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Large-order behavior of the supersymmetric anharmonic oscillator
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The large-order behavior of two supersymmetric extensions of the anharmonic oscillator with

two supersymmetries is found by explicit calculations. This behavior is also studied for deviations
of the model away from supersymmetry. The supersymmetric point is a dividing point in that the
behavior at the supersymmetric point and away from it in one direction is of the form

ava
"l in +a), while in the opposite direction it is of the form b&&a "f'(n +P)sin[(n +y)2'/~]

I. INTRODUCTION

A long time ago, Dyson' found that the perturbation
series in QED is either divergent or convergent to an
answer diff''erent from the exact one. In order to deter-
mine which one of the two possibilities holds, the anhar-
monic oscillator was studied in detail. ' In this case, it
was found that the perturbation series for the energy lev-
els are divergent. However, the series were shown to be
Borel resummable. It was also found that all the energy
levels of the even states are given by the di6'erent
branches of one analytic function, while those of the odd
states are given in the same way by a second
analytic function. For the ground state, the coefficient
of g" for large n behaves asymptotically as
(6/n. )'~ (

—l)"+'3"f(n+ —,'). This result was obtained
first by numerically fitting to an explicit computation,
and later derived by a WKB analysis.

The asymptotic behavior has also been reproduced by
instanton techniques. The latter method has been
generalized to field theories in two, three, and four di-
mensions, and requires a number of maneuvers of a deli-
cate nature.

It is now believed that the asymptotic behavior of the
anharmonic oscillator is quite general for a variety of
field theories. ' The situation for QED, for which these
questions were raised first, is still unknown.

The above-mentioned issues lead to the well-known
paradox: what is the theoretical basis for the most accu-
rate measured number in physics, i.e., the g —2 of the
electron? Of course we cannot exclude the possibility
that the path integral of QED can be reconstructed from
its perturbation series. However, as suggested by Dyson'
it could also be that QED must be embedded in another
theory before one can give a meaning to its perturbation
theory. We note that there are also other reasons for
thinking that QED by itself is not a satisfactory theory.

For other theories of interest such as QCD the large-
order behavior is also unknown; this is one of the
difficulties arising from our inability to estimate with cer-
tainty the large-order behavior in the presence of fer-
mions.

Borel resummation has also been used to calculate with
some accuracy the critical exponents of a number of
models in statistical mechanics, including Ising-like mod-
els in two and three dimensions. " The result of the
present paper arose from an attempt by one of us (P.W. )

to calculate the critical exponents in a supersymmetric Is-
ing model. In the course of this calculation it became ap-
parent that one required the large-order behavior of su-

persymmetric theories.
General theorems in supersymmetric theories guaran-

tee that the ground-state vanishes at every order in per-
turbation theory. Thus at least for this level the usual
divergent results at large order are not found. Indeed,
this result had been quoted previously for certain poten-
tials' which are, we now realize, supersymmetric.
Furthermore, it implies that the analytic property con-
necting all energy levels as stated above must be modified
for supersymmetric theories. For the first excited state
there are no such theorems. It is thus natural to inquire
whether the divergence and Borel summability are valid
or not for the excited levels of a supersymmetric theory.
The investigation of this question will be the subject of
this paper.

As a starting point we study a supersymmetric exten-
sion of the harmonic oscillator. The potential is of the
form

~here we have studied the cases 8", =x +gx and
Wz =x +gx . The most reliable way of finding the
large-order behavior is to simply calculate numerically

42 1276 1990 The American Physical Society



42 LARGE-ORDER BEHAVIOR OF THE SUPERSYMMETRIC. . . 1277

many orders using a computer and fitting the asymptotic
behavior. For 8", we found the result S= dt —x —— ——W' ——W"g ~l 1,2 l

a a 2 2 a P

E2I1 3"(n +1)! (1.2) (2.1}

while for Wz the result is

8 I (n+ —,')
E ( 1)n+12n

77 r(;} (1.3)

for the parity-odd first excited state.
To discover whether the supersymmetric case is spe-

cial, we also studied deviations about the supersymmetric
point using the potentials

dW
dx

d W

dx
—~cxP — ~Pet ~ 1 2

The Hamiltonian is given by

H= —p'+ —W' + —W"e ~P 1(

where W is an arbitrary function of x and

(2.2)

(2.3)

and

V, =
—,
' WI —

—,
' W", +(d —1)gx —(c —1)gx, (1.4)

Quantizing the usual way (i.e., [x,p] = i A, I g, 1t&& I
=5 ~Pi) we find the Hamiltonian

V, =-,'W,' —
—,'W,"+(d —1)gx —

—,'(c —1)gx' . (1.5)

For c=d=1 we recover the supersymmetric case. For
d = 1, c%1 the asymptotic behavior for V, is given by

d0=- +V,
dx

where

(2.4)

18 1,„I(n+3 —c)
I (2 —c)

(1.6)
1V= —W' ——0. W" .
2 2 3 (2.5)

and for V2 we find

I (n + —,'+ —,'(1 —c)}
23(1 —c)/4( 1 )» +12n

7r I ( —,'+ —', (1 —c))

However, for d@1 and c =1 the behavior is very
different. For V& with d ~ 1 the large-order behavior is of
the form aoa

"I (n +a) where now a and ao are functions
of d but for d ( 1 the behavior is of the form

aoa
"I (n +a)sin(n +y) 2'

7
(1.8)

II. THE SUPERSYMMETRIC
ANHARMONIC OSCILLATOR

Supersymrnetric quantum mechanics is the simplest su-
persymmetric system and has been a useful testing
ground for ideas in supersymmetric theories. In particu-
lar, the breaking of supersymmetry has been investigated
extensively in this model. ' ' In this paper we wish to in-
vestigate the behavior at large orders of perturbation
theory in the hope that, as is the case for nonsupersym-
metric models, it will be similar to that found in super-
symmetric field theories.

We now recall the essential features of supersyrnmetric
quantum mechanics with two supersymmetries. ' The
model has one real even coordinate x and two odd coor-
dinates P, a=1,2. The action is

where ao, a, y, and 7 are functions of d. This oscillatory
behavior can also be expressed in terms of a complex
multiplier a. For detailed analytical expressions we refer
to Sec. VI. The results for V2 are very similar. Conse-
quently, the supersymmetric point is the dividing point
between two regions of different types of asymptotic be-
havior.

The energy levels of the system are given by the usual
Schrodinger equation

Hg=EQ, (2.6)

where 1(& is a two-component spinor. As is characteristic
for supersyrnmetric theories, the supercharges

Q a ga p —W'e ~s g—a & A = 1,2

generate the Hamiltonian by the relation

tQ~ Qsl =2&~a& .

(2.7)

(2.8)

The ground state is annihilated by the supercharges and
so has E =0, and its wave function is given by

0
t(&= exp( Wo 3/A') (2.9)

8'] =x+gx (2.10)

which can only be normalized when the highest power of
x in W is even and has a positive coefficient. In the event
that 1( is not normalizable there is no supersymmetric
ground state and supersymmetry is spontaneously bro-
ken. However, this fact does not show up in perturbation
theory as a result of a general theorem for supersym-
metric theories. Namely, if supersymmetry is not classi-
cally broken, then for these classically unbroken
configurations the supersymmetric effective potential
vanishes to all order of perturbation theory, and conse-
quently supersymmetry wi11 not be broken by quantum
corrections at any order of perturbation theory. ' In this
case it means that all corrections to the ground state also
vanish. ' '

We will be interested in generalizations of the anhar-
monic oscillator where the potential is V= —,'x +gx . In
particular, we will consider the cases



1278 J. J. M. VERBAARSCHOT, P. WEST, AND TAI TSUN WU 42

8"=x+gx (2.11)

From the boundary conditions for the first excited state
which are such that the lowest-order coefficients are
given by

+2 V $=2E tP, (2.12)

The wave function (2.9) is normalizable for the second
case but not for the first case. Consequently, for 8',
there exists no supersymmetric nonperturbative ground
state.

By a suitable scaling by A of x, g, and E the
Schrodinger equation for the above potentials reads, for
the lowest component of f, which we also call 1{,

r

Eo = 1 and Po(x) =x, (3.6)

it follows immediately that

2n, 3n +1 ~2n, 3n +2

A 2n + 1,3n + 3 A 2n + 1,3n +4

(3.7)

(3.8)

It also follows that all coefficients with negative indices
are zero while

o,o=& &2.,0=0 for (3.9)
where

v=-'w' —-'w'
2 2

(2.13)

for the supersymmetric case. However, since we also will
be interested in the large-order behavior for deviations
from the supersymmetric case we will consider the two
potentials

Substituting Eqs. (3.4) and (3.5) into Eq. (3.3) and com-
paring the coefficient of xP we find the difference equa-
tions

qBz, q
2(2q +3}{q+1)Bz,q+]

2n —1,q 2n —1,q —1

2 V, = IV'i' —IV", +2(d —1)gx ' —2g (c —1)x,

2Vz = IVz' —IVz'+2(d —1)gx' —3g (c —1)x',
(2.14)

(2.15)

+2 g Ezl Bzn —zq, q
p=1

(3.10)

III. DIFFERENCE EQUATIGNS
FOR THE ENERGY LEVELS

Following Ref. 2 we will compute the perturbative
corrections to the energy levels using difference equations
which we mill now derive. Since, as mentioned above, the
ground-state energy vanishes at every order in perturba-
tion theory, we will consider the first excited state. We
consider the Schrodinger equation (2.12) with the poten-
tial (2.14). When we expand

P„(x)g"exp( —x /2), (3.1)
n=0

g
ll

n=0

and read off the coefficient of g", Eq. (2.12) becomes

(3.2)

d P„dP„
+2x 2EoP„—2x(c ——dx )P„ i+x P„z

dx

where the supersymmetric point is given by c =d = l. &n

what follows we will refer to the use of V, and V2 as
cases 1 and 2, respectively.

2(2q —1)Az„+,q =2(q +1)(2q+1)Az„+,q+,
—A 2n —1,q 2+2&82n, q

—1

E2n ~ A Zn —1 0 3~2n, 1 (3.12)

Examining the boundary conditions Eqs. (3.7)—(3.9) and
the difference Eqs. (3.10) and (3.11}we realize that start-
ing at an odd level, say 2n + 1, and taking
q =3n +2, 3n + 1, . . . , 0 successively one can express all
the coefficients A 2n +, q

in terms of the coefficients with a
smaller value for the first index. Similarly at level 2n +1
we start at q = 3n +3,2n +2, . . . , I and determine all
the 82„+2q

in terms of the previously found coefficients.
As we will see in the next section, these equations are
well suited to be analyzed numerically.

The perturbative expansion for the potential (2.15) is
obtained in a similar way. Again we substitute the ex-
pansions for the wave function and the energy

2dBz„q z+2 g Eqp Az„+i qp q
p=1

{3.11)

Taking q =0 in Eq. (3.10) and using Eq. (3.9) we find that

=2 g EpP„
p=1

(3.3) f= +8„(x)g"exp( —x /2), (3.13)

3n

P „{x)=y x q+'8
„

q=0
3n +2

Pz +i(x)= g x Az
q=1

(3.4)

(3.5)

By induction it follows immediately that the odd terms in
the expansion (3.2) vanish (i.e., Ez„+,=0), and that Pz„
is an odd function of x while P2„+,is an even function of
x. This results in the expansions

E= ggPE
P

(3.14)

8„(x)=g x q+'8„
q=0

(3.15}

in the Schrodinger equation {2.12). Since the potential Vz

is invariant under parity we have a parity-even and a
parity-odd first excited state. For the parity-odd case we
can write
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and the resulting difference equation is

2(2q + 1 E—
o )B„=2(q + 1)(2q + 3 )B„

—2dBn —1,q-2 —Bn-2, ,-3

+3cB„, , +2 g E B„
p=l

(3.16)

2(q —1)c„q= (q + 1)(2q + 1)c„+,
—2(q —1)c„.. .+ g c„,E

p=1

where the boundary conditions for cn are

c =1 c00 ~ 01

(3.26)

(3.27)

BOO=1, B 0=0, n 1 . (3.17)

For the lowest parity-odd state we have Bo(x)=x and

EO = 1, and as a result we adopt the boundary conditions
n0 nn 2 nn+3

All coefficients with negative indices are also zero. Tak-
ing q =0 in Eq. (3.26) we find

From the Schrodinger equation we find that the highest
power of x in B„(x)is equal to 2n The. refore, we put

En =2cn (3.28)

B„,2„+1=B,2„+2=' ' ' =0 ~

Taking q =0 in Eq. (3.16) we find

(3.18)
IV. LARGE-ORDER BEHAVIOR OF THE

SUPERSYMMETRIC ANHARMONIC OSCILLATOR

En = —3Bn1 . (3.19)

Similar results hold for the parity-even first excited state.
In the above potentials the supersymmetric case is ob-

tained by taking c=d=1. In this case the difference
equation that generates the perturbation series for an ei-
genvalue can be simplified. In the supersymmetric
Schrodinger equation we put

In this section we present the numerical results for the
solutions of the difference equations given in the preced-
ing section and obtain the asymptotic n dependence of
the coefficient E2„.Assuming that E2„for the potential
V, has a large n dependence of the form aoa

"I (n + a) we
can compute a and a from the largest coefficients that
have been calculated. With these constants we compute a
sequence E2n as

Wo3g= iI'r exp (3.20)

Aa "Pn +a)
(4.1)

which results in the following equation for g:

+fiW' =EP .
2 dx 2 dx

(3.21)

and examine its convergence (the constant A has been in-
serted for numerical convenience). Following Ref. 2 we
fit E2„to an expansion in 1/n,

Absorbing fi as described above we find, for the upper
component of iT(,

a1 a2 a
E)n a0+ + ) + +

n n n' (4.2)

d Q 2IV, dg=2EQ .
dx

(3.22)

EO=2, i)'j=x —
—,
' .

Letting

(3.23)

and

f= g c„(x)g", E= g E„g",
n=0

n+1
c„(x)= g x ~c„

q=1

(3.24)

(3.25)

the difference equation resulting from Eq. (3.22) is

One may worry that for certain cases exp(+ Wo'3/A')

times a polynomial is not normalizable; however, in per-
turbation theory one is not sensitive to this difficulty, and
the values for the energy levels obtained from this equa-
tion are identical to those obtained from Eq. (2.6).

To give an example, let us consider 8"=x+gx and
the first excited parity-even eigenstate. For this state we
have

We evaluate the coefficients a„from the last K+1 energy
levels Pz„that have been calculated. The first coefficient
is given by

( n,„i)'—
a, = y (

—1)'Ei(„,) ), ,
t =0

(4.3)

where E2„ is the coefficient for the maximum value of
max

n that has been computed. The coefficient a, is found by
applying Eq. (4.3) to the last a —1 terms (En~„—ao) in-

stead of the last K terms Ezn. The remaining coefficients
are found analogously.

When a sufficient long sequence of values E2n is avail-
able it is apparent from the monotonic convergence of
E2n whether the correct values for the multiplier a and
the number a have been found. This also follows from
the behavior of the coefficients a for increasing values of
K. Empirically we find that for K larger than an optimal
value the coefficients start to diverge. In all cases this
value was found to be K=6. It is likely that the expan-
sion (4.2) is an asymptotic expansion. Therefore, only the
lowest coefficients a can be determined accurately. The
degree of accuracy can be estimated by comparing to
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E~„=—(n + 1)!3" 18 143 1 263 1

7T n 7T

coefficients for neighboring values of v. If they agree in
the first q figures, we will say that the "expected accura-
cy" is one part in 10~. A high accuracy provides consid-
erable confidence not only in the values of ao and a, but
more importantly in the large-order behavior, i.e.,
a "I (n+a). A further check of the accuracy is the
agreement with the expectation that a, a and the a can
be expressed in terms of ~, simple rational numbers and
their roots.

The results for the supersymmetric models have been
obtained from the first 245 nontrivial corrections to the
energy level Eo. The coefficients a quoted below have
been derived from those with the optimal value of ~.

In the case W'=x+gx the large-order behavior of
the first excited state (i.e., Eo = 1) is given by

2E„=(—1)"+'(n +2)!—16&2
'jl

99 1 169 1 1

8 n 3
(4.6)

where a3 is approximately —185.1. The "expected accu-
racy" for ao, a, , and az is 1 part in 10', 1 part in 10,
and 1 part in 10, respectively. Their agreement with the
above numbers is 1 part in 10', 1 part in 10', and 1 part
in 10, respectively.

We observe that the series generated by E„ofEqs. (4.5)
and (4.6) are Borel resummable while that of Eq. (4.4) is
not. We know, however, that in the latter case the per-
turbation series is constructing a state which nonpertur-
batively does not exist while it does exist in the former
case. This agrees with the folklore which states that a
series which is not Borel resummable has a nonperturba-
tive instability.

1
+a3 +

n
(4.4)

V. LARGE-ORDER BEHAVIOR AWAY
FROM THK SUPKRSYMMETRIC POINT

where a 3 is given approximately by 606.5. The
coefficients ao, a &, and az had an "expected accuracy" of
1 part in 10", 1 part in 10, and 2 parts in 10, respective-
ly. As an example we list in Table I some numerically ob-
tained coefficients and their product with m. We see that
n.ao agrees with 18 to 1 part in 10' while ma, and ma&

agree with —143 and 263 to 1 part in 10" and 1 part in
10, respectively. We observe, as will generally be the
case, that the coefficients agree much better with their
identification than the expected accuracy would suggest.

In the case 8"=x+gx we find the following large-
order behavior for the first excited parity odd (i.e. ,
Eo= 1):

In this section we study the anharmonic oscillator with
the potentials V, and Vz given in Eqs. (2.14) and (2.15),
respectively. The supersymmetric point corresponds to
c =d =1. The coefficient of the cross term —,

'W' is
varied by choosing d —1%0, c =1. For d =1, c —1%0
the coefficient of —

—,
' W" is varied. In view of the origin

of this term we may think of this as varying a Yukawa
term. However, it is not completely clear whether in
such a simplified model one can identify this term with
what might, in a higher-dimensional analog, be the effect
of adding fermions.

The large-order behavior for d =1 and arbitrary values
for c is not very different from the supersymmetric case.
For the potential V, we find, for the coefficients of the
first excited state,

„18,, r(n+3 —c)
m 1(2—c)

(5.1)

1 141 1 1X 8 —33—+ —103 +
n 16

(4.5)

TABLE I. The coefficients ak and maj, of the expansion in
1/n of E&„asgiven in Eq. (4.2).

5.729 577 951 30645
—45.518 313719 118

83.724 335 635 56
—193.044 551 48

17.999 999 999 994 40
—142.999 999 983 776 6

263.027 757 759 361 4
—606.467 344 745 104 6

where the "expected accuracy" of ao, a, , and az is 1 in
10", 1 in 10, and 1 in 10, respectively. Their agreement
with the above given numbers is 1 part in 10', 1 part in
10', and 1 part in 10, respectively.

For the first excited parity-even state (i.e., ED=2) of
the same potential we find that

Having identified the fact that the multiplier a remains
unchanged and that the factorial is F( n +a ) with
a =3—c we have applied the expansion (4.2) to this case
for many values of c. In the range —0.5 c 1.95 the
value of a„agreed to 1 part in 10 or better with Eq. (5.1)
(i.e., ao = 18/m. 6' ').

For c =2 the formula (5.1) yields E„=Odue to the fac-
tor I (0) in the denominator. This behavior could only be
observed numerically by choosing c slightly (say 10 )

different from 2. Since the initial rounding off error is
multiplied each step by a large factor the calculated num-
bers for Fz, actually become very large instead of
remaining zero. However, a careful numerical analysis
shows that we have Ez„=0for all n at e =2. Indeed, at
c =2 V& is again a potential. resulting from a supersym-
metric model with 8' ' = 8'& —1/x =x +gx —1/x. The
ground-state wave function for W is exp( —W) and so is
of the form x exp( —x )+ which starts in the same
way as for the first excited state of the potential W', .

Examining V, in the neighborhood of c =3 and c =4
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one finds that although the coefficients E2„donot vanish
for small n, the coefficient ao vanishes and thus agrees
with the above formula.

By varying c for d =1 for the potential V2 we find a
similar large-order behavior. The coefficients E„for the
first excited parity-odd state are given by

I (n+ —,
'+ —,'(1 —c})

23(1 — )/4( 1 ) +12
7T I ( —,'+ —', (1—c))

(5.2)

For 9 c —1 the agreement of ao with the above is 1

part in 10 or better. For 25 c ~9 the agreement was
less impressive but convincing, and for c ~ 30 the conver-
gence cannot be clearly established with the number of
terms computed (i.e., 245).

For c =—', the above formula predicts that E„vanishes
for large n, and in fact we find numerica11y that E„van-
ishes for all n ~ l. It was also verified that Eq. (5.2) holds
well for c close to —', . This phenomenon, like that for V, ,
is a result of the fact that, for c = —', , V2 is a potential re-

sulting from a supersyrnrnetric model. What we have
computed is the ground-state energy of the model with
W'=x+gx —I/x. At several other points where the I
function in the denominator becomes infinite (such as
c =11) it was verified that a0=0 in these cases. Howev-

er, unlike at c =—', at these points E„doesnot vanish for
all n but, instead, only vanishes asymptotically. Again,
for values of c in the neighborhood of c = 11, the formula
(5.2) holds well.

In the last part of this section we study the case c =1
and d ~ 1. The behavior for d & 1 is different and will be
considered in the next section. We will largely restrict
our attention to the potential V&.

When we change d, unlike for c, the multiplier a also
changes, i.e., a(d). This means that for each value of d
one must repeat the entire analysis from the beginning.
Consequently, our numerical results in this range are less
complete than those discussed previously and restricted
to an understanding of the parametric dependence of the
multiplier. We find that the terms Ez„areall negative
and examining several cases it would seem that for d ) 1

the large n behavior is of the form
ao(d)l (n +a(d))a "(d).

Although the numerical analysis of the variation of
d%1 is more involved the analytical understanding of the
results greatly simplifies. By rewriting the potential V, as

2V, =
[ W', (gx)+2(d —1)(gx)'1

TABLE II. The d dependence of the multiplier a(d) in the
asymptotic behavior of the coefficients F„.We compare our nu-

merical results (second column) to those obtained analytically
for the leading part of the potential (third column).

256
128
64
32
16

8

4
2
1.75
1.50
1.25
1.2
1.1
1.05
1.02
1.01
1.008
1.005
1.002
1.001
1.000 5
1.000 3
1.00025

a (d) (numerical)

491 454.8
122 861.3
30 712.93

7 675.829
1 916.549

476.722 3
116.746 1

26.666 37
19.592 90
13.42409
8.104 751
7.127 392
5.216 144
4.236 826
3.588 299
3.337 187
3.281 724
3.192 521
3.090 347
3.049 933
3.026 863
3.016660
3.013 984

a (d) (analytical)

491 516.5
122 876.9
30 716.79

7 676.785
1 916.784

476.779 3
116.759 4
26.669 18
19.594 94
13.425 47
8.105 595
7.128 144
5.216 729
4.237 347
3.588 817
3.337 760
3.282 328
3.193221
3.091 397
3.051 371
3.028 621
3.018 497
3.015 811

solution:

1 2 ~ d 2 d+1—= ——+d ——(d —1)ln
a(d) 3 2 d —1

(5.4)

For large d the multiplier is proportional to d . This also
follows by redefining E„~d"E„andP„~d"P„in Eq.
(3.3}. For d very close to 1 the difference between the
multiplier and 3 is proportional to d —1. In Table II we
compare this value of a (d ) to the ones extracted from our
numerical results and find an excellent agreement. It
should be noted that the discrepancy is systematic. The
value of a, which is only determined in the next order
1/n, could not be obtained very accurately. Its value is
consistent with —', which, according to Zinn-Justin, '

should be expected for the first excited state.
The region c = 1, d & 1 was also examined for the po-

tential V2, and a similar conclusion was reached. Name-
ly, the asymptotic behavior is of the generic form

—g [ W", (gx)+2(c —1)gx]], (5.3) ao( —1)"+'a"I (n+a), (5.5)

one observes that the last term in the potential is sublead-
ing in g. In the case d =1, when the minima of the lead-
ing part of the potential are degenerate, a small
symmetry-breaking term can have important effects.
However, for d&1 one expects this term to affect only
the constant ao in the asymptotic expansion. This is also
suggested by the fermionic origin of this term. The lead-
ing part of the potential was studied previously by Brez-
in, Le Guillou, and Zinn-Justin. ' The inverse multi-
plier is simply equal to the action of the one instanton

where a„and a depend upon d. Also in this case analyti-
cal results for the leading part of the potential (after re-
scaling x ~g ' x ) are available (see Ref. 7}.

VI. AN OSCILLATORY LARGE-ORDER BEHAVIOR

We now examine the potential V, [Eq. (2.14)] for c =1
and d ( 1. While the behavior for d ) 1 is of the standard
type [i.e., E„aoI(n+-a}a") that for d &1 shows a
different behavior. This is immediately apparent from
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2 1

3 1 —d
(6.1)

The oscillatory behavior was also obtained analytically
for the leading-order part of the potential. The reason is
that for d (1 the potential has two complex zeros corre-
sponding to two complex-conjugate saddle points of the
Euclidean action A. This results in an asymptotic behav-
ior proportional to A "+A'" which represents a
sinusoidal dependence on n. The period ~ is given by

2m==arctan
7

——d(d —1)
7r 2

2

——'+d ——'d (d —1)ln
1+d

3 2 1 —d

(6.2)

For d~1 this result converges to the asymptotic be-
havior given in Eq. (6.1). The inverse multiplier a(d) is
given by

the appearance of successive blocks with negative and
positive signs showing an oscillatory behavior with a
period greater than 1. The period v of oscillations can be
easily read off and for d ~1—they fit the formula

for this case. We observe that the last 26 ratios are equal
to 4.332(1+17.3/n) up to 1 part in 10 . This also fixes
the proportionality constant for Eq. (6.7). Its value is
different from the constant obtained for the leading part
of the potential.

Although we did not make a detailed study for other
values of d, examination at several other values strongly
suggests that the asymptotic behavior of the E„is of the
form (6.7).

Also for the potential Vz we find that for c = l, d & 1

the asymptotic behavior is of the form
(
—I)"+'a"aol (n+a)f(n), where f(n) is a periodic

function with period v. For the d dependence of the
period we find

(6.g)

for d~l in agreement with the analytical results for
the leading part of the potential.

A similar detailed study of the case c =1, d =0.9 re-
sulted in the asymptotic behavior of the form

2——'+d ——'d(d —1) ln + mi
1+d

a(d) 1—d
(6.3)

2'E„—I ( n +a )a "sin(n +y ) (6.9)

We made a detailed study of one representative case
where we choose c =1 and d =0.95. We assume that the
large-order behavior is of the form

E~„-a"I (n +a)f (n), (6.4)

where f (n) is a periodic function with period r (in this
case r-18). The constants a and a can be obtained from
the values of E2„at the maxima of f(n). We find
a =2.3219 [Eq. (6.3) yields 2.3212] and a=1.5 (again the
value of a could not be determined accurately; we used
the value that was obtained analytically' for the leading
part of the potential). From the sequence

E
a "I (n +a)

(6.5)

f (n) =aosin(n +y)
2'

(6.6)

The values of y and v are determined from the position of
the most obvious zero and extremum of the E2„and
fitting these to the above formula. We deduce that
~=18.2423, and y = —226.451 13. The analytical result
for ~ is 18.2388. The value of y is equal to
1.57 mod(m/r), which differs significantly from the value
of 1.5 that can be obtained' for the leading part of the
potential. The asymptotic n dependence is thus given by

2&Ez„—I (n +a)a "sin(n +y)
7

(6.7)

From the ratio of E2„and its asymptotic dependence it is
clear that we have found the correct asymptotic behavior

it is apparent that the periodic function f (n) is of the
form

For y = —321.791 832, v.=25.358 24, a = 1.5, and
a =1.643 595 the ratio of E„and its asymptotic form is
constant to one part in 10 for the last 90 values of E„
that have been calculated. Since a induces a 1/n correc-
tion, its value is determined with an accuracy of only
=5%. The other constants are determined by a fit with
an absolute accuracy of =10 . The value of n agrees
with what one expects' for the first excited state for a
potential with nondegenerate minima. The values of
a (d) and r that can be deduced from the work of Brezin
et al. are equal to 1.643 537 and 25.357 344, respectively.
An examination of the raw data for other values of d ( 1

strongly suggests that the asymptotic behavior is also of
the above type but with different parameters.

We can conclude that both for V, and V2 the asymp-
totic behavior for d & 1 is of the form (6.7), and for d ~ 1

it is of the form aoa "n!. We note that these two different
asymptotic forms are continuously related. For d~1
the period ~~DO yielding a monotonous n dependence
for the coeScients E„.However, the form of the behav-
ior is not differentiable at d =1 as the periodic behavior
does not reappear when d & 1. In this sense the super-
symmetric point is special in that it is a dividing point.
The reason is that at this point the two zeros of the lead-
ing part of the potential become degenerate.

One may speculate that the behavior given in Eq. (6.7)
is of a universal type for the departure from the super-
symmetric point in a certain direction. At least for su-
persyrnmetric potentials derived from a polynomial func-
tion W(x) we have that at the supersymmetric point the
zeros of the leading part of the potential are coalescent.
Generally speaking, when we change a parameter of this
potential, in one direction we will obtain two real zeros
whereas in the other direction we will obtain two com-
plex zeros corresponding to an oscillatory behavior. In
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other words, there is at least one direction in which an
infinitesimal deformation away from the supersymmetric
point gives rise to Borel resummable asymptotic behav-
ior.

It can be easily seen that an oscillatory series is Borel
resummable. The Borel transformed series, i.e., the series
obtained by dividing the coefficients by I (n +a), is of the
form

2m
(gat)"sin(n +y } (6.10}

where t is the variable that enters in the Sorel transfor-
mation. The series is convergent for ~gal~ (1 and we may
sum the series to the form

1

2l

2K
exp i(y —1)

7

exp —gat

1

2l

2K
exp t'(y——1)

7

2'
exp +

7

(6.11)

Thus the Borel summed function has poles at
gat =exp(+2m ir) which are not on the real axis except
for rheo. Hence, in the naive sense the asymptotic be-
havior (6.7) is resummable for r) 0.

VII. CONCLUSIONS

We have examined the large-order behavior for the su-
persymmetric anharmonic oscillator and for deviations
away from this point. It was found that the supersym-
metric point is a dividing point in that at this point d = 1

and varying d ) 1 the behavior is of the form

aoa
"I (n+ a) while for d ( 1 it is of the form

aoa
"I (n+a)sin(n+y)(2m/~),

where ao, a, a, y, and w depend on d [see Eq. (6.7)]. In
the latter region the asymptotic series is Sorel resumm-
able.

The simplified model of supersymmetric quantum
mechanics can be thought of as the analog of the addition
of fermions in a field theory such that the equation of
motion for the fermionic variables is the "square root" of
the equation of motion for the bosonic variables. As a re-
sult the bosonic part of the potential can be naturally ex-

pressed as the square of another function that is usually
assumed to be regular. Consequently, the zeros of this
part of the potential are doubly degenerate. Then there
will be a direction in which variation of the potential
gives rise to complex zeros resulting in an oscillatory
larger-order behavior. In this sense the supersymmetric
point is special in the sense that it is a dividing point of
some kind.

It would be interesting to recover completely the
large-order behavior found in this paper using WKB or
instanton techniques. These will be reported elsewhere.
Having recovered these results one can proceed to the
case of field theory. It would seem reasonable to conjec-
ture that for the Wess-Zumino model with coupling g the
large-order behavior is of the form g "(—1}"a"I'(n+a).
In four dimensions the four-loop beta function is
known' ' and would seem compatible with such a be-
havior.

A natural next step is the investigation of a model with
a higher degree of supersymmetry. Along these lines we
studied an X =4 model of supersymmetry. The results
which show an almost identical pattern of behavior will
be published as a Letter.

One could hope that the perturbation series of the
theories of interest, i.e., QED, QCD, etc. , can be inter-
preted in the framework of some kind of supersymmetric
generalization. Much more work is required to arrive at
definite conclusions. However, the present work does
suggest that having added fermions to a bosonic theory
the supersymmetry can modify the large-order behavior
and therefore may play a role in the paradox outlined in
the Introduction.
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