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The influence of the Coulomb interaction in states containing massless and flavorless fermion-
antifermion pairs is studied, using a continuum formulation within the finite volume S*. Several
different forms for the Coulomb interaction are examined, including confining potentials as well

as nonconfining potentials.

The calculations show that if the interaction is strong enough,

the Coulomb interaction leads to condensation of pairs, and that this condensation has a chiral
character. The condensation does not depend on whether the interaction is confining. It is found
that simplified variational approximations are not accurate enough for an adequate description

of the states.

I. INTRODUCTION

Studies of QCD have suggested that light quarks may
become condensed in pairs as a consequence of the
Coulomb interaction.!*? The condensation of fermions
has also been considered in strong-coupling QED, us-
ing both continuum®* and lattice methods.’> However,
the association between this condensation and the phe-
nomenon of confinement is not clear from the previous
work. To examine further the role of the Coulomb inter-
action in the condensation of light quarks and the chiral
properties of the states, along with the relation of these
phenomena to confinement, we have carried out numeri-
cal calculations based on the continuum theory on a hy-
persphere.

The hypersphere S3 provides a quantization volume for
the fields which has good symmetry and topology. Mo-
menta are given an upper limit A leading to a system with
a finite number of degrees of freedom. We use a Hamil-
tonian formulation, together with variational methods,
to investigate directly the low-lying states of the system
in the strong-coupling region. Since we use continuum
rather than lattice variables, there are no fundamental
difficulties associated with fermions. It is possible to
treat fermions that have a vanishing mass, so that chiral
symmetry is explicitly preserved. We consider models in
which the fermions have only one flavor. For our varia-
tional calculations, we shall use a convenient set of states
introduced by Wang and Cutkosky in a previous paper,
referred to here as WC.6 States with vacuum quantum
numbers are constructed by using operators formed from
pairs of fermion operators, and the matrix elements of
the Coulomb energy operator are evaluated between such
states.

We shall study here the low-lying eigenstates of the
WC effective Hamiltonian. In this model Hamiltonian,
the bosonic degrees of freedom are not treated explic-
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itly. Instead, we consider an effective Coulomb interac-
tion, and investigate whether such an interaction can lead
to a condensation of pairs and whether such a conden-
sation affects the chiral properties of the ground state.
To examine how the confining or nonconfining nature of
the interaction influences the results, we shall consider a
Coulomb interaction that has the general form

Gk = <K(If+ 2))“ ’ M

where K is the hyperspherical momentum-transfer vari-
able. Note that on 53, the Laplacian operator takes the
values V? = —K (K + 2), where K is a positive integer.
The value K = 0 does not appear, and we impose the
constraint K < A. We consider here the values p = 1
(ordinary QED), g = 2 (corresponding to a linear po-
tential), and also p = oo, a “superconfining” interaction
previously discussed by WC, in which only the lowest
value K = 1 is relevant. The number of colors is taken
as n, where n = 1 corresponds to the case of ordinary
QED. However, in these calculations, n only enters kine-
matically, in the degeneracy of fermion energy levels. We
find that the value of u does not significantly affect the
condensation phenomena. However, the chiral properties
are somewhat modified in the superconfining limit.

II. FERMION PAIRS ON S3
AND THE COULOMB HAMILTONIAN

On the hypersphere S2, bosonic modes are conve-
niently classified by the (I;,12) representation of the
SU(2)xSU(2) symmetry group.” The momentum index
is K = I} + 13, and the helicity is h = [} — l5. To
use the same classification scheme for fermionic modes,
following Sen,® we resolve two-component spinors along
a triad system formed from orthonormal vectors of the
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representation (1,0). This spin is then associated with
the angular momenta (3,0), and combined with the or-
bital angular momenta (I,!) of a scalar mode. We write
k=1L +1+ %, where k is a positive integer. Con-
struction of four-component free Dirac spinors is done
just as in flat space,®® and gives a free-particle energy
E = +[m? + (k + 1)?]'/2, where m is the mass. The
degeneracy, including the color factor n, is

vy = nk(k + 1) (2)

for each helicity h = :t%. There is never an infrared
problem, even if m = 0, because all modes have a finite
energy and degeneracy.

In WC, a set of operators M (k,h)! was defined which
contain products of two creation operators: one for a
fermion and one for an antifermion. Applied to the per-
turbative vacuum, these operators create a pair in which
two particles having a definite magnitude of momentum
k and helicity h have been combined to give a total mo-
mentum of zero, as well as no net color. The fermions are
taken to have only a single flavor. A state with k such
pairs is given by

k) = C(k, &) [M(x, k)1] " |0). (3)
We define
(k|M(k,h)k — 1) = F(k, &), (4)
which gives
k
C(k, k) =[[1/F(,%). (5)

By using commutation properties of the M' and M, it
can be shown that

VL= (k= 1)/vi]. (6)

Apart from a normalization factor and a shift of the ori-
gin, the matrix elements of M ' equal those of an angular-
momentum-raising operator for spin v, /2.

F(k,k) =

In general, we consider linear combinations of the
states
kv, ko, kaa ) = [] C(ki, k)M (s:, hi) 15 10), (7)

where the product extends over the 2A values of k and
h with k < A. This defines a variational approximation,
because there are also other states which are colorless
and have a total momentum of zero. The WC effective
Coulomb Hamiltonian, evaluated between states of the
form given by (7), can be written in terms of the number
operators for pairs, N.s, and the operators M and MT.
By use of Eqgs. (4) and (6) this provides a convenient way
to express all matrix elements. For massless fermions,
helicity conservation holds at each vertex, and there are
only two basic kinds of terms. We denote terms that
involve fermion scattering at both vertices by s = +, and
terms that involve pair creation or annihilation at both

vertices by s = —. The effective Hamiltonian has only 6
types of operators:

H= \Z(NEJr + Neo)(26 +1)

nETp peora. o

where, with D(k)? = k(x + 1),

Ai(k,A) = D(n)z,

As(k,A) = nD(k)2D())?, 9)
As(k,A) = D(k)D(A),
Ri(MK,K)=3(K+r+A42)(k+A-K)(K +1),

(10)
R_-(\MK, k)= %(K +Kk—A+1)
x(K—-—rk+A+1)(K+1),
and
Miy =Ny + Ne—
Moy == (NeyNyy + No_Ny_):,
May =—[MO\, )M (k,+) + M(A, =) M(k,-)],
(11)
M1— = "(Nn+ + N'c-) ’
My =2N Ny_,
Ma_ =Mk, +)IMO\, )+ M(k,+)M(A,—).
The coefficient « in (8) is
2
_ 9y
T 4rn2n’ (12)

where ngy is the number of exchanged vector particles;
ng = n?—1for SU(n) and ny = 1for U(1). In M3y (k, &),
M(k,h)tM(k,h) as given by (11) is to be replaced by
Ngh-

Although the Dirac equation can be constructed to be
invariant under a parity transformation P, the effect on
spinor modes is quite complicated, because the two SU(2)
subgroups of O(4) are interchanged. In the operators
M (x, h)!, however, these complications cancel out, and
we have, as required,

PM(k,h)'P = —M(k,—h)!. (13)

The effective Hamiltonian H of Eq. (8) therefore con-
serves parity, although the states (7) do not separately
have definite parities. Four of the operators listed in
Eq. (11) are diagonal in the occupation numbers Nyj.
The other two have the property that the difference
Z =Y . (Nxy — Nx_) remains constant, so Z is a good
quantum number. It follows from (13) that the parity
operation gives Z — —Z. However, the energy of eigen-
states is independent of the sign of Z, so for Z # 0 there
are pairs of degenerate states, which form parity dou-
blets. For Z = 0, there are both scalar and pseudoscalar
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states. These are not degenerate, and there are also more
scalar states. If the mass of the fermions were not zero,
the helicity selection rules would no longer hold. Then Z
would no longer be a good quantum number, and there
would be, in general, no parity doublets.

III. THE LARGE-N LIMIT

In the limit n — oo, the terms Mo, can be dropped,
and the Hamiltonian (8) takes the form

Hoo =Y (Nut + Nel)[26 + 1+ 7A4(K) — yA_(~)]

“+v ZMSa(Kw’\)BJ(KVA)’ (14)
KAs
where
. _ GgRs(k, K, X)
250 = 2 =5 p 0 )
and
D(}) (16)

A (k) = Z\:B,(fc,/\)ﬁm.

(In this limit, v is kept fixed.) Furthermore, as seen

from Eq. (6), the operators M:h become ordinary boson
creation operators, and we can write

Mk, 1) = /3 (zan + ipan)

using conjugate variables z,5, and p.y. This gives

(17)

Hoo =73 ) [26+ 1+ 7A4(5) = yA-(8))(2kn + Pin)
kh
=37 D By (K, A)(@xnzan + Prrpan)
KAh
+7 ZB—(K,/\)(GCK+ZL',\— — Px4Pr-) (18)
KA

(which is normal ordered).
We express the helicity-labeled variables in terms of
new variables as

Trt = \/g(ﬂ:Pn+ + Xs-),

(19)
Prt = \/g('*’Pn— + Xn+) .
Here, the label p = + refers to parity:
XE = Xli )
PXepP =0 Xy (20)
PPpP =pPyy.

The variables in (19) have been arranged so that the
parity structure of the Hamiltonian is exhibited clearly:

Hy = % Z(Un)\Pin/\p + V;c)\anX/\p) )
KAp

(21)

where
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Vi = 8xa (26 + 1) + 79[ 6xa(A4 (k) — A-(K))
—By(k,\) + B_(, V)],
(22)
Uer = Ver — 2yB_(k, ).

The Hamiltonian (21) corresponds to a set of coupled
harmonic oscillators. If 4 is small enough, the matrices
U and V will be positive definite. The ground state is
nondegenerate and scalar. The excited states are given
by different excitation levels of the normal modes. These
excitation levels correspond to different numbers of non-
interacting particles. The normal modes all occur in de-
generate pairs, giving scalar and pseudoscalar excitations
of equal energy.

Equation (16) implies that D()) is an eigenvector with
eigenvalue zero of the Coulomb term V¢ in the matrix
V (the part proportional to 7). Therefore, since B_ is
positive definite, we must have >, D(k)UcrD(X) < 0
if v is large enough. This implies that the matrix U
must develop a negative eigenvalue if v is larger than
some critical value y.. Numerical diagonalization (for
A < 45) of the matrices V and U confirms that there
is such a y.(u), for various values of y, whether or not
u corresponds to a confining potential. If v > 7., the
spectrum does not have a lower bound; the energy can
be made arbitrarily small by increasing the number of
pairs. This condensation, when it occurs, involves pairs
of both parities.

For finite n, the signal for condensation would be some-
what different and less pathological, because the spec-
trum is always bounded for any finite A. The reason is
that the number of pairs has an upper limit given by the
degeneracy (2).

In Fig. 1, the value of 4, is plotted against A for various
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FIG. 1.

Nomentum cutoff A

The critical Coulomb strength parameter v. at

n = oo as a function of the cutoff A, for various forms of the
Coulomb potential.
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values of p. In addition to the values mentioned above,
we made calculations for p = %, which marks the transi-
tion between confining and nonconfining potentials, and
for p = 1+. By ¢ = 1+ we mean that the potential for
4 = 1 has been multiplied by the factor L,/Lk, where
Lg =1+ In(K + 1). A logarithmic modification can be
motivated by considerations of asymptotic freedom.

IV. NUMERICAL CALCULATIONS
FOR FINITE N

In this section we present the results of some numerical
calculations for several finite values of n and various val-
ues of A. We use trial wave functions which are general
linear combinations of the states (7):

‘I’ :ZB(kl,kQ,‘--;k’ZA)|k1,k2,~~~;k2A>~

We have been restricted to consideration of quite small
values of n and A, because we have not yet been able
to find a sufficiently accurate variational approximation
for the coefficients B which appear in (23), and the total
number of terms included in (23) increases very rapidly
with n and A. We use the notation Q = Z:\:l v, for
the maximum number of pairs of each helicity, and write
Z =(Q.

Our method of calculation was first to find a sufficient
number of the lowest-energy states, for the simplified
problem in which the total number of pairs N is kept
fixed at various values, and then to find the lowest ener-
gies when these states are coupled through the remaining
terms of the Hamiltonian. This procedure allows an in-
terpretation in which N is considered as a collective vari-
able with an effective potential V(N). The interpretation
would be precise if only one eigenstate of lowest energy
needed to be considered, for each N. We found that this
approximation gives a qualitative understanding of the
lowest states of the system, even in the strong-coupling
regime. For accurate results, however, we needed to in-
clude as many as 5-9 states for some N, and the required
number increased with n and A.

For displaying our results, we express the Coulomb
strength coefficient v in terms of the infinite-n critical
strength 7. by the parametrization

7.

v o (24)

(23)

In other words, I' = 0.3 corresponds to ., the value of
v shown in Fig. 1, at which, for given values of A and g,
the system becomes unstable when n — oo. We found
that the energies and the properties of the states depend
strongly on I', but depend relatively weakly on A, u, and
n when 7 is expressed this way. For example, when p =1
or g = 2, there is a chiral transition when ' = 0.5.
Figure 2 shows the mean occupancy for several values
of 4 and ¢. The mean occupancy is defined to be the
average number of positive-helicity fermion pairs divided
by the maximum possible number of such pairs for the
given values of A and n. The curves shown are for n = 2
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Occupancy Index

Coulomb strength parameter T

FIG. 2. The mean number of positive-helicity pairs, di-
vided by the maximum possible number, as a function of the
Coulomb interaction strength for several values of ¢ and pu.

and A = 3, but other values of n and A give almost
identical results. We see that if I' < 0.3, the number of
pairs remains close to the minimum needed to provide a
given (. If the critical value is exceeded, however, the
number of pairs increases steadily with T'.

Figure 3 shows how the lowest energy depends on A
and (, as well as on T, for x = 1,2 and n = 2. The ref-
erence energy is the ground-state energy for ¢ = 0, and
the energy unit is taken to be the calculated first exci-
tation energy for ( = 0 multiplied by Q, as this removes
most of the dependence on n, A and p. Figure 4 shows
the same quantities for A = 2 and various values of n.
Figure 5 gives similar information for y = co. From the
curves shown in these figures we can draw several general
conclusions. First, we note that if ¥ < 27, the energies
increase with ¢ and are roughly proportional to ¢. In
this region, the energies are still dominated by the free-
particle energy term of the Hamiltonian. There are peaks
in the curves at v = 7., which are more pronounced for
the larger values of n. These peaks arise from the fact
that the energy unit A Ey is relatively small for this value
of v, and are presumably associated with the large-n in-
stability.

For v > 7., the dependence on { changes character,
first becoming weaker, and then changing sign at T = 0.5
(y = 2.3y.) for p = 1 and p = 2. In this regime, the
lowest-energy state is a parity doublet. Furthermore, the
energy for ( = +1 is the lowest, whenever E1; < Ejy.
The condensation of pairs thus occurs with a maximal
concentration in a single helicity, and all possible states
with k < A and that helicity are filled. This phenomenon
occurs with both a nonconfining interaction (4 = 1) and a
confining interaction (¢ = 2). The “superconfining” limit
p = oo is somewhat different, however. There is no chiral
transition for finite v, but there is a “superdegeneracy”
when v = oco.
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FIG. 3. Normalized energy differences as a function of

the Coulomb interaction strength for 4 = 1 (the ordinary
Coulomb potential) and p = 2 (a string-like potential), with
n=2and A=2,3.

The wave function (23) has defined a variational ap-
proximation that may itself be too restrictive in some
respects. Unfortunately, it also has so many adjustable
parameters (the coefficients B) that it can only be used
if A and n are very small. In this range, it provides a
basis for judging the accuracy of further approximations
which might allow simpler calculations for larger A and
n, as well as calculations with more than one flavor. One
possibility is to limit the total number of pairs that are
included. This is satisfactory if ¥ < .. However, when
condensation of pairs occurs, we found that a limitation
that reduces the total number of states included in the
sum (23) by only a few percent can introduce a sizable
error in the energy differences.

A trial wave function similar to that used in previous
work!:2 is

¥, = exp (Za,c,,M(K., h)t) [0),

Kh

(25)

where the a.j, are the adjustable parameters. This wave
function does not respect the conservation of Z; it con-
tains a mixture of states with different values of Z. The
minimum energy calculated using (25) would approxi-
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FIG. 4. Normalized energy differences as a function of the

Coulomb interaction strength for several values of n, with
A=2and p=1,2.

mate an average of the energies E¢, for { near the value
o giving the smallest energy. [From our calculations us-
ing ¥, see Eq. (23), we already know that {, = 0 for
I' <0.5,and {;p =1 for T > 0.5.] Lower energies can be
obtained by introducing a projection operator Pz onto
the Z subspace:

Vg, = Pz¥,. (26)
This will give a set of energies E'( from which we can
choose the smallest. Use of ¥z, instead of ¥, will always
give a lower energy.

In Fig. 6 we compare the “exact” energies (obtained
from ¥) with the approximation ¥z,. The unit is the
energy difference A Ey obtained using ¥. For { = 1 there
is only one state in the sum for ¥, in which there are Q2
pairs with positive helicity and none with negative he-
licity. Therefore ¥z, is independent of the a.p, and
necessarily gives the same energy as ¥ for { = 1. For
small values of |[(|, however, the energy errors in the con-
densed regime are much larger than AFEj, showing that
conventional formulations related to ¥, can give mislead-
ing results.

The inadequacy of ¥, does not arise as long as the
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FIG. 5. Normalized energy differences as a function of the
Coulomb interaction strength for the “superconfining” inter-
action g = oo.

occupation numbers remain close to the weak-interaction
values. A chiral transition does occur when the crude ap-
proximation (26) to ¥ is used, but with incorrect charac-
teristics, because fluctuations in the occupation numbers
are not treated accurately enough. Our “effective po-
tential” approximation is more accurate, but also gives

10

-15

variational approximation

-20
0. .5 1.
Coulomb strength parameter T
FIG. 6. Comparison of the normalized energies obtained

using a simplified variational approximation with the more
exact values, for n = A =2 and u = 1.

only qualitatively reliable results. To go beyond a qual-
itative understanding of the properties of a model with
strong coupling, very complicated calculations seem to

be needed.
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