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Collective physics in the closed bosonic string
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A second-quantized analysis is performed to examine many-body phenomena in closed bosonic
strings. The covariant nonpolynomial closed-string field theory is developed in terms of particle
fields and shown to contain interactions triggering a nonperturbative condensation of the tachyon
field. We study the possibility that the higher-dimensional Lorentz symmetry spontaneously breaks.
We show that the theory has asymptotic freedom due to a tree-level running coupling. The spec-
trum of states in the nonperturbative ground state is radically changed relative to the free case; in

particular, there is no massless graviton. Similar effects are anticipated in any nonperturbative vac-
uum.

I. INTRODUCTION

The widespread interest in string theory' stems from
remarkable features, present in the theory at the first-

quantized level, that provide the possibility of combining
gravity with other fundamental fields in a single self-
consistent structure. However, a first-quantized investi-

gation of any interacting theory is insuScient, since col-
lective effects can substantially alter the physics. A well-

known illustration is provided by the SU(2) scalar doublet
of the standard model, which is tachyonic at the first-

quantized level but which condenses in the field-theory
vacuum due to self-interactions. The resulting physics in-

volves no tachyons, while an effective mass is generated
for the weak interactions.

The development of a covariant string field theory for
the open bosonic string made it possible to initiate a
Geld-theoretic analysis of collective open-string effects.
This semiclassical investigation indicates that many sca-
lars, including the tachyon, condense in a nonperturba-
tive open-string vacuum. The physics in the new vacuum
is radically different from the first-quantized picture:
only massive states occur, and certain states present in
the canonical vacuum are absent.

The goal of the present work is to determine whether
these features extend to the case of the closed bosonic
string. This is feasible because a covariant closed-string
field theory has recently been constructed. It is nonpoly-
nomial, i.e., it involves all powers of the string field. It is
known to produce correct tree-level results, which
su%ces for a semiclassical study.

The existence of the closed-string tachyon destabilizes
the canonical 26-dimensional vacuum. In analogy to the
standard model, collective effects may stabilize the closed
string in another ground state, containing a nonzero ta-
chyon expectation. Such an expectation value is neces-
sarily nonperturbative in the string coupling and the
Regge slope.

The results presented here are obtained through a
mass-level truncation scheme. In the context of the open
bosonic string, this scheme provides a systematic and
self-consistent approach. It is guided by the intuitive

II. A CANDIDATE NONPKRTURBATIVE VACUUM

The action for the nonpolynomial closed-string field
theory has the form
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idea that light states dominate physical processes and is
plausible in part because the particle-field couplings in
covariant string-field theory are exponentially suppressed
by the total level number of the fields involved. Addi-
tional evidence arises from analytical studies and from
the convergence of numerical computations.

In the present context, the truncation scheme is sys-
tematic and self-consistent when all orders in the nonpo-
lynomial interaction are included. It turns out that the
couplings are further suppressed by the total level num-

ber relative to the open-string case. However, even at the
lowest truncation level an all-orders calculation is im-

practical. Fortunately, qualitative features likely to be
present in the full theory can be observed at low polyno-
mial order. We limit discussion here to an explicit study
of the cubic couplings in a truncation containing the
tachyon and massless fields. This suSces for our pur-
poses and avoids excessive complexity.

Section II presents the particle-field Lagrangian at this
level and explores its vacuum structure. Its physics is an-
alyzed in Sec. III. A summary and discussion is provided
in Sec. IV.
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In these equations, 4 is the closed-string field, Q is the
Becchi-Rouet-Stora-Tyutin (BRST) operator, bp =(bp
—bo)/2 is a combination of antighost zero modes, and A
is the string gauge field. The on-shell three-tachyon cou-
pling is denoted by g and the Regge slope is a'. The sym-
bols f4) e4z represent the string-field scalar product,

I

and [4) . . 4)v )] represents the string field obtained
from the combination of the N —1 string fields

i using the X-string vertex function.
At the chosen truncation level, the string field 4 has

the following expansion in terms of particle fields:

1 1+cp(I)+A„,a" )a" )+ —(a++a)b)c)+ —(a+ —a)c)b) l0)

+cp cp (ij,„a",b, +ij 2„b )a" ) )l0) (2.3)

Here, (I) represents the tachyon field, A„„represents the two-tensor field, and a+,j,„,and j2„represent auxiliary fields.
The symmetric part of A

„

is the graviton h, which is a fluctuation about a flat background. The first-quantized
string vacuum is l0) =c, lQ)c, lQ), where lQ and lQ) are the left and right Sl(2)-invariant vacua, respectively. The
coefficients of the fields are first-quantized oscillators; in particular, cp =cp —cp and cp = (cp+cp)/2.

To this truncation order, the quadratic Lagrangian in terms of particle fields is

2
a'

+ (J)„a„A"+j 2„a„A)+, (J,„J,+q,„q,) . (2.4)

The cubic Lagrangian is lengthy. To simplify matters,
we present it in the Siegel-Feynman gauge b o 4 =0; this
choice sets the particle fields j,„andjz„to zero. Even
with this simplification, the cubic Lagrangian contains
about 50 terms at this level. We present these terms ar-
ranged according to the total level number, where the ta-
chyon is at level zero and the other fields are at level two:
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The order-four terms are

where the suppression factor a=2 /3 =0.6. For the
order-two terms we have
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Parentheses enclosing indices denote symmetrization, e.g. , A '"' = A "'+ A '"=h" . Finally, for the order-six terms
we have
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In Eq. (2.9), the terms cubic in A„and linear in a' con-
tain the standard Einstein gravitationa1 interactions in
the Feynman-Siegel gauge; other terms represent string
corrections. Note that all fields f entering the interaction
Lagrangian are smeared over a distance &a':

7= exp[ —,
'a' in(3&3/4)a„a"]f . (2.10)

We seek ground states of the theory, which are suitable
extrerna of the static potential. The latter consists of all
momentum-independent terms in the Lagrangian. We
find

+sr~a~ = 2& g4'(JipJi+j zpJz) zgA" JipJ2
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The candidate nonperturbative vacuum found above is
now specified also by the conditions j» =j2„=0.Other
nonperturbative extrema exist, but they are either unsta-
ble or are gauge artifacts.

III. COLLECTIVE PHYSICS

The interaction Lagrangian X,„b;,includes terms that
are purely stringy in the sense that they are forbidden by
symmetries in an ordinary particle-gravity theory. For
example, the term PA„A""appearing in Eq. (2.11) in-
corporates a tachyon-graviton-graviton piece that would
normally be incompatible with general coordinate invari-
ance. Terms of this type can coexist with symmetries in
string theories because invariance is achieved through
cancellations among contributions from infinitely many
interaction terms.

In prineip1e, such scalar-tensor-tensor terms provide a
natural means for the spontaneous breaking of the 26-
dimensional spacetime symmetry, which might be a sig-
nal of spontaneous eompaetifieation and could result in

phenomena observable in solar-system experiments. To
illustrate, if P acquires a negative expectation (P ) then

+—
&e 'gf(2 A„„A""+a+—a ) . (2.11)

23

The canonical 26-dimensional vacuum is an unstable
extremum of V„„;,: (P ) = ( A„„)= (a+ ) =0. However,
a local minimum occurs at (P) =2' /3 ga'=1. 66/ga',
( A„,) =0, (a~ ) =0. It can be shown to be perturbative-
ly stable. The new ground state is nonperturbative be-
cause (P) is of order 1/g. It generates a contribution
= —4.77/(g a' ) to the cosmological constant.

The existence of this vacuum is unaffected by the gauge
choice. If no gauge condition is imposed, the static po-
tential is augmented by the terms

the tachyon-graviton-graviton term PA„A""appearing
in Eq. (2.11) generates a negative squared mass for A„„.
The end result is a nonzero graviton condensate ( A„„),
which spontaneously breaks the higher-dimensional
Lorentz symmetry. In fact, this effect does not occur for
the candidate ground state presented in Sec. II because
(P) is positive.

Another stringy feature of the interaction Lagrangian,
valid also in the full nonpolynornial theory, is the srnear-
ing of particle fields over a distance of order of the
Planck length seen in Eq. (2.10). It follows that the
momentum-space couplings carry explicit momentum
dependence. This means that the effective coupling g (p )

runs already at tree leve1 in a string theory. Indeed, the
exponential decrease of g (p ) for large spatial Euclidean
p or, equivalently, for small spatial distances on the
Planck scale makes the closed bosonic string asymptoti-
cally free.

The momentum dependence of the effective coupling
has several implications for the theory. For one, the
determination of tree-level scattering processes in any
nonperturbative vacuum requires both mass and wave-
function renorrnalization. Another is that phenomena at
high p in any vacuum are perturbatively calculable. Still
another feature of the running coupling is that the
effective coupling becomes exponentially strong for
sufficiently large timelike mornenta. This means that per-
turbation theory cannot be used to determine the spec-
trum of states at high-mass levels.

A particularly relevant consequence of the momentum
dependence of g(p ) is its effect on the mass spectrum in
all coupling regimes. The asymptotic Hilbert space in a
nonperturbative vacuum is radically affected because
most propagators acquire a transcendental structure,
which eliminates poles for certain states.

A simple example is provided by the tachyon propaga-
tor in the level-zero truncation. Shifting by the tachyon
expectation and collecting quadratic terms yields the in-
verse tachyon propagator in Euclidean momentum space
as

Q&(p )=, Ia'p —2 +2 exp[ —a'p ln(3v'3/4)]j .

(3.1)

Without the exponential smearing, there would be a
Minkowski-space pole at m =4/a'. However, an expli-
cit examination of Eq. (3.1) shows that the transcendental
behavior precludes a contribution to the spectrum of
asymptotic states. '

It can be seen from the Lagrangian presented in Sec. II
that the tachyon field mixes with fields at mass-level zero
when the latter are included. Mixing of fields from
different mass levels is generic in nonperturbative vacua.
Note, however, that tachyon mixing with mass-level-zero
fields does not occur in the open bosonic string.

As another example with more physical import, con-
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W f fsider the transverse traceless part h „„ofh„given by

a,„a'6,„, l a„a„+;.+24 " h. ,

(3.2)
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This component carries the physical gravitational in-

teraction. Shifting into the nongerturbative vacuum and
collecting quadratic terms in 0„„from the full Lagrang-
ian in Sec. II generates the quadratic form Qs(p ) whose

inverse is the physical graviton propagator.

Qg(p )=, tz'p + exp[ —tz'p ln(3&3/4)] . (3.3)
2Q' 36

A direct check demonstrates that no asymptotic graviton
pole occurs. ' The graviton apparently cannot propagate
beyond the Planck scale in the nonperturbative vacuum.

We conclude this section with two remarks. First, the
results presented above suggest that the spectrum of the
full nonperturbative closed-string field theory in a non-
perturbative vacuum may contain no tachyons and no
massless states. If true, this means that there are no in-
frared divergences and the theory is most likely finite.
Second, a detailed analysis of the propagators in the non-
perturbative vacuum indicates that it is perturbatively
stable. However, the possibility exists that tunneling to
another vacuum may occur, so that the nonperturbative
vacuum may be nonperturbatively unstable. It is likely
that penetration of a barrier is heavily suppressed, if it
occurs at all, because it must involve the entire string,
i e., an infinite number of particle fields with a
penetration-suppression factor for each.

IV. DISCUSSION

In this work, we have demonstrated that stringy
many-body effects arise in the second-quantized analysis
of the closed bosonic string. The string self-interactions
induce the formation of a nonperturbative ground state in
which the tachyon acquires a nonzero expectation value.
The physics seen in the new vacuum is substantially
different from that in the canonical one. Among the
effects are the running of the tree-level string coupling.

This causes asymptotic freedom and has consequences
due to strong coupling for the perturbative analysis of the
high-mass spectrum in any vacuum, including the canoni-
cal one, once interactions are present. Even in a weak-
coupling regime, the Hilbert space is substantially
changed. Propagator poles become renormalized and can
disappear. An important example is the graviton field,
which has no massless pole in the new vacuum.

Many of these effects are expected to occur in nonper-
turbative vacua of any string theory. Indeed, similar re-
sults have been obtained in a study of collective effects in
the open bosonic string. Since the exponential running
of the string coupling is an immediate consequence of the
extended nature of the string, the Hilbert space of any in-
teracting string is likely to be different from the free limit.
For the same reason, asymptotic freedom should also be
generic.

The full nonpolynomial field theory of the closed bo-
sonic string contains many stringy couplings involving
powers of scalar fields with quadratic terms in the gravi-
ton. As we have seen, these couplings are stringy in the
sense that they are excluded by general coordinate invari-
ance in standard particle-gravity models. Since the
canonical c1osed-string vacuum is unstable, nonperturba-
tive scalar condensates form. The graviton is affected in
one of three ways. " First, the graviton itself can form a
condensate. This spontaneously breaks the 26-
dimensional Lorentz symmetry. Second, the graviton
may acquire a mass. The natural scale for this mass is
the Planck scale, so barring fortuitous cancellations grav-
ity is a short-range force in this scenario. Third, it may
be that no graviton pole appears in the asymptotic spec-
trum. The latter two situations are undesirable if the
closed string is to be a theory of quantum gravity. Evi-
dently, the possibility of collective effects of the type
presented means that general coordinate invariance is
insufficient to guarantee a massless graviton in string
theory.
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