large but again the ratio is compatible with the value
9 X 1.22 —= 1 1 obtained neglecting the gluonic contribu-
tions (1.22 is the analogue of 1.06 above; it comes from
the ratio of the third powers of the momenta).

One final remark. Our original NRQM calculation of
the ~~my predicted also the width I (co~ny) itself [not
just the ratio Pco~ny)/Pp~my)]. As stated at the
end of the preceding section, that calculation used for p,
in (67) the value that fits the proton; certainly pr has that
order of magnitude, but at present we cannot say more
because we do not have enough information on the
momentum dependence of f, (P) (that is, we ignore to the
required precision the "radius" of this transition form
factor).

TABLE I. The values of I „(B,A;} appearing in Eq. (65). The abbreviations used are indicated at the bottom of the table; the

fiavor wave function of each meson is assumed to be normalized to one; 8v is taken to have its ideal value, except in the calculation of
1, for P~n y. The example given in the Appendix, in Eq. (A7), illustrates the use of the table.

I4

pmy
co&y

p'9y
Ql'gy

p I'y
Qp'g y
~my
4m'y

K "K'y
K 4'+K+

y

1/3
1

K
K/3

H
H/3
2H /3

—2K /3
sin(Ov ~v

—2/3
1/3

0
0
0
0
0
0

4H/3
—4K /3

0
—2/3

1/3

0
0
0
0
0
0

2H /3
—2K /3

0
0
0

0
2/3

—s &2/3
L &2/9
c&2/3
N&2/9
N&2!9

&2/9
0
0

0
0
0

H&8/27
0

—K&8/27
R
Z
0
0
0

0
0

—H &2/3
—H &2!27

K&2/3
K&2/27

W
T

&2/3
0
0

g =sjne', g =co'O', Jj,'= r/v'3(c —sv 2); H= r/~3(s+cY2); X=1/~3(c+s~2}'
I =1/+3(c+2 —s); g = —(4s +c&2); T=&2/9(5s —c&2); 8'=&2/9(+5c +s&2); Z= 9( —4c+s&2).
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sensible order of magnitude of the rate is obtained
without invoking the gluon annihilation diagrams, it can
be at least asserted that there is no evidence, inside the
errors, for the additional (three-gluon annihilation) terms
appearing in the ninth row of Table I that, a priori, might
be important in this case. It would be of interest to have
a QCD explanation of why the three-gluon annihilation
diagrams are so small at these low Q's.

X. THE K ' ~K y AND K ~+ ~K+y DECA&&

According to the NRQM the ratio between the rates
E* ~E y and E'+ ~K+y is a function only of the ra-
tio x =—pz/p& between the magnetic moments of the A,

quark and JV quark inside the above mesons; at present
the experiment gives x,„„,=0.80%0.09. It might be of
interest to reduce the error to compare the above x,„z,
with that (0.65+0.02) obtained from the baryons. But
first one should know if the NRQM formula giving x
continues to be true in the exact parametrization. The
NRQM formula for the ratio of the decay amplitudes (the
widths I are proportional to

~
A

~ ) is

A (K' ~K y) 1+x
A (K'+ K+y) 2 —x

(70)

Among the Q„'s listed in (59) and (60a)—(60e) only

Q, , Q», Q3 enter in the decays of K' and K'+ (Q3 does
not contribute to K' ). Putting

=pifi( )+i iif»(P» C=p3f3(P»

one finds easily

A (K' +K y) —2D—
~ (K'+ K'y) D+3C

that corresponds to (70) with

1 (C/D)—
1+( C!D)

(71)

(72)

Neglecting terms of second order in fiavor breaking (note
that p3/p, and p,„/p, are both of first order in flavor
breaking),

1 —(pZi/pif i) pA
1+(pif3/plfi) pif'r

' (73)

or p3f3/p, f, =(1—x)/2. If the P dependence of fi and

f, is the same, this simplifies into

pi/pi—=(1—x)/2 . (74)

The Eqs. (73) or (74) show that the x of the NRQM has a
meaning more general than one might have thought; Eq.
(73) is true independently of the NRQM, provided that
we neglect terms of second order in flavor breaking.
There is, however, a di8'erence between these general re-
sults and those of the NRQM: the NRQM is formulated
in terms only of two parameters: the magnetic moments
of the nonstrange and I, quarks; here, even omitting the
gluonic diagrams and neglecting second-order flavor
breaking, there are three parameters: p&, p&&, and p3,' it is

easy to see that, for a A, quark belonging to a meson of

zero strangeness, (64) leads to a ratio x'=1+2pii/pi be-

tween the magnetic moments of the A, and JV quark,
whereas, as we just saw [Eq. (74)], the ratio pz/p~ for a A,

belonging to a strange meson is x =1—(2p&/pi); x' and
x are equal only if

Air= P3

The present data do not allow us to say how nearly the
above equality (75) is satisfied.

XI. CONCLUSION: THE COMPLETE
PARAMETRIZATION AND THE NRQM

If the gluonic amplitudes Q& to Q7 are negligible, all
the zero strangeness decays, except Pgy and Pq'y, are
governed (Table I) only by one parameter (one magnetic
moment p, ), the same in all cases, exactly as in the
NRQM; that parameter has the order of magnitude as-

sumed for it in the original calculation with the NRQM;

Pqy and Prl'y are governed (excluding second-order
fiavor breaking) by two parameters p, and p» again as in

the NRQM (although now there can be a difference be-

tween pi/p~ deduced from transitions in the strangeness

zero sector or in the strangeness 21 sector). One sees

now the reason why the NRQM treatment is essentially

correct; the reason is that, if the gluonic terms are negli-

gible, the form of the exact parametrization and its num-

ber of parameters are very near to those of the NRQM
(independently of the quark velocity inside the mesons);
we found in particular that the exact formula for the ra-
tio between the rates K' ~E y and E*+~K+y is
identical (barring terms of second order in fiavor break-

ing) to the formula given by the NRQM; in this case
there are no gluonic terms.

We conclude with three remarks.
(1) We hope that this analysis may stimulate precision

measurements of the V~Py decays, especially those dis-
cussed in Secs. VIII, IX, and X; but also for the other
V~Py decays the discussion on e& in Ref. 1(c) and re-

cent results' on 0~ add perhaps interest to improvements
in the data.

(2) The results of Ref. 1(a) (magnetic moments, elec-
tromagnetic transition amplitudes, and masses of the
baryons), of Ref. 1(b) (semileptonic baryon decays), and
of Ref. 1(c) (meson masses), together with those of this

paper, clarify why the NRQM can be fairly successful
quantitatively (even if the internal velocity of the quarks
is not (( 1). As a matter of fact the quantitative
successes of the NRQM in the above problems have been
rather mysterious for many years. One now sees that the
merit of the NRQM is to provide a parametrization in
terms of a few parameters; this parametrization is either
completely equivalent to the exact one (charged-meson
masses and —neglecting second-order flavor breaking—
also neutral-meson masses), or, if not, selects the dom-
inant terms among those of the exact parametrization.
There remains an open question that probably must wait
for a better understanding of QCD (or whatever field

theory is the basic one): Why, in the basic parametriza-
tion, are the terms that the NRQM does not include (e.g.,
in the present paper, the gluon terms) in fact really negli-
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gible? Why do the selected terms constitute such a good
approximation?

(3) This paper (together with those of Ref. 1) illustrates,
we hope, the meaning of the NRQM and how it provides
a sensible parametrization. Clearly one may ask if other
models of hadronic structure, for instance, bag models of
various kinds, or "relativistic" quark models (either two-
body Dirac equations or some ad hoc prescription), can
do a similar job, namely, parametrize the results of the
basic field theory in a sensible way. We hope to discuss
this in the future. Our present view is as follows: Once
agreed that the model state is in all cases (in the NRQM,
in a "relativistic quark model, " or in a bag model} rather
far from the exact state (simply because it is just one term
of the Fock expansion), there does not seem to be much
advantage (and in fact there are several disadvantages) in
taking as a model state for the parametrization a "relativ-
istic" state or, say, a bag state instead of the most naive
NRQM model state; indeed such states imply, with

respect to the NRQM state, an unnecessary increase in
the number of parameters, and therefore a decrease in
predictive power; we have stressed at length in Ref. 1(a)
that the basic advantage of the NRQM is that of having
very simple model states endowed with the maximum
symmetry compatible with the quantum numbers of the
system that we describe. It is this feature that reduces the
number of intervening parameters, a feature that is lost in
the above-mentioned "relativistic" models, unless arbi-
trary assumptions are made. " But, as already stated, we
hope to come back to these points in the future.

APPENDIX

Some details of the derivation of the Eq. (65)

The terms in Eq. (40} that contain the destruction of a
V meson A; at rest polarized up and the creation of a P
meson B are

G, P[(d A —8 A )8 V,e,+(8 A —8 A )8 V e, ]
=G JP(H„B4Vi +Hy Bq V2 )

,'G, P(H„+—iH")8 (V„iV }—+ ,'G, P(H„—iH )8 (V—„+iV ) . (Al)

Only the term with V„iV inte—rvenes in the destruction of a V polarized up [polarization state (V„iV )/&—2]; aside
from a phase and leaving out the factor (2n) 5' '(9+k)5(M, —k —E,(P)), the matrix element M', in Eq. (42) for
AJ(0, t)~B (P)y is

G;i(eXk)„+;
1 ~ 1 1

&2 +2M; +2E (P) &2k
(A2)

Equation (A2) coincides with (42), (43). The same matrix element calculated from (32) and (64) between a V spin state
=a&az and a P spin state =(1/&2)(a&Pz —aP&) using the expression (36) for S and (37a) of e is

7

(M )'i2 g pJ„(P)I„(B A',. ) (eXk)„
v=t +2E/(P) 2k

(A3)

Equating (A2) and (A3) we obtain Eq. (65) of the text.

(V Py) I (A, B, y)= G,', k' (/1 ~2),

(P~ Vy ) I (B ~ A, y ) =G,j.k /(4n ) .

(A4)

(A5)

For the P~ Vy decays (in practice /~toy and P~py)
the following remark is appropriate: In deriving the pa-
rametrization in the text we assumed that the V meson is
at rest; in a P~ Vy decay it is not. However, because
the vertex (40) is I.orentz invariant one can, in a P~ Vy
decay, calculate the matrix element of (40) in the refer-
ence frame in which the final V is at rest, thus using the

The formulas for the rates and the
calculation of I'„(B,A; ) in Eq. (65)

In terms of the G; 's appearing in (40) and
parametrized in Eq. (65) the rate of a V~Py and of a
P~ Vy decay are

results in the text; this matrix element is invariant for a
transformation to the frame where P is at rest; of course
to have it in that frame one must duly transform the kine-
matic quantities (including the polarizations of V and y);
but it is unnecessary to perform in practice this transfor-
mation of polarizations because we sum over the polar-
izations in calculating the decay rate. In conclusion we
can insert G; parametrized according to (65} also in Eq.
(A5) [of course i and j must be interchanged in P, Eq.
(14)].

To derive the formulas given previously for some de-
cays and in view of other applications of the parametriza-
tion (65) we gave in Table I the values of I „(B~A;) ap-
pearing in (65) [defined by Eq. (37) with the I 's listed in
(60)] for the various transitions; the flavor wave functions
g(BJ ), g( A; ) in (37) are, of course, assumed to be normal-
ized to one. For the vector angle Oz we took the ideal
value (21) except in I, for P~n. y decay. To simplify
Table I we used the abbreviations c=cosOp s=sinOp
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plus the other listed at the bottom of the table.
To calculate, for instance, the co~qy rate compute,

K,L,H in terms of cos8& and sine~ and use Eq. (65).
Neglecting the gluon annihilation the result is

G; =G„„=2(Mi,/M )' p,f,(P)K/3 . (A6)

Some additional remarks on the closed algebra of Sec. VI

The masses of the mesons of the P or V nonets can be
written [Ref. 1(c)) in spin-flavor space as the eigenvalues
of an operator of the form

M= A+Bo, o2+C(II, +II2)+Do, oi(II, +II2)

+(E+Po o2)lz&(zl

+(H+Go, oz)()z&(w)+ )w &(z()

+(N+Toi o'z)IIiIIi . (A8)

It is clear (recall that II i II2 ——
~
w & ( w

~
) that any power of

M, and therefore any function of M, has the same struc-
ture as (A8); in other words it is again a combination with
different coefficients of the same spin-flavor operators

Equation (A6} reproduces the NREM. Keeping the
gluon diagrams, we have

G q=2(Mv/M ) [rifi(P)K/3+psf5(P)L&2l9

+p, 6f6(P)H &8/27

p7fi(—P)H&2/27] . (A7}

The above G „'s must be inserted in (A4) to obtain the
rate a ~gy.

(called in the text the set SF} appearing in (A8}. Now
multiply any one of the spin-ffavor operators in (A8) by
one of the operators Q„ that all have the structure
(o, —crz}t „where the 1 „'s are listed in Eq. (60). It is

easy to verify that, taking into account Eqs. (58) and (56),
one reproduces (insofar as the calculation of a V~Py
transition matrix element is concerned} the same set of
operators 0„. This is the "closed algebra" argument
sketched in the text.

An independent consistency check of Eq. (45)

An independent consistency check of Eq. (45) comes
from the following argument: By the same procedure of
Sec. IV we might have parametrized, instead of (23), the
matrix element

(8 (P)~H"j(0)H"~ A;(0) &

= ($s (P)
~
V H "j(0)H"V ~$q (0) &, (A9)

where H is the exact Hamiltonian and n, k two arbitrary
integers; because the transformation properties of
H "j(0)H" are the same as those of j(0), the same Q„'s ap-
pearing in Eq. (30) appear also in the equation analogous
to (30) written for (A9}; calling 9'(P) the analogue of
P(P) in the parameterization of the right-hand side of
(A9), the analogue of (30) for (A9) is

P(P) =g g'„" "'(P )Q„Xk, (A 10)

where now g'„"'"'(P) is the coefficient replacing g (P) in

(30). Because it is H~A, (0)&=M, ~A, (0)& and
H ~BJ(P) & =EJ (P)~BJ(P) & the left-hand side of (A9) is

E"(P)M,"(8,(P)~ j(0)~ A, (0) &—:[(M, +M, )l(2M; )]"M,"gg„(P)Q„(B,A, ) Xk

having used the expression (14) of P; clearly the following identity must be true:

[(M, +M )/(2M; )]"M;"gg„(P)Q,(8, A, ) =g g'„"'"'(P)Q (8, A; ) . (Al 1)

Multiply both members of (Al 1) by a set of arbitrary coefficients a„ I, and sum over n, k We get.
g a„„[(M,'+M,') l(2M, )]"M,"gg, (P)Q,(8, , A, ) =g g a„„g„'" "'(P)Q,(8, , A, ) .

v n, k

(A12)

Because the a„k.s are arbitrary, the sum over n, k on the
left-hand side of (40) is an arbitrary function Y of M and

M;:

Y(M, M;):—g a„ 1, [(M; +M, )l(2M;)]"M;" .
n, k

On the other hand +„I, a„ I,g'," "'(P} is some function of
P, call it W„(P); Eq. (A12) can thus be rewritten more

transparently as

gg„(P)Q„(B , A, )=Y .'(M, M, ) g W„(P)Q„(B, A;) .

(A13)
Equation (A13) confirms our previous argument (based
on the closed algebra) that there is no inconsistency in an
equation of the form (45).
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