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Chiral-symmetry breaking in the Schwinger model with Wilson fermions
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We develop a new analytic approach to the Schwinger model in the Harniltonian lattice gauge
theory with Wilson fermions. The vacuum structure is examined by means of a unitary transforma-
tion and the variational method. The chiral order parameter (/lb) is calculated for any coupling
constant. Chiral symmetry is shown to be broken in the massless limit and good scaling behavior is

observed. Our result is consistent with the exactly calculable ~alue.

I. INTRODUCTION

The Schwinger model' describes (1+1)-dimensional
QED which is superrenormalizable and exactly solvable.
Previous investigations of the model revealed some im-
portant properties of QCD such as confinement, chiral-
symmetry breaking, and the U(1) problem.

Lattice techniques offer the possibility of evaluating
physical quantities nonperturbatively from first princi-
ples. As a test of more realistic theories, the Schwinger
model on the lattice has been formulated and studied ex-
tensively using Monte Carlo simulations and analytic
methods. ' It is necessary to explore analytic methods
in order to get wave functions of the vacuum and excited
states which allow us to understand the quantitative pic-
tures of the theory in the lattice Hamiltonian formalism.
Among the early analytic methods, finite-lattice tech-
niques ' '" ' have been the most successful ones, giv-
ing many encouraging results such as continuum string
tension and the chiral order parameter. It remains to be
seen whether the finite-lattice techniques will prove
effective for gauge theories in higher dimensions.

Recently, we developed a different analytic approach of
treating naive lattice fermions' which consists of a uni-
tary transformation and the variational method in the
Hamiltonian fortnalism. The fermion condensate (Pg)
was calculated for any coupling constant and fermion
mass. A nice scaling behavior of ( Pf) /g= const was ob-
served. However, the value (

—0.35+0.05) for (ttttb) /g is

larger than the exactly calculable one (
—0.16). Because

the species of naive fermions are doubled, the extra fer-
mions would probably give a nonzero contribution to the
chiral order parameter.

Three major methods have been proposed to get rid of
the extra fermions. They are the Wilson formalism,
Kogut-Susskind formalism, and SLAC formalism.

In this paper, we develop our approach further and
solve the species doubling problem by adopting the Wil-
son method. The reasons that we prefer to use Wilson
fermions are that the flavor and spin quantum numbers
are well defined, and a ~2@ can be well explained.
However, because of the Wilson term, chiral symmetry is
explicitly broken and the order parameter receives a non-
vanishing contribution even in the weak-coupling limit,
which should be subtracted before comparing with the
continuum value. After subtraction, a nice scaling be-
havior is observed and the result is close to the exactly

calculable one.
This paper is organized as follows. In Sec. II, we re-

view the unitary transformation and variational method,
and present our previous results. In Sec. III, we discuss
chiral-symmetry breaking using the Hamiltonian with
free Wilson fermions. The fermion condensate (/lb) in
the Schwinger model with Wilson fermions is calculated
in Sec. IV, and conclusions are summarized in Sec. V.

II. UNITARY TRANSFORMATION
AND VARIATIONAL METHOD

We review the unitary transformation and variational
method before applying them to the Schwinger model
with Wilson fermions. The usual lattice Hamiltonian in
1+ 1 dimensions with naive fermions is'

H = g F. (x)+ g tb(x)ok U(x, k)Q(x+k)1

2a . j 2a, &

+m g tb(x)tj'jlx), (2.1)

g(x)
g(x) =

tl (x)

the bare vacuum is determined by

g(x)~0) =ri(x) 0) =F. (x)~0) =0 .

(2.2)

(2.3)

The Hamiltonian is partly diagonalized by the unitary
transformation

H'=exp( —i 8,S& )H exp(i O. , Sf ),
where 0, is the variational parameter and

(2.4)

Sf = —g Q (x)crt,. U(x, k)g(x +k) .
x, /c

The physical vacuum state is assumed to be

~Q) =exp(i , 9S)f~0),

(2.5)

(2.6)

corresponding to a "filled Dirac sea" on the lattice. The

where U(x, k) are the U(1) gauge link variables at sites x
in the directions k, o.

l,. are the Pauli matrices with
o.

I,.
= —o&, k =~1, j=1, a is the lattice spacing, and g

is the bare coupling constant related to the charge by

g =ea. H becomes the usual Schwinger Hamiltonian in
the continuum limit. Introducing the two-component
spinors g(x) with
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vacuum energy is given by

& QiHiQ &

&nin&
(2.7)

than the exactly calculable one

= —0. 16 .2''" (2. 1 1)

0 x x 0
X

—N l

=Jo(2&28, ) . (2.9)

After successive commutation with Sf E'q (27) be-
1

comes

aE~
@a=

N I

= —ma Jo(2&28& )
—J

&
(2&28& )

2 2+2(9) x2
+ f dxq f dx, JO(xi)

2 0 0

g2 4&2(9, x, g g,+ f dx, f dx, J,(x, )—,(2.8)
128 o o

' ' 4

where NI is the total number of lattice sites, and Jo and

J, are the Bessel functions of the first kind. The value of
8& for any coupling constant and fermion mass can be
determined by the condition of the lowest vacuum energy
satisfying B@n/88, =0. We can obtain the relation be-
tween 8, and 1/g by substituting 8&(1/g ) into the for-
mula

III. LATTICE GAUGE THEORY
WITH FREE WILSON FERMIONS

The lattice Hamiltonian with free Wilson fermions is

H = g g(x)o&g(x+k)+m g g(x)g(x)2a, &,

+ g P(x)[g(x) —ttt(x +k)],
2a xj

(3.1)

where r is the Wilson parameter. The last term vanishes
in the continuum limit so that chiral symmetry is re-
stored when m=0. The physical vacuum of this Hamil-
tonian is defined in a similar way by

A three-link term in addition to the one-link term in S&
l

was considered in Ref. 18, which resulted in an improved
value ( —0.35+0.05). However, more link terms change
the value subtly. We then conjectured that the extra fer-
mions would probably give a nonzero contribution to the
fermion condensate because the species of naive fermions
are doubled. We will solve this problem in the following
sections.

Because the Schwinger model is superrenormalizable,
the charge e does not vary with the cutoff. Let 1(, and l(,
stand for the fermion fields on the lattice and in the con-
tinuum, respectively; by dimensional analysis, & l(g & I

should scale as
S =—

P

1 + ~p( ) ~( )
sin(pja)

P j
2 1 /2

~Q&=exp i +8,S, ~0&,
P

where

(3.2)

(3.3)

=a&tttjl&, ~a ~g .
I

(2.10)
sinpja

aj
In Ref. 18 a good scaling behavior was obtained, and

the value for & l(tl(t&l/g is ( —0.40+0.05), which is higher
which is just the Foldy-Wouthuysen transformation. The
transformed Hamiltonian in momentum space is

H*(p)=exp( i8 S —)H(p)exp(i8 S )

m + g sin pja/2 cos28 + 3 sin28 P(p)l((p)
a

+ cos20p
1

m + g sin pja/2 sin28 g g(p)icr f(p)
J

(3.4)

The value of 0 is determined by the condition of the lowest vacuum energy:

tan20 =
m + +sin pja/2

ra 4
2 Q

(3.5)

(3.6)

which is just the dispersion law and has low-frequency modes only near the origin of momentum space.
Now the free fermion condensate & tt P & can be calculated directly using Eqs. (3.4) and (3.5). In the massless limit, we

which also eliminates the last term of Eq. (3.4). Therefore, the transformation Eq. (3.2) diagonalizes the Hamiltonian
with free Wilson fermions exactly. The vacuum energy is

2 2 1/2

&Q~H~A& = —XI g g + m +— g sin pja/2
p j
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have

(88)s„=(0 exp( —ipsSs)X 88 exp(i8sSs) 0)
X

e

=Z (018(p)8(p)IO)cos28s —Z s(e28s 0 Z8(p)iss( 8(p) 0)

28= ' "'d( )
2m —~1'a 2p' sin pQ 2 +sin pQ

(3.7)

For r= 1, the integral can be evaluated exactly, and the
free fermion condensate per site is

H„= g [g(x)1((x}—P(x)U(x, k)g(x+k)] .
2Q, k

(3.8)

which does not vanish (in fact for any r@0) because of
the Wilson term.

IV. FKRMION CONDKNSATK IN THK SCHWINGKR
MODEL WITH WILSON FKRMIONS

The lattice Hamiltonian with Wilson fermions in the
presence of a gauge field can be obtained by adding the
Wilson term H„ to Eq. (2.1):

To diagonalize this Hamiltonian, we add to Eq. (2.5} a
two-link term, and the unitary transformation becomes

H"=exp( i8iS—f i82—SI )H exp(i8|Sf +i82sf )

(4.3)

where 82 is the additional variational parameter and

H =H +Hf+H„, (4.1)
Sf = —g f (x)ok U(x, 2k)g(x+2k) .

2 x, k

(4.4)

where
2

H = QE(x)
2Q

Hf = g P(x)ok U(x, k)g(x +k)+m g t/r(x}f(x),
2Q

(4.2)

It can be easily proven that Sf and Sf are Hermitian,
1 2

and in 1+ 1 dimensions they commute so that the trans-
formation can be applied separately. In Ref. 18 and Sec.
II, exp( i 8,Sf —)Hsexp(i8, Sf } and exp( i8,S—f )Hf

Xexp(i8, Sf ) have been expanded in powers of 8„and
I

the momentum-dependent part of the Wilson term is

exp( —i8,Sf ) — g g(x}U(x,k)g(x +k) exp(i8, Sf }=H,'
2Q 1 2

x, k

r ~ 1

2Q „On, !

—28,
Q(x)ok og U(x, k„.. . , k„„2k„}g(x+ki+ +k„,+2k„) . (4.5)

After successive commutations with Sf, the transformed Hamiltonians become2'

00

H" =m
„=0 ~Z'

2

—2g 2 oo

v'2 „0n, ! 1()(x)o k ol, , o' O' U(x, ki, . . . , k„,2p|, . . . , 2p„)

Xg(x +k, + +k„+2p, + +2p„),

1 1
Hk' =

2Q „0712!

—28
v'2 „0n, !

—2L9, P(x)o„ok o~ o~ U(x, k|, . . . , k„+i,2p|, . , 2p„)

r 1H„" =—
2Q 0 n2!

2

Xg(x+k, + . +k„+,+2p, + . . +2p„},
fl

I—20,
g(x)ok o I, o . o.

v'2 l Pi n

X U(x, k, , . . . , k„,, 2k„,2p, , . . . , 2p„)

Xf(x +k, + +k„,+2k„+2p, + . . +2p„) .

(4 6)
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FIG. l. —(fg&/g as a function of I/g-' for r= I and m=0,
where the triangles represent our calculated result and the dia-
monds stand for the exactly calculable value.

The transformed electric field can be calculated in a simi-
lar way.

We assume the physical vacuum state with Wilson fer-
mions to be

IQ&=exp(fe, Sf +fe,Sf, )10& . (4.7)

(4.8)

The right-hand side of Eq. (4.8) as a function of I/g in

By solving the equations BA'n/Be, =0 and B@n/Be2=0
we can determine the values of 0, and F2 for any coupling
constant, fermion mass, and Wilson parameter. For r=O
(naive fermions), the chiral order parameter has been cal-
culated in Sec. II, and e2 automatically vanishes.

For r%0 (Wilson fermions), because H„breaks chiral
symmetry explicitly, pl( can mix with the identity opera-
tor;' ' the Wilson term gives rise to a nonvanishing
contribution even in the weak-coupling limit as discussed
in Sec. III, which should be subtracted before comparing
with the scaling behavior'

the massless limit and for r=1 is shown in Fig. 1. As one
sees, our result is very close to the exactly calculable
value and shows the graceful scaling behavior predicted
by Eq. (2. 10) after subtraction.

V. SUMMARY AND DISCUSSION

In the preceding sections, the unitary transformation
and variational method have been used to study the vacu-
um structure and chiral-symmetry breaking in the
Schwinger model with Wilson fermions. The chiral order
parameter (l(g) has been calculated as a function of
1/g and r. For r=1 and m=0, the result shows a nice
scaling behavior and agrees within error with the exactly
calculable value, Eq. (2.10).

Therefore our approach to the Schwinger model with
Wilson fermions provides a feasible analytic method of
studying the properties of lattice gauge theory for any
coupling constant, fermion mass, and Wilson parameter.
It has been seen that our method is very effective for in-
vestigating the scaling behavior of physical quantities.
This method has been directly generalized to lattice
gauge theory in higher dimensions. To obtain the
mass spectrum of the Schwinger model, one has to find
the eigenstates and to determine the eigenvalues of the
transformed Hamiltonian. There has been previous
work on variational approaches (the coellicients of
the eigenstates are variational parameters) for calculating
the mass spectrum in lattice Hamiltonian field theories
and the results were excellent. In a future work, we hope
to apply these methods to calculate the mass spectrum of
the Schwinger model.
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