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Fermion correlation function in multiple field configurations
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A simple quantum-mechanical example is used to analyze the eKect of field configuration

copying on a fermion correlation function. It is shown that the copying procedure may result
in a large correction to the fermion eftective mass except for short-time correlations in the
low-temperature regime. This correction possibly explains the oscillatory behavior of meson

effective masses in a recent lattice /CD calculation.

Since the early 1980s lattice theorists have frequently
applied the following technique: time size of a lattice
is artificially enlarged by copying gauge configurations
several times in the time direction. These enlarged
lattices are then used to calculate hadronic correlation
functions. The obvious gain of this trick is a possibil-
ity of a wider separation between a source and a sink
corresponding to matter fields. It is, however, not clear
whether this procedure is free of side effects distorting
the particle spectrum. This important question has not
received much attention so far. As a step towards clarify-

ing the situation we consider in this Rapid Communica-
tion a quantum-mechanical example simple enough to be
solved exactly or numerically with any desired precision.
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and, for the fermion correlation function,
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Namely, let the problem be described by the Hamiltonian

H = grata —A(a+ af)ctc,

where a and e correspond to boson and fermion degrees
of freedom, respectively: [a, at] = {c,ct} = 1, and u is

assumed to be positive. This is in fact a problem of a
particle moving in a harmonic-oscillator potential with
its spin 2 coupled to a magnetic field. The latter is a lin-

ear function of the oscillator coordinate. One can easily
verify the following expressions for the partition function

C(t) = Tr(ce ' cte ~~ '&
) = exp —~t+ e " —1+ e
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m tr = —ln C(t) = M 1—

dt
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The fermion eAective mass is customarily defined as
the logarithmic derivative of C(t):

I

reformulate the problem in the path-integral language.
This is most easily done using the holomorphic path-
integral representation, giving for the partition func-
tion

dz dz did md/me

where

(4) where the imaginary time interval P is split into n subin-
tervals with pairs of e-number z, z and anticommuting
tP, g variables corresponding to the intermediate points.
In order for Eq. (6) to reproduce Eq. (2) periodic bound-
ary conditions in time are to be assumed for z, z and
antiperiodic ones for g, @. The action is

The first term of Eq. (4) gives an energy gap iM asso-
ciated with the fermion. This quantity clearly repre-
sents the energy penalty for the spin pointing against the
field direction. The second term is a finite-temperature
correction apparently coming from the excited states of
both the oscillator and the spin. In the low-temperature
regime (P~ )) 1) this contribution is negligible if both
P —t and t are large compared to cu, i.e. , everywhere in
the interval 0 & t & P except close vicinities of its edges.

With this simple physical picture in mind, we now

S= S~+ S~
n —1

) (egef ( +a+sl@sq y q )

+ (e ' z +iz —z„,z ),

with the definitions g—:(—")2(en+ e ' —1), f—:—„"(1
—e ' ), and e = ~. Note that e is not assumed to be
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small, i.e., Z as given by Eq. (6) is independent of n

and coincides with Eq. (2). The same should be true for
the fermion correlation function, but, as will be shown in

the following, using repeated field configurations leads to
deviations persisting in both the continuum (e ~ 0) and
the zero-temperature (P ~ oo) limits.

Following the usual strategy we diagonalize the fermion
matrix

A (I, m) = e~e~&' +'+'

with the antiperiodicity condition imposed on the eigen-
vectors (the meaning of the subscript 1 will be clarified
in the following). Being non-Hermitian, Ai has differ-
ent right and left eigenvectors. Namely, corresponding
to every complex eigenvalue

(f
A", = e~ exp —) (z~ + z~) ——(21'+ 1) —1

j=O

(k = 0, 1, . . . , n —1) (9)

there are one right and one left eigenvectors with com-
ponents

and L, (m) = [nRi(m)] ', accordingly. The fermions
can now be integrated out and es~ in Eq. (6) replaced
by

detA1—
~ ~

k=O

~', = i+e"gexp
n-1

f) .(, +;)
j=O

n-1
AN ——e exp —) (zz + zz) — (2k+ 1) —1

k f . ix

i=on. ~ nN

(k = 0, 1, . . . , nN —1), (12)

Note that this substitution and integration over z, z in-
deed recovers Eq. (2).

To study the effect of the repeated N times z field
configuration one must replace the n x n matrix A1 by
the nN x nN matrix A~ whose definition is identical to
Eq. (8) but it is understood that I, m now run from 0 to
nN —1, while the z field is still periodic with period n.
The eigenvalues of this new matrix are

1 ( ~ lm
&i(m) = -I & I exp f).( z~+ z~ )i

(10)

and the eigenvectors are given by Eq. (10) with Ai re-
placed by P&. It is now straightforward to derive the
fermion correlation function. The first step is inversion
of A~.

nlV -1 nN-1 m

AN'«m) = ): k &N(m)IN(1) = ). (I+~~)' "--'" „.xp f).(z, +;,)
)

(it is assumed for the definiteness that 0 & I & m & n). The summation over k involves some simple algebra leading
to

A~'(I, m) =

equi'1 'lexp f ) (z, +z, i)
j=i+i )

1+exp Nf) (z~+z )
j=O

(14)

n —1

cpr(lm) =J,
s=O

m

dzdze exp f ) (z~+z~ i) egt ~,) . detA
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The denominator of the last expression is just detA~, as expected. Thus if the repeated z fie]d configuration is use
the fermion correlation function is

Obviously, C~(l, m) considerably simplifies for N = l. In the latter case, the result Eq. (3) is recovered upon the
integration over z, z, and the dependence on the lattice spacing e disappears. This is no longer the case for the
arbitrary N, as can be shown in the following simple way. Among all the Fourier components of the z field the N
dependence of Eq. (15) comes only from the integration over the zero-frequency component appearing in detAN . Thus
Civ jCi is just the ratio of one-dimensional integrals:

C~(l, m) F~(l, m)
(16)Ci(l, m) Fi(l, m)

where
1+e"&e'~~~ ~f 2

F~(l, m) = dz ~ e~ '&~exp — + (m —l)z
I] + &nN g &2N f~ax
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and

1
n —1

z = ) (zi + zi) .
2 n. (18)

1

Ct(l, m)
(19)

where

P:—
/

+7.+q
/

Afn t' ~g
(2 (2o)

with 7 = ' = &, and erfc denotes the complementary
error function. Evidently, the ratio Eq. (19) is n (or
e) dependent. Moreover, C~(t, m) does not in general
approach Ct(l, m) in the continuum limit e ~ 0. In the
latter case g must be replaced by 0 and f by eA, and
therefore

The ratio Eq. (16) is most easily analyzed if the copying
process is pushed to its extreme: N ~ oo. In this case
the denominator of Eq. (17) is replaced by the step func-
tion of ng+ 2f~nz In. tegrating Eq. (17) gives, for the
ratio Eq. (16),

2M 1 5 2b7. )+meff: I+
I

I+
~) (25)

Obviously, this time Lrn, ff is well under control, making
6 &) 1, b7 && 1 the only useful region for measuring M.

The case of finite N is technically more difficult to
analyze, but the results are qualitatively similar to those
for N = oo. Expanding the denominator of the integrand
in Eq. (17) in powers of e"+fez ~v"* and integrating
over z one finds

0.0

(~)

—0.5—

e —1.0—

ful information. The situation is considerably better for
br » l. Expanding erfc(br) in powers of b7 and taking
the asymptotic expression for erfc[b(w+ 1)] one obtains

Pq ~ b(7. + q) (21)

with the notation b = A . Substituting Eq. (21)
into Eq. (19) and taking the logarithmic derivative gives
the continuum-limit correction to the effective mass [cf.
Eq. (5)]:

( be~ ( + I erfc[b(r+ 1)]—1

b (e~'"erfc(br) + e~'('+tl'erfc[b(7 + 1)])

(22)

—1.5—

2 0
0.0 0.2 0.4 0.6 0.8 1.0

This correction has the following properties.
(i) In the high-temperature regime (b (( 1) b,mefr can

be expanded in powers of b leading to

Z m.,= —,~
1 —b+ (2~+ I)

~

.
2M (

b
(23)

This is a very large negative correction slowly varying
with 7. It is therefore impossible to deduce the value of
M from m, n measured in the high-temperature regime:
the physics of the model is completely obscured by the
finite-size effect due to the copying.

(ii) In the low-temperature regime7 (b » 1) there are
two possibilities depending on the value of 7. For b7 )& 1
the error functions can be replaced by their asymptotic
expressions giving

0.0 0.2 0.4 0.6 O. B 1.0

7. 7+1+
6m, n = —2M'

27 +1 (24)

This correction is several times larger than M itself,
and again m,g measured in this region yields little use-

FIG. 1. (a) Imaginary-time dependence of the relative
effective-mass correction Am, s/M due to doubling (N = 2)
for b = 0.1 (solid line), 1 (dotted line), and 10 (dashed-
dotted line). (b) Corresponding dependence due to quadru-
pling (N = 4).
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oo 1
N( i ) -Po+(0) ) ) ( I)k{ Pq+(k) f [P+(k)] P~ (k+1) erfc[P —

(Q + I)]}g, (l, m)

where, similarly to Eq. (20),

P (~) = aN+
~

+r+q
~

Afn ( ~g
(27)

Again the n dependence of CN(l, m) clearly shows up in
Eqs. (26) and (27). In the continuum limit,

P+(k) ~ b[kN + (r + q)] . (28)

These continuum-limit expressions for P+(k) are as-
sumed in the following.

There is no obvious way of summing the series Eq. (26)
analytically. Numerically the series is found to be slowly
convergent. The convergence is much improved using Ce-
saro's summation by arithmetic means. With the eighth
term included, the truncation error in Am, g is within
0.03M in a wide range of all the involved parameters
for N = 1 (where the exact value of b,m, Ir is 0), 2, or
4. Such an accuracy is good enough for understanding
the effect of the multiple z field configurations on the
fermion correlation function. As shown in Fig. 1, the be-
havior of b.m, Ir for finite N follows the pattern found for
N = oo, restricting the region for the M measurement
to the narrow window b && 1, br « 1. The latter point
is further stressed in Fig. 2 where Em, Ir/M is plotted
against b for br = 0.1. These curves are in good quali-
tative agreement with Eq. (25): b, msgr approaches 0 with
b; the curves would not change considerably if a different
small value of br were chosen.

Two features of the correlation function Eq. (15) are

essential to yield the behavior we found for Lm, g. First
of all, detAN in the denominator suppresses the ground-
state configurations of the z field. For N & 1 this sup-
pression cannot be completely compensated by detAq in

the numerator. As a result, the ground-state energy is

effectively increased, and the correction to the fermion

energy gap should therefore be negative. The nearly lin-

ear variation of b, msgr can be traced back to the fact that
only the zero-frequency component of the z field is im-

portant for the fermion dynamics. It then follows from
Eqs. (16) and (17) that the multiplicative correction to
the correlation function is approximately Gaussian. Both
these features might be found in more realistic models.

Finally, we consider the interplay between the finite-
temperature effect of Eq. (4) on one hand, and the con-

figuration copying, on the other. In a certain range of pa-
rameters b and u (there is no restriction on b if P~ ~ oo)
the behavior of m~Ir (including the b,m, Ir correction) ex-
hibits a wiggle as shown in Fig. 3. This shape of the
effective mass curve is very similar to those found for
mesons on doubled and quadrupled lattices in a recent
/CD calculation. It seems plausible that in either case
the peculiarities of the m, Ir curve have a common origin.
As far as the M measurement is concerned, the overlap
of the two corrections is unfortunate: while b,m, ir may
become small only in the vicinity of r = 0, this is exactly
where the correction of Eq. (4) is of order M.

The lessons learned from this simple example can be
summarized as follows. Copying field configurations re-

sults in a time-dependent (roughly linear) correction to
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FIG. 2. Relative efFective-mass correction Em, Ii/M plot-
ted against b

' for br = 0.1. The N values are 2 (solid line)
and 4 (dot ted line) .

FIG. 3. Imaginary-time dependence of m, Ii/M for b = 10
and Pu = 5.5 (doubled configuration).
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the ferrnion effective mass. At low temperatures this cor-
rection is large compared to the exact mass value except
for the times much shorter than the inverse temperature.
Thus the configuration copying may miss its original goal:
longer time separation in the correlation function. The
correction arising from the copying may lead to an oscil-
latory behavior of the eA'ective mass, similar to the one
observed in @CD on doubled lattices. This might indi-

cate that the described mechanism is indeed not strongly

model dependent. If so, the virtue of the configuration
copying is far from obvious, and this technique should be
applied with caution.
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Note that the finite-temperature effect due to copying has
M ' as its typical time scale. This is diH'erent from ~
the typical finite-temperature time scale of Eq. (4).
A different explanation of this phenomenon in /CD has
been proposed by D K S. in.clair (private communication):
the oscillatory behavior of the meson propagator is at-
tributed to the interference of the quark correlation func-
tions with diR'erent boundary conditions. That model dif-
fers from the current work in two aspects: it assumes peri-
odic boundary conditions for the fermions on an enlarged
lattice and disregards excited states.


