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W'e computed the differential cross section for e+e ~Hgg away from the Z pole and for polar-
ized beams. Form factors for Z ~Hgg are given. The four-point scalar integral needed for the
present case is expressed in terms of Spence functions.

I. INTRODUCTION

Finding the Higgs boson is undoubtedly one of the
greatest challenges facing the experimentalists now. If
the Higgs-boson mass is below 50 GeV or so, the Z fac-
tories currently under operation should find them
through the Bjorken process Z ~Hp+p . ' As the
Higgs-boson mass increases, the branching ratio for
Z ~Hp+p drops quickly and the search for the Higgs
boson becomes difBcult. It is then necessary to explore
all the possible channels with reasonable branching ratios
and controllable backgrounds. One possible process is
Z ~Hy, which has been proposed by Chan et al. and
investigated in detail by Baroso et al. In a previous
note, we suggested that the process Z ~Hgg ~~+~ gg
may be useful for Higgs-boson mass mH 50 GeV. We
intend to provide the details of the calculation in this
work. In the next section, we shall derive the helicity
amplitudes for Z ~Hgg. The form factors are expressed
in terms of scalar integrals. Although the calculation is
straightforward in principle, subtleties arise as a11 the
relevant momenta involved in the box diagram are either
timelike or lightlike in most kinematical regions of in-
terest. Using the results of 't Hooft and Veltman, we
derive in Appendix C an expression for the four-point
scalar integrals in terms of sixteen Spence functions
which is valid when at least one of the relevant momenta
is lightlike. This formula is useful beyond the present
context since evaluating the higher-point scalar integrals

can usually be reduced to evaluating four-point scalar in-
tegrals with one lightlike momentum.

To make our work useful away from the Z pole and
for polarized beams, we compute the differential cross
section for e+e ~Hgg in Sec. III. The electron mass is
neglected and the diagrams in which the Higgs boson
couples directly to the electron or the positron are ig-
nored. Some details concerning the scalar integrals and
certain kinematical factors are given in the Appendixes.

II. HELICITY AMPLITUDES FOR Z ~Hgg

To lowest order in electroweak and strong couplings,
the Feynman diagrams contributing to the process
Z —+Hgg are sketched in Figs. 1 and 2. We have to per-
mute the external momenta so that there are two triangle
diagrams and six box diagrams for each species of quark
running in the loop. The helicity amplitude JKU ~,
where A, and X„k2 denote the polarization of Z and the
two gluons, respectively, can be written as

JK~~ ~ =e"(k3,A, )e",(k„A, , )e2(k2, A2)%„„~(k„k2,k3) (1)

and

FIG. 1. Triangle diagram contributing to e e ~Hgg. FIG. 2. Box diagram contributing to e+e ~Hgg.
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g'g,'Q'

32sr'mzcos Hw

mug„—(k, +k2)„(k, +kq) s.'„.+ ] w'.„.
(k, +k, ) —mz

(2)

In the above formulas, color indices are suppressed, k, and k2 are the momenta of the two gluons, k3 is the momenta of
Z, g and g, denote the electroweak and the strong coupling constants respectively, Qj= 1 for j =tt, c, t quarks, and

Qj=—1 for j=d, s, b quarks. R and A denote respectively the contributions from the triangle and the box diagrams.
We have

%„„(k„k2)=A]h(k]e„e,e~)+ A2b(k2e„e„e~)+ Ask]„h(k]k2e„e )

+ A4k2„5(k]k2eqe )+ Ask] 5(k]k2e„e„)+A6kq~b(k]k2e„e, ),
R„„(k„k2,k&)= A7b(k]e„e,e, )+ A]]b(k~e„e„e )+ A9b(kse„e„e )

+(A,pk, +A]3k&+ A]6k&),h(k]k2e„e )+(A„k,+ A]4k&+ A]7k&),b(k]k&e„e }

+( A]2k] + A ]sk2+ A ]sks )„b(k2kse„e )+( A ]9k] + A ~2k2+ Az sk s) b(k] k2e„e„)

+(Amok]+ A2&kz+A26ks) h(k]k&e„e )+(Az]k]+ A24k2+ A27k&) b(k2k3e„e„)

+(Ap]]k]„k]~+Ap9k]„k2~+ Aspk»ks~+ A sk]p„k ~]+ As2kp„k2~+ A 33k'„k3~

+As4ks k] +Assks k2 +As6ks„ks +As7g„)b, (k]kzkse„),

(3)

(4)

where e„ is an orthonormal basis and h(abed) is the
determinant of the matrix formed by the four four-
vectors a, b, c,d so that

Using Bose symmetry, we get relations such as

As(k], k2) = —A6(k2, k] ),
(21)

h(k e]„e,e )=k] e „, , etc. ;

A s are functions of Lorentz invariants formed from the
relevant momenta. In writing down the general form of

and %, we used the identities

k]]e(ttsrs+k+6t]rs]]+ktters~~+kyesp+tt+kse]]&lsy=0 i (5)

g o'p ~apy5+ g @a~py5p, +g harp y5pa+g cry ~5pap+ g cr5 papy

to suppress unnecessary terms.
Color gauge invariance implies the relations

A, (k„k2,ks)= —A7(k2, k„ks) .

We shall not write down all of these relations explicit-
ly. In our lowest-order calculation, we have

A;=0, i =28,29, . . . , 36 . (22}

Together with Eqs. (7)—(20), we find

A ii = Ai7= A24= A27=0 (23)

and that we need only compute the form factors A „A6,
A, p, A, 2, A~3, A», A, 6, A&8, and A37. The rest are
given by Eqs. (7)—(9), (21), and

A, +k, k, A, +k', A6=0,

A2+k, A3+k, k2A4=0,

k, Aip+k, k2A»+k, k3A]6 As

k]A]]+k] k2A]4+k]. k3A]7 A9

k, A, 2+k] k2A]s+k] k3A]]] 0, .

k
& A28+k, .k2A»+k, k3 A34 A2, A37

k, A29+k, .k2A32+k, k3A35 A24,

k iA3p+ki k2A33+ki k3 A36 A27 A37

k1 k2 A l9+k2A22+k2 k3 A25 A7

k].k2 A2p+k2A23+k2 k3 A26 =0,
k, .k2 A2i+k2A24+ k2.k3 A 27

= A 9

k) -k2 A28+k2A29+k2-k3 A3p ——A iI,

(7)

(9)

(10)

(12)

(13)

(14)

(15)

(17)

10
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k, -k2A34+k2A35+k2 k3 A36 A f7 (20)

k . ]k23A] k+p 3A2k+k23A33 A]4 A37 i (19) FIG. 3. The ratio for the integrated cross section
a(e+e ~Hgg)/o. (e e ~p+p ) near the Z pole as a func-
tion of the Higgs-boson mass.
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A9 k] k2, A37& A f4 A37& A21 A37

A ]9( k ] p k2 p k3 ) A ]3 ( k3 t k ] y k3 )

A3o(k]~k2qk3) A]s(k2)k] k3)

Ap3(k], k2, k3)= —A]p(k2, k»k3),

A 23(k„k2, k3 )—A ]3(k3,k],k3 )

A2s(k„k3, k3 )= —A ]6(k3,k „k3),
A36(k „k2,k3 ) = A ]s(k3,k],k3 ) .

(24)

Moreover, we still have Eq. (11}relating A]2, A]s, and
A &8 and have also the relation

A 37(k „k3 k3 ) A 37(k3, k„k3 ) (25)

We note that gauge invariance and Bose symmetry allow
us to express the naively divergent form factors A

& A2,
A 7 A 8 and A 9 in terms of convergent ones. The need-
ed form factors can be read off'from the Feynman ampli-
tudes using the method of Passarino and Veltman. Us-
ing their notation, we have, for loop-quark mass m,

As(k]k2, m }=2(C',2+C,2+C23+C23 ),
A6(k]k2, m)=2(CI2+C»+C$3+C2] ),
A]p(k], k2, k3;m)=2m ( D o+3DI +]2D2, +Do+3D,2+2D22+D, 3+2D22

13 23 +Do+3D, ] +2Dz] +D]3 + 23 )

A]2(k] k3 k3'm)=m (Dp+2D ]+2D]3+4D2s+Dp+2D]3+2D]3+4D36

+Do+2D &~ +2D &2+4D24+Do+2D ~~ +2D ~3+4D25

+D o +2D ] ] +2D ]3 +4D 24 +D p +2D ]2 +2D ]3 +4D 26 ),
A, 3(k„k2,k3;m) =2m ( Do+3DI2+2Dz4+Dp+D]]+2D, 3+2Dz4+D»+2Dz6

—D]2+2D]3+2D26+D]3+2D3s+Do+D ]]+2D]3+2D2s ),
A»(k], k„k,;m)=2m'( D', , +2D,'6+Dp+D'„+2D]3+2D,', +D»+2D,',

+Dt +2D ] ] +D ]2 +2D 24 +D ]3 +2D 26 + Do +D ] ] +2D ]3 +2D 24 )

A ](6k ]k 2k ,
'3m)= —m ( Dp+4D]3+4D2s+Dp+4D]3+4D26+Dp+4D]2+4D24

+Dp+4D]3+4D2s+Dp+4D]2+4D24+Dp+4D]3+4D36 },
A„(k„k„k,;m)= 2m'(D—'„+2D,', +D»+2D,', +Do+3D»+2D,',

+D p +3D ] ] +2D 2] +D ]2 +2D 22 +D p + 3D ]2 +2D 22 },
A37(k] k2 k3'm)=m (Dp+2D]3 Dp 2D]3+Dp+2D]] Dp 2D]] Do 2D]2+Dp+2D]2)

~here

(26)

(27)

(2&)

(29)

(30)

(31)

(32)

(33)

(34)

C,)~=C; ( —k], —k2', m),

C]~J. =C; ( —k2, —k]', m),

D;,
' =D;, ( —k„—k2, k3,'m),

D; =D; ( —k2, k],ks, m), —

D, =D, (k3, —k„—k. 2;m),

D, =D, (k3, —k3, —k„m),
D, =D,, (

—k„k3, —k.2, m},

D, =D, ( —k2, k3, —k„m) .

(35)

C,-J- and D,- are scalar integrals defined in Ref. 8. We give the relevant formulas in Appendix A. To get the helicity am-
plitude Jkt]7, 7, we still need to compute determinants such as 5(k]ee]ez), 6(k]k2ee]), 5(k]k3k3, e), etc. The conven-

1 2

tion for the polarization vectors and the formulas for the determinants are given in Appendix B. We define the polar-
ization density matrix for Z ~Hgg by
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'P» =(&' 1) X ~»,~,~h, ~,
I 2

where summing over SU(N) color produces the color factor N l—.

(36)

III. e+e ~Hgg FOR POLARIZED BEAMS

Since only the axial-vector current contributes to the triangle and the box diagrams in the present case, e e ~Hgg
cannot go through the virtual photon. It can go through the Higgs particle but this is suppressed by the small electron
mass. Similarly, the processes in which the final-state Higgs boson is emitted from the incoming beam can be ignored.
As a result, the longitudinal part of the propagator of the virtual Z coming from e+e annihilation does not contrib-
ute to the Feynman amplitude. It is then needed only to compute the polarization density matrix Eb2)» for the Z
production by e+e ~Z with a beam energy Eb and to put in the Breit-Wigner propagator for the virtual Z to ob-
tain the complete scattering cross section for e e ~Hgg. We let 8 be the angle between the Higgs boson and the in-
coming beam and P be the azimuthal angle measuring from the Higgs-boson —gluon —gluon plane to the Higgs-
boson —beam plane. Choosing the polarization vector e(A. ) of Z to be

e(A, ) =(0,0,0, 1), A, =O,

e(A, ) = (0, + 1, —i, O),
1

(37)

which has to be consistent with the choice made in computing P»., we have

2

{A(5» —13!& )+(a —b )(l,&i&3 +lz~l ~3 ) [(a +b—)(P P)+2a—b(1 PP —)]C» )
2 cos 8'

where

A =(a +b )(1 PP )+2—ab(P P)—(a ——b )[(P'P '+P P )cos2$+(P'P PP ')sin2$]—,

(38)

(39)

lz = — cos8, — —sin8 e'~, sin8 e
1 . ; 1

'~2 (40)

l ~3
= (P 'cosp+P sing) sin8, —cos8 e'~, — —cos8 e

2
'

2
A, =O, +, —

+i( Psing+P —cosP) 0, e'~, — e1; 1
' v'2 ' v'2

A. =O, +, —
(41)

1 1 1
lz&= —(P cosP+P sing) sin8, cos8e', — —cos8e

A. =O, +, —

+i ( P'sing+ P co—sP ) 0, —e'~, —
2

'
2

COO=0, C'+ =C + =0, C++= —C =cos8,
1 . ;4 1

Co+ =C 0= —sin8e '~, Co =C+0= —sin8e'~ .
2

'
&2

A, =O, +, —
(42)

(43)

In the above formulas, P' and P ' are the components of the polarization vectors of the electron and the positron respec-
tively, measuring in the frame in which the direction of motion of the Higgs boson is taken to be the z axis and the
Higgs-boson —gluon —gluon plane is taken to be the xz plane. a and b are the coupling of Z to the fermions so that, for
electrons,

0 = 2+2sin O'er b =2

The differential cross section is then given by

1 1
X+»'+v3. d P3 ~

8 (4Eb m,')'+mz—r,' ».

(44)

where d@3 is the three-particle phase-space element for the Higgs-boson —gluon —gluon final state. Let g be the angle
between the Higgs-boson —beam plane and the plane containing the beam and the polarization vector of the electron,
measuring from the latter plane. We have, explicitly,
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1
do =,J(z, co) g D~~(8, $,$)P~~(z, co) dz dcoscodcos8dgdg,

2(4'�)
(46)

where 0~ co ~ m is the angle between the two gluons and

E2
1 —z+I q 8(1—z+l}

J(z, co) = (2—z)—
(4Eb m—z) +mzI z (1—cosco)

E~ mH
2

z= , I=
Eb 4Eb

' —1/2

(47)

(48)

with EH being the energy of the Higgs boson in the center-of-mass frame. Note that when the electron is longitudinally
polarized we have

P'= (sin8 cosP, sin8 sing, cos8), , p 3

and when it is transversely polarized we have

P'= ( —sing sing —cos8 cosP cosP, cosP sing —cos8 sing cosg, sin8 cosP } .

(49)

(50)

For the unpolarized beam, the formula is simplified if we carry out the integration over 8, P, and g. We have, in this
case,

a 2+$2 g2
do = J(z co) pe& dz d cosco .

6(4m ) 2 cos 8~
(51)

IV. DISCUSSION

As the possibility of having polarized beams at the SLAC Linear Collider and the CERN collider LEP is being seri-
ously considered, it is useful to consider an example of how to apply our formulas to this case. Assume that the posi-
tron is unpolarized. Equation (38) for 2)z~ is greatly simplified. For longitudinally polarized electrons, we have, from
Eq. (49), P =cos8. Substituting 2)zz into Eq. (46) and carrying out the integrations over 8, P, and g, we get

a+& gder= J(z co) gdIPqq dzd cost@, dI =(I,—,', —,')g=o ~6(4n. ) 2cos 8~

Similarly for transversely polarized electron, we have P =sin8cosg so that

a+& g 1
do = J(z, co) g d&P~~ dz d coscodg,

6(4n. ) 2 cos 8~

d&=(1, 1, 1)— cosg(6, 5, 5) .
32(a +b')

(52)

(53)

To summarize, we have obtained a formula for the differential cross section of e e ~Hgg for polarized beams. To
calculate Pzz, we have to calculate the form factors for the helicity amplitudes and using the results in the Appendix 8
for the kinematical factors. The calculation of the form factors is reduced to solving the linear equations given in Ap-
pendix A and evaluating Spence functions for the Co and Do functions using the formula in Ref. 7 for Co and that in
Appendix C for Do.

In Fig. 3, we plotted the ratio o(e+e ~Hgg)lcr(e+e ~p+p ) near the Z pole as a function of the Higgs-boson
mass. The branching ratio turns out to be too small to have practical significance. Nevertheless, some of the formulas
we derived will be useful in computing the helicity amplitudes of other processes.
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APPENDIX A

Using the same conventions as in Ref. 8, we may rearrange the results there to have the linear equations relating the
form factors C, . to So, 8, , and Co,
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2p&

2p& -pz

3 2
Tp&

p5 p]

2
Tp&

2p& 'p2

2p2

i(pS pi }

p]
—,'(ps —pi )

2p& -p2

2p i 2p 1 p2

2p2

2p i 2p& p2

2pi 'pp 2pp

C&2

C2

C

—p, Cii+Bii(2, 3)—Bii(1,3)

(p, —p ~ )Co+Bii(1,3 }—Bii(1,2)

—,'[1—2m Cii
—Bii(2, 3)—28, (1,3)]

8, (1,3) B—i(1,2)

8 i(2, 3)—8, (1,3)

—,'[1—2m Cii+Bii(2, 3)+28i(1,3)]

(Al}

and the linear equations relating D;, to Co, C;, , and Do:

2p 1

p5 p&

p4 p5

p&

p&

&3X3

p5 pi

p]

p4 p5

p5 pi

p4-p5

p~ p5

p&

p5 p&

0 0 0

&3X3

0 X3x3 0

D

D»
D2

D24

Dz5

Dz4

Dz2

D26

0 +3X 3
25

Dz6

D23

p, D—ii+ Cii(2, 3,4)—Cii(1, 3,4)

(p21 —p25)DO+ Co(1,3,4)—Co(1,2, 4)

(p 5
—

pq )Dii+ Cii(1, 2,4)—Cii(1, 2, 3)
—Cii(1, 3,4) —2m Do

C„(1,3,4) —C„(1,2, 4)

C„(1,2, 4) —C„(1,2, 3)

Cii(2, 3,4) —Cii(1 3 4)

Ci i( I~ »4) Ci2(1,2, 4)+Co(2, 3,4) —2m zDo

C,2(1,2, 4) —C,2(1,2, 3)

C12(2, 3,4) —C12(1,3,4)

Ci2(1, 3,4) —C,2(1,2, 4)

Ciz(1, 2,4)+ Cii(2, 3,4) —2mzDo

(A2)

where

APPENDIX B

For the polarization vector ei, (k) of a vector boson
with the four-momentum k =(k, k„,k~, k, ), we use the
following convention:

1
e (k)=—k, m 2=k

m

1

l«lkl+k, }

x(0, —k, (lkl+k, ) —k,', k, k„k,(lkl+k, )),
1

Ik(lkl+k, }

x(0, —k„k,k, (lkl+k, )+k„,—k (lkl+k, )),

(B1)

e3(k)= ——lkl, k
m

'
lkl

2p& 2p] p2 2p& p3

3X3 2p& p2 2p2 2p2 p3

2p& p3 2p2 p3 2p3

p, +p2+p3+p4 =0, and p5 =p, +p2 ~ Bo B] are elemen-
tary functions while Co and Do are scalar one-loop in-

tegrals. They are given in Ref. 7. For the Do function,
the result there does not apply immediately to our case
(see Appendix C).

where lkl =(k„'+k,'+ k,')'". If the particle moves in the
negative z direction, we choose to let k approach zero
first in the above formulas. The helicity eigenstates of the
vector boson are given by

e(k, A, =O) =e3(k),

e(k, A, =+ ) = —[+e i(k) —ie2(k) ]
1

2

(B2)

Plz
ki = x(l, sin8, , 0,cosgi),

mz
k2= y(1, —sinO~, O, cos8z},

2

k3 =mz(1, 0,0,0),
(B3)

k~= z(1,0,0,P),

where I =
—,'(1 —P')z . k „kz, k3, and k4 are the momen-

ta of the two gluons, Z, and Higgs boson, respectively.
The trigonometric functions of the angles can be ex-

for zero, positive, and negative helicity, respectively.
In the rest frame of Z, we introduce four dimension-

less parameters x =2k, k3/mz, y =2k2 k3/mz,
z =2k~ k3/mz, and I =mH/mz so that the four-
momenta of each particle in the Z ~Hgg process are
given as
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imz
5(k)e'E(e~)= 5, (A, , A, „A2)

8 yz

imz
4(k2EE&E2) 5)(A, , A ), A2)

8 xz

Z
&(k3~e,e, )= 5, (A., X„A.,),4pxyz

Lmz
b ( k k 2ee, ) =6(k, k2Ee2) = — (x +y)e'

8 2Pz

(B6}

b(k ) k3ee) ) =6 (k) k3ee2) ——b(k2k3ee) ) = —5(k2k3eeq)
~ 2

Z 1/2e
4&2Pz

b(k, k~k3e) =0,

where

5,(X,A, A,, ) = —(A,,x —
A, ,y)[(&,x+A2y)' —(Pz)'], (B7)

(2) For Z with helicity A, =+,

pressed in terms of the Lorentz invariants. We have

1
cos8, = (y —x —p z },

2Pzx

1cos82= (x —y —p z },
2 zy

1
(B4)

sinO, = 8'~
2Pzx

sine2= e' ',1

2Pzy

where e=[(x+y) —P z ][P z —(x —y} ]. The kin-
ematically allowed regions are determined by requiring
the trigonometric functions to be well defined and are
given by

2~1 ~z ~1+l, —Pz ~x —y Pz (x+y+z =2). (B5}

Computing the determinants, we have the following.
(1) For Z with helicity A, =O,

Z
~(k]&&/&p)= 5z(~y~]i~2) t

8 yz
&mz

b, (knee, Ep) = 5~(A, , A, „A2),
8 xz

&mz
5(k 3 EE (e2 ) — 5~( k, &j, &2 )

4pxyz
~ 2

b(k, k2ee, )= ' l(x —y+u, ,Pz)[(x+y) —(Pz) ],
2

b(k, kzeez)= k(x —y —u, 2Pz)[(x+y) —(Pz) ],
(B8)

b(k, k3ee, )= A[(x +u)pz) —y2],
8 z

b(k, k3eEp}= (Ax —
A, ,Pz)[y —(A, ,x +APz) ],3 2 8P

a(k k ee )= (Ay —Agz)[x' —(~g +~Pz)'],
8Pxz

5(k2k3ee2)= A[(y+u2pz) —x ],

~(k, k, k, e) = ' e'",
8 2

where

—(u, x +u, ,y +a,xyz)e'~2 .
2

(B9)

For the e+e ~Hgg process away from the Z pole,
we have to replace mz by 2Eb, the total beam energy, in
the above formulas.

APPENDIX C

The scalar one-loop integral had been studied by
't Hooft and Veltman. They showed that a given scalar
four-point function can in most cases be expressed in
terms of 24 Spence functions in addition to some loga-
rithms. When one of the external momenta is lightlike as
in our case, their formula cannot be applied directly, in
general. However, one can derive from their result an al-
ternate formula by taking the proper limit.

We shall follow the conventions of Ref. 7. Assuming
the external momentum p& is lightlike. In our case,
m& =m2 and we have to be careful in taking the limit

m, ~m2 in the formula for the D function in Ref. 7.
After some algebra, we get

1

k (k +h)go
—Sp

y]+
—Sp

y] y&—

—
—,'ln (y&

—
y&+ ) ——,'ln (y&

—
y& ) —inO(k)[ln(y& —

y&+ )
—ln(y& —

y& )]

+Sp'
y2

—y2+

y2
—1—Sp

y2 y2+
+Sp' y2-y2-

y2
—1—Sp

y2 y2—

+imO[ —k(k+h)][in(yz —yz+ ) —»(y& —
y~ )]

+Sp' y3-y3+
+Sp'

y3
—y3-

+ -'ln'(y, —y, + )+-'»'(y3 —
y3
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+in8(k+h)[ln(y3 —y3+ )
—ln(y3 —

y3 )]

+Spp
y4

y4 y4—
+ —,'ln (y„—y )+—,'ln (y —y )

+im8(k)[ln(y4 —
y4+ ) —ln(y4 —

y4 )]

ys —1ys—Sp
ys+

—Sp
ys—

+Sp
ys ys+

in—8[—k(k +h)][ln(y, —y, + )
—ln(y, —y, . )]

—1
+Sp' y5-y5-

y6—Sp
y6 y6+

—Sp
y6 —

—,'ln'(y, —y, + )
—

—,'ln'(y, —y, )

in 8—(k +h)[ln(y6 —
y6+ ) —ln(y6 —

y6 )] (Cl)

where k =p&4 —
p24, k+h =p]3 —

p23&
2 — 2 2 — 2

1
y 1

= [—
e&

—(2dpb~ c le i )rio ],
2b,

y3= [bi —(2cpbz c, b, )rip
—],1

262

y4= [
—(e& —1)—[2dpbz —c&(e, —1)]po '}

2

y6 = {(b, —1)—[2cpbz —c, (b, —1)]gp '), (C2)
2

1 —1
y&

= [—do+(2aoe, —ci do)'9o ]
2Qp

y, = [—do+(2ao(e, —1)—c,dp)rip ],1 —
1

200

7/o=+c
&

4apbp

2 2
134 m4 m3

k (k +h) k~ (k +h)&

m 123
2

bp= bb b2 m
(k+h)~ ' k+h '

l34

k(k+h)
2m 3 I24

2

(k+h) ' ' k

l23

k+h (C4)

I34

k(k+h)
2m 4

Our convention is such that the imaginary parts of y;+
and y, be chosen positive and negative respectively. In
the above formulas, ap bp b i etc. are given as

and

y3+ =

y4+ =

1

2b2

1
b, +Qb', —4b, (bo —ie)2-

1

2b2

—e&+Qe, 4bz( fp
—ie)—

—(e, —1)+Q(e, —1) —4bz(fp —ie)

(C3)

y2+ ys+
200

—do+ Qd o
—4ao(fo ie )—

y6+ = (b, —1)+Q(b, —1) 4b~(bo —ie)—1

22 '

l34 124

k(k+h) ' ' k

0

2
m4

k

where I; =p; +m;+m . The substitutions p; = —p;
have to be made in Minkowski space. We have assumed
gp to be real which is true if either p2 or p3 is timelike or
when both are lightlike. For complex gp, the terms pro-
portional to 8 function in (Cl) have to be modified in ac-
cordance with Eq. (6.14) of Ref. 7.
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