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ln this paper we develop a formalism for inclusion of fermions in a discussion of QCD on a
hypersphere. We apply this to the study of the Coulomb energy operator. We use operators formed

from pairs of fermion operators to construct a set of states for use in variational calculations of the
effect of the Coulomb energy operator. To examine the feasibility of numerical calculations based
on this formalism, a calculation is undertaken which uses a simplified approximation for the
effective Coulomb energy. The preliminary numerical results suggest that the Coulomb energy may
be important for the chiral-symmetry properties of QCD.

I. INTRODUCTION

Quantum chromodynamics (QCD) is believed to de-
scribe the strong interaction of hadrons. However, in the
strong-coupling regime, it is necessary to use numerical
methods to investigate the properties of QCD. As an al-
ternative to lattice formulations, ' we use a continuum
formulation in a hypersphere. The hypersphere provides
a quantization volume for the fields, and we impose a
momentum cutoft'. As a result, we have a system with a
finite number of degrees of freedom. We use a Hamil-
tonian formulation together with variational methods to
investigate directly the low-lying states of the system in
the strong-coupling region. Since it is a continuum for-
mulation, there are no fundamental problems with in-
clusion of ferrnions, as demonstrated by Sen. Moreover,
chiral symmetry, as well as rotational invariance, is
preserved.

In calculations on Yang-Mills fields without quarks, we
have found that the spectrum is primarily governed by
properties of the Coulomb energy operator. For strong
coupling, there is a gap between the vacuum state and the
first-excited state with vacuum quantum numbers, and a
second gap of roughly the same size between the first-
and higher-excited states. ' This is consistent with
confinernent of the gluons and an interpretation of the
first-excited state as a glueball. Several previous studies
suggest that when light quarks are included in the theory,
these quarks may become condensed in pairs as a conse-
quence of the Coulomb interaction. ' However, the as-
sociation of this condensation with the phenomenon of
confinement is not clear from the previous work. The
condensation of ferrnions has also been considered in
strong-coupling quantum electrodynamics (QED), using
both continuum ' and lattice methods. " To examine
further the role of the Coulomb interaction in the con-
densation of light quarks and the chiral properties of the
states, along with the relation of these phenomena to
confinernent, detailed numerical calculations mill be re-
quired. These can be carried out by extending the

methods we have used for the pure-glue models.
A second question about the relation between quark in-

teractions and confinement is whether the quarks play a
significant role in providing the mechanism for
confinement of gluons. Our previous work suggested that
behavior consistent with confinement does occur even in
the absence of quarks. In other continuum-based studies,
this question has not been examined, although it has been
the focus of many lattice-based studies. The question ad-
dressed here is, does condensation of the quarks occur
whenever the interaction is strong enough, or does it re-
quire that the interaction be confining? This question has
been considered in previous studies, ' but with
conflicting results. We shall not attempt to settle this
question here, but shall try to develop some new tech-
niques which can be used for studying this question nu-

merically.
In a previous paper, we have investigated the proper-

ties of electrons on the hypersphere under the influence
of a uniform magnetic field. ' In this paper, we will dis-
cuss second-quantized fermion fields on the hypersphere.
First, we will give a brief review of fermions on the
hypersphere. Then we will study the Coulomb energy
operator using a simplified mode1. We will review briefly
some general aspects of QCD which we wish to incorpo-
rate into our model, but we consider here only Coulomb
interactions which have an externally prescribed form.
We show how to construct states with vacuum quantum
numbers by using operators constructed from pairs of fer-
mion operators, and we evaluate the matrix elements of
the Coulomb energy operator between such states. In or-
der to get some insight into the technical numerical prob-
lems, some preliminary calculations are also undertaken
using a simplified interaction. Results of these calcula-
tions are described. They suggest that the chiral-
symmetry properties are influenced by the Coulomb in-
teraction, but that more refined numerical techniques
must be developed in order to study this question careful-
ly.
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II. FERMIONS ON THE HYPERSPHERE where

The hypersphere S is the surface of a sphere in four
dimensions; in Cartesian coordinates, it is specified by

X +X +X +X =1

C) (K, h ) =[E(a ) +M] /D (v)

C~(a, h ) =9(i~,h)/D (~),

(iy d —
—,'y'y —M)4=0 . (3)

The y'y term does not violate parity. Under parity,
(t,X;,X~)~(t, —X„X&), the Dirac equation transforms
to

(iy 8' +—,'y y
—M)4=0,

where 8' = (Bo,c; V ). However, if we choose the c; coor-
dinate system to start with, we end up with the covariant
derivative

On the hypersphere, we have defined scalar harmonic
functions SI»', and transverse vector harmonic functions
Vg'+&. In order to define spinors on the hypersphere, one
needs to construct an orthonormal basis at each point on
the sphere. One convenient choice is a set of vectors e;,
with i =1,2, 3, which are derived from the three-vector
harmonic functions V", '+. This choice is not unique. For
example, one could choose a similar set of vectors c;
based on the V~&' . The physics should not depend on the
choice of the coordinate system, but for definiteness we
choose the first basis.

In terms of this coordinate system, the general covari-
ant derivative 2)„can be expressed as

iy ega)„=iy a ,'y—5y—o, (2)

where 8 =(Bo,e; V), giving the Dirac equation as

and

D (a. } =2E (a )[E(~)+M] .

The negative-energy spinor is

V(x, h, v, m)= iy—U(z, h, v, m)' . (9)

X(x., h, v, m)
Uo(K&h&v&m)= ~—

2h ( h )
(10)

These spinors are eigenstates of y . The positive-energy
spinors and the negative-energy spinors have opposite
chirality.

For the second quantization of the fermionic operators
on the hypersphere, we expand an arbitrary spinor in
terms of the spinor normal-mode functions as

For each value of K and J, there are 2K + 1 values of v
and 2J+1 values of m, giving a combined degeneracy
K(K+ 1 ) for each value of h. They form a complete set of
normal-mode functions. In contrast to the situation in a
periodic cube, there are no zero modes, and all spinors
have a well-defined helicity h.

In the massless limit, we find C, (~, h)~1/&2 and
Cz ( i~, h ) -~ —h &2. Thus, for positive energy
E(1~)=I~+ —,', we have

iy cg2)„'=iy 8' + —', y y
]c, h, v, m

[b, (a, h, v, )mU(~, h, v, m)

X(~, h, v, m)= g (2J+1)'
JM, mS

p ms m

Thus the change of sign of the term y'y is consistent
with the change in the coordinate system, and as a result,
does not violate parity.

The general normal-mode solutions to the Dirac equa-
tion are easy to obtain. For ~=1,2, . . . and h =+—', a
two-component spinor function g is constructed in terms
of the scalar harmonic functions as

+d, (~, h, v, m)V(~, h, v, m)] .

The index a denotes all the internal degrees of freedom of
the fermion. The expansion coeScients b, and d, are the
destruction operator for a positive-energy fermion and
the creation operator for a negative-energy fermion, re-
spectively. They satisfy the standard anticommutator re-
lations.

Under charge conjugation, one can show that these fer-
mion operators transform as

with

XSLr'X(m~), (6) C, b, (~,h, mv)C, „=d,(~, h, mv),

C, d, (v, h, v, m)C, „=b,(ir, h, v, m) .
(12)

0
0

X( —
—,
' )= Under time reversal, with T

p
U pK p

and K, being
the complex-conjugation operator, the fermion operators
transform as

U(a, h, v, m) = C, (a, h)X(a, h, v, m)
—C~(a, h )X(i~, h, v, m }

2K =~—h —
—,', and 2J =x+6 —

—,'. For positive energy
E(~)= [M +8(x,h) ]'~, with 8(~,h) =2h (a+ —,

' ), the
Dirac spinor is then U, b, (a, h, v, m)U, = i'(h, v, m—)b, (a, h, —v, —m),

(13)
U,„d,(x, h, v, m) U, = —ig(h, v, m)d, (~, h, —v, —m),

where the phase factor is g(h, v, m ) = ( —1)"+
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III. THK MODEL HAMILTONIAN

For the construction of our model of fermion interac-
tions, we are guided by the Hamiltonian formulation of
QCD. However, we shall not try to determine in detail

here from QCD how the quarks and gluons influence
each other. In order to eliminate all the nonphysical de-
grees of freedom from QCD, we choose the Coulomb
gauge, V A, =O. ' On the hypersphere, the full quan-
tum Hamiltonian for SU(n) gauge theory is

0,=
—,
' J 'E "JE,'"+B,'B,' +O', X —iy,-D;+ —', y y +M O', X dQ

+ ,'g-'f fJ 'o-'(X}&o,XI(a,a, )-'( a—')(a, D, ) 'Ib, X'&J~'(X')dfldf);, (14}

where X and X' are four-dimensional unit vectors. The
covariant derivative is

Hf=g E(a}[N+(N,h)+N (v, h)],
N, h

(20)

D =a +igT A; where the N+ are the number operators for fermions and
antifermions

and the charge density is

o' =f' 'E "A '+ 4 t"0
E 1 (J (16)

N+(~, h)=g b (a, h, v, m)b(s, h, v, m),
v, m

(21)

The t are the generators of SU(n) in the fundamental
representation. The Faddeev-Popov determinant is
defined to be

and

N (K,h)=g d (a, h, v, m)d(s, h, v, m) (22)

J=det(a;D;) .

In our simplified model, we wish to consider only the
fermion degrees of freedom. There may be important
effects left out of such a model, but these are left for fu-
ture study. To define this model, we neglect the fluctua-
tions in the gluon field, and the effects of the quarks upon
the gluon field. We are then left with a fermion-fermion
interaction which is supposed to incorporate the impor-
tant effects arising from the gluon field. In other words,
to obtain the model Hamiltonian from H, as given by Eq.
(14), we replace all the vector fields by their average
values over the inner Gribov region, and treat these vec-
tor fields as a fixed background. In this process, all fac-
tors in H, which do not contain the fermion fields are re-
placed by constants. The Faddeev-Popov determinant,
therefore, disappears from the Hamiltonian, and the vec-
tor potential term in the covariant derivative of fermion
fields vanishes. In the Coulomb energy, the interference
terms between the fermionic charges and the gluon
charges also vanish, and we need to consider only the fer-
mion charge density

(18)

The operator (a;D,. ) '( —a )(a,a, )
' is replaced by the

average over gluon configurations, which we denote by G.
However, we do not attempt to calculate G here from
QCD, but just use an assumed functional form. As a re-
sult, the model Hamiltonian becomes

H,'= f [0', (X)( iy, D;+ —',y—y +M)%, (x)]dQ

+ ,'g'f f~'(X)&o,X-~G~b, X &~'(X )dndn .

(19)

We shall consider a single quark flavor. The free part of
the Hamiltonian (19) is

o', (K,p, v)=t,', f+,.Sg" V.dQ,

crz(K, p, v)=tv' f4;Sg'"+JdQ' .
(25}

Since we consider only colorless states, the matrix ele-
ments of o. vanish for E =0. The Coulomb Hamiltonian
for fermions in QED [U(1) gauge theory] has a similar
form, with Gz = [K (K +2) ] '. In previous calculations,
we observed that in strongly coupled QCD, the Coulomb
matrix elements with K=1 are much bigger than the
free-field Laplacian and dominate the higher-K values. '

Therefore, we shall use

Gsc =G1&g, 1 (26)

in some numerical calculations described later. More
generally, we would wish to consider an interaction of the
form Gz-K for large K, where a=3 would corre-
spond to the boundary between confining and
nonconfining interactions. The "superconfining" interac-
tion (26) is a limiting case, and since it leads to fewer non-
vanishing matrix elements, it slightly simplifies our ex-
ploratory numerical work. We shall use the following ab-
breviated notations: (i)—:(a, ,h;, v;, )mfor i =1,3,4, 6
and (ii):—(K,p, , v). Expanding the charge density in

By the completeness of the scalar harmonic functions
and rotational invariance, we can write

&a,x~G~b, x'& = g Gz5,be'"(X)'Sg'"(X') . (23)
K,p, v

The Coulomb energy operator for a general SU( n ) pause
theory is, therefore,

n —1
2

I,'= ,'g g g —Gzo&(K,p, v)oz(K, p, v), (24)
K,p, v a=1

where
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+b, (1)d, (3}T +(321)

+d;(l)b (3)T+ (321)

—d, (3)d, (1)T (321) ],
o', (K,p, v)=, tki g [bk(4)bt(6)T++(426}

(46)

+bk(4}dt( 6)T+ (426)

+dt, (4)bt(6)T +(426)

—dk"(6)dk(4)T (426)],

(27)

terms of the creation and destruction operators, we have

o', (K,p, v, ) =ti g [ b; (1)bj(3)T++(321)
(13)

where T &, with a,P=+, denotes the integral of a prod-
uct involving spinor harmonic functions and a scalar har-
monic function. The subscripts + denote the positive-
and negative-energy spinors. For example, we have

T+ (321)=f U (3)Sir'V(1}dQ .

In each T I3, the integral over three scalar harmonic
functions gives a reduced matrix element multiplied by
two 3-j symbols and other factors from Eq. (6). Three of
the 3-j symbols can be summed over internal magnetic
quantum numbers to give a 6-j symbol and a new 3-j
symbol. The results, listed below, can be interpreted as a
reduced matrix element for the spinor harmonic func-
tions multiplied by a pair of 3-j symbols

T++(123)—0 '
(
—1) +'

(
—1) ' '[C)(tt), h))C)(tt3, h3)+C2(x„h))C2(F3, h3)]

J3 J, —,'E E3 E) —,'E J3

E(X [(2E,+ 1)(2J,+ 1)(K + 1)(2K3+1)(2J3+1)]'
m3 Pl ] JfL V3 V) V

T (123)= T++ (321),

T+ (123)= 0 '
(
—1) ' '

( —1) ' '[C, (a 3, h3) C2(~, , h, )
—C, (x.„h, )C (2tr3h )3]

J3 Ji —,'E E3 Ei
X [(2Ki+ 1)(2Ji+ 1)(K+1)(2E3+1)(2J3+1)]'

v3 v) vm& pm3

T +(123)= 0 '
( —1) ' ' ( —1) ' '[C)(~3,h3)CQ(trfyh]) C](irtyh])CQ(tt3yh3)]

J3 J] K E3 E] E J3 J)
X [(2K) + 1)(2J( + 1)(K+1)(2E3+1)(2J3+1)]'

m3 m&
—P V3 V] V ] 3

J, —,'K

E,

—,'E

(29)

H,'=H]+H2+H3+H2+K] .

The first term is

H, =+*b; (1)d.(3)bt(4)dI (6)T +(321)

(30)

where 0=2m is the volume of the hypersphere and
2K; =a; —h; —

—,', 2J; =v;+h; —
—,'.

By using the Hermiticity of the Coulomb energy opera-
tor and charge-conjugation invariance, we can simplify
the form of the Coulomb energy. Identifying terms with
different combinations of creation and destruction opera-
tors, we can write the Coulomb energy as

The second term is

H2 =H2, +K2b,

with

H2, =g' [2b; (1)bk(4)dt (6)bj(3)T++(321)

X T+ (426)

—2b; (1)bk(4)d)~(3)bt(6)T +(321)

X T++(426)],

H2q =g* 2b; (1)dt (6)5.k5~(34}5,(34)

(33)

(34)

X T+ (426),

where we use the abbreviated notation

,'g t,', tkt g G—
aij kl ( 12346)

(31)

(32)

X T++ (321 }T+ (426) .

The third term is

H

with

(35)

(36)

H3, =+*[—2b, (1)bk(4)b (3)b((6)T++(321)T++(426)+2b; (1) (d6t)b~(3)d~(4)T++(321)T (426)

2bk(4)d, (6)b—(3)d;(1)T+ (321)T+ (426)], (37)
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H3b =g"[+2b; (1)bi(6)5 k5 (34)5,(34)T (321)T (426) —2bk(4)b. (3)5,i5 (16)5,(16)T (321)T (426)],

H3, =+*5;i5, k5p(16)5~(34)5, (16)5,(34)T + (321) T+ (426) .

(38)

(39)

Since H3, =EO is just a constant, it could be dropped.
We will keep it as part of our unit of energy for some nu-
merical calculations. The symbols 5 and 5, are compos-
ite delta functions defined as 5& (i,j ) =5, „5i, i, and

I~ j t'

5,(i,j )=5„„5,respectively.

IV. PAIR STATES

We expand + and 4 in terms of creation and destruction
operators and keep just those terms which contain a
product of two creation operators. These terms contain
sums over ~ and h of the following operators, which
create a pair in which the two particles having a definite
magnitude of momentum ~ and helicity h have been com-
bined to give a total momentum of zero and no net color:

M(ir, h) =N(ir) g g (i', vm)b; (ir, h, —v, —m)
i v, m

Xd, (a, h, v, m) . (41)

Here N(ir)=[nir(i'd+1)] ' is a norinalization constant
obtained by setting

(OiM(ir', h')M(a, h) iO) =5„„.5i, h (42)

where ~0) is the perturbative vacuum. These pair opera-
tors are invariant under charge conjugation. Note that in
the pair-creation parts of the operators 0+ =4 p+4 g the
sums only include terms with helicity h =+—,'.

The only nonvanishing commutator of the pair opera-
tors is

For our variational calculations, we want to construct
a set of vacuum states containing many fermion-
antifermion pairs. We expect that the creation operator
(or destruction operator) for a pair should be related to
the integrals of local field operators

n n

4s= g f%;+;dQ and Cip= g f i';y~'Ii;dQ . (40)

We will consider general linear combinations of the
states

where 1; are positive integers and each pair (a;,h;) is dis-
tinct. The overall normalization constant is N~l~. These
states are all colorless and have a total momentum of
zero, but do not have a definite parity. To obtain an ex-
pression for N~l~, we first consider the norm
K (l, ~) —= (1~1) of the state

(47)

We commute one of the M(ii, h) to the right and obtain
the relation

(lil)= l(OS[M(a, h)]' '[M(a, h) ]' 'i0)

+(0~[M(i~, h)]' '0(ir, h}[M(a,h) ]' '~0)

+ + (0~ [M(ir, h)]' '[M(a. , h) ]'

XO(i~, h)M(ir, h) iO) . (48)

Again, we can commute the operator 0(a, h) to the right
and get

(0~[M(i~, h)]' '[M(~, h) ]'0(i~, h)[M(ir, h) ]' '~0)

= —2N (ii ) (1 —i) (0( [M (s, h )]'

(49)

Since ~l
—1)=[M(x, h) ]' '~0), we obtain

I —j
(lil ) = 1 —2N(ir) g m (1 —

I'll

—1)

~1„12, . . . , 1 ) = N((}[M(ai,h, ) ] '

X[M(irz, h2) ]'. [M(a. , h ) ]™~0),
(46)

[M (~', h
' },M (a., h ) ]=5h i, 5„„.+ 5h i,

.5„„,0 ( a., h ) (43)
where

=F(l, ii)(l —1~/ —1), (50)

which is more complicated than the normal bosonic com-
mutator. The correction term contains an operator
0 (a, h) given by

F(k, i~)=k [1—(k —1)N (a.)] . (51)

O(i~, h)= —g g N (ir)d, (x, h, v, m)d, (x,h, v, m)
i v, m

—g g N (a.)b; (ii., h, —v, —m)

Apart from the normalization factor, the matrix elements
of M equal those of an angular-momentum-raising
operator for spin j =nx(ii+ I )/2. The norm (1~1) is

i v, m

Xb, (ir , h, —v, —m) . . (44)

I

K (l, ir}= g F (k,z),
k=1

(52)

[M(i~', h'), 0(ii, h)]= —2N (~)M(~, h)5h i, 5„, (45)

This operator 0 (a., h } is Hermitian, and satisfies
0 (a, h ) ~0) =0. In addition, we find

and the overall normalization constant is

N(,1=+K(l;,a;) (53)
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V. EFFECTIVE HAMILTONIAN
FOR MASSLESS FKRMIONS

Since the general states are expressed in terms of pair
operators M(a, h} instead of quark operators
b, (ir, h, v, m) and d,.(x', h, v, m), it is useful to rewrite the
Coulomb Hamiltonian in terms of the pair operators and
the pair number operators:

N, i,
= ,'[N—+(ir,h)+N (~,h}] . (54}

We first write down the general form, then we will spe-
cialize to massless fermions. The Coulomb energy opera-
tor can be written as

H, =ED+ g &;,(a, a', K. )At;, (ic, ir'),
l, S, K, K, K

(55)

where Eo is given by (39). The operators At, , (K, K ) are
some specific combinations of the pair operators and the
pair number operators and are listed below. The Hamil-
tonian coefficients &;, can be determined by evaluating
the matrix elements explicitly in the context of quark
operators. However, we only need to evaluate the sim-
plest nonvanishing matrix elements to determine these
coefficients. We will demonstrate this by example later,
following Wick's theorem. Equation (55) gives the
correct recursion formulas for matrix elements, so that
all the matrix elements between states of various occu-
pancy can be written down at once, given the form of the
At;, and the expressions for the %,,

In general, we can write the Hamiltonian coefficients as
a product of several factors

&;,(ir, a', K)=y Gx D,R, /5; .

The common strength factor y is given as

g G)ny=
4m n

(56)

(57)

D+ =1 for h'=+A . (58)

For each value of s, there are only three values of i.
The degeneracy factors 6;, which are listed below,

arise from the normalization factors N(a) in the M as
given in Eq. (41)

A, =x(a+ I),
b ~= no(x+ 1)x'(a'+ 1),
63=&a(a+I} '(~'s+ I) .

(59)

where n is the number of exchanged vector particles;
n =n —1 for SU(n) and n =1 for U(1). The quantity
G

&
is the Coulomb propagator for exchanged momentum

E =1. For the simplified model, this is the only term.
Also, we have Gz =Gz /G, . The Dirac factors D, are
made up of combinations of the spinor amplitudes C
given in Eq. (29). For massless ferinions, we inust have at
each vertex either no change in helicity (fermion scatter-
ing) or opposite helicities (pair creation). Corresponding
helicities must occur at both vertices, so the Hamiltonian
term H2 does not contribute, and in the nonvanishing
terms, the label s takes on only two values +, with

g+(g', K, x ) = —,'(K +ir+ir'+2)(ir+a'' K)(K—+1),
(61)

(a' K&&i)r= —,'(K+K K +1)(K K+K +1)

X(K+1) .

Note that the volume factor llQ from the integrals has
been absorbed into y. The six At;, are listed here

Ati = (N„++N—„),
Af 2 =2N„+N,

At3 =M(a., + ) M (a', —
)

At, + =N„++N„

At2+ = —.(N„+N„++N„N, ):,
At3+= —[M(a', +) M(a, +)+M(ir', —) M(s', —)j .

(62)

(63)

(64)

(65)

(66)

(67)

These operators arise as follows. The first term of H3& in

Eq. (38) is a self-energy contribution for the pair a and
provides the term %,+Ati+ in (55), in which the factor
A+ is to be summed over ir'. The second term in H3b
gives the self-energy contribution involving virtual pairs,

At, . The first term of H3, in Eq. (37}and the third
term give rise to &2+At&+, respectively, and have the
effect of reducing the self-energy when the intermediate
states are partially filled. In the term %2+At&+, for
K —K, we have:N:=N(N —1). The term H, of Eq. (31)
creates two pairs containing opposite helicities and gives
the term %3 At 3 (There . is also the Hermitian-
conjugate term. ) Finally, the fermion-antifermion in-
teraction term, the second term of H3„provides scatter-
ing of a pair with internal momentum v into a pair with
momentum s', giving %3+At3+. Here, for K —K', we re-
place M„M by N .

Although the structure of the effective Hamiltonian in
Eq. (55) has a natural and expected general form, our
algebraic derivation is not very simple or transparent.
However, there are some obvious checks on the
coefficients. The leading divergences in the &„cancel,
and particle-hole syminetry relates the &„and %2, .

As examples, to demonstrate that Eqs. (63) and (64)
give the correct operators for use in (55), we shall evalu-

We have absorbed one factor of n ' into y from the nor-
malization terms.

The kinematical factor A, is the product of the two re-
duced matrix elements obtained from Eq. (29). For mass-
less fermions, there are only two different combinations
of 6-j symbols consistent with the helicity constraints

S+ (K &K&IC):

(60)
—,'a —,'(ir' —1) ,'K-

S (~', K,a)= '. . .
( 1). 2 2 2.

Using the explicit algebraic expressions for the S+, we
obtain
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ate the corresponding matrix elements of the Hamiltoni-
an explicitly. Considering the forms of the operators
~JK3 and H &, we can rewrite these two matrix elements
as

I, = (I', , I2, . . . , I' ~H, (l„l2, . . . , 1 )
I I= N(l )N(i)(OI[M(a', h' )]™. [M(~& h'i )1

'

X [M(a„h, ) ] ' [M(tc~&h~ ) ]™H,~0) (68)

= N(l )N(l) (0~[M(a', h
' )] . . [M(zl, h'i )] '

X [M(~„h, )t] ' . [M(a, h ) ]™H,~0),

where the operator H, is

H, = g JV3 (a&a'&K)JR3 (a&a') .
K, K IK

(69)

(70)

and
Let us define A, =g l =2+g l, . If we commute
M (a;,h; ) to the left in the expression I, , we obtain

I I I

I, =A, terms of the form 5,5h „,(0~[M(a', h' )]" [M(al, hl')]' [M(a'&, h'& )] '

t l) f l,.
—

1 t l
X[M(al, h, ) ] ' [M(a;, h, ) ]' [M(a, h~) ] Hl ~0)N(i)N(i)

+ —,'A, (A, —1) terms of the form —2N (a.;,h;)5,5,5h h, 5h h,i' j i' I i' j i' I

I I I I

X (0~ M(a.;,h, )[M(a', h' )] [M(ai, h/)] ' [M(ir', h')]' [M(a'„h', )] '

y l,.
—1

y lX[M(a„h, )
.] ' [M(a, , h, ) ]' [M(a~, h ) ] H, )0) N( )lN(, l

. (71)

By commuting M and M, the first set of terms is obtained, along with terms containing an operator O. The second set
of terms is obtained by commuting 0 and M. Thus Eq. (71) provides a recursion formula for the matrix element Il.
Since I] and I

&
have similar structures, I& will satisfy a similar recursion formula. By applying these recursion relations

repeatedly, we see that it is suScient to examine the two simple matrix elements

Ib=(O~M(~, , h, )M(a2, h2)H, ~O), I b=(0~ M(a, , h, ) M( a2h 2)H, ~O) .

In the matrix element Ib, the color sum gives a numerical factor

tf n' —1
rij rkl 5i I 5jk

ijkl a =1

(72)

(73)

in addition, using the delta functions 5 (16)5,(1,—6)5 (3,4)5, ( —3,4) as well as phase factors in the pair operators, we
obtain sums over the remaining 3-j symbols from Eq. (29) of the form

T '2
E3 —,'E E(

Residual phase factors cancel, giving

n 1—
Ib = g g g G Nir(a)N( ')a% (a', K,a)[ )C(

'
irh&') C( 2ha&)

—C2(a'&h')C)(a&h)]
», h lr «', h'

X (5»2»5h2h5«i, « 5h ),,
h'+ 5«'i, «5h i, h 5»2, » 5h2, h )'''

where R is given by Eq. (61). In the massless limit, we also have

[C,(a'&h')C2(a&h) —C~(a'&h')C, (a&h)]=5

(75)

(76)

The matrix element Ib is invariant under interchange of x with x' and of h with h '. We can sum over the two helicities,
and obtain

g (n —1)Ga Jl (a', K,a)
Ib X p X ~ » (5«,«5h, +5, 5»h,«—+5««5h, +5» .,«'5h, —)

4n m ~ &a(ic+ 1)a'(a'+ 1)
7

For the matrix element Ib, we find

I = g & (Ic,K', K)(O~M(K„h, )M(a, h )JN, (a, a')~0)
K, K', K

= X ~3-«&' K)[5., .5h, , +5«.,«5h, , -+5.
, .5h, , +5..,.5h, , -]

K, K, K

(77)

(78)
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which has the same form.
Similarly, to demonstrate that Eq. (63) is correct, we examine the matrix element of H3, (3). First, JR& acting on a

general state gives

iS) =2N, +N, il„l2, . . . , 1 )

= 2N(l)1, 1~[M(K„h, ) ]
' [M(K2, h2) ] [M(K3, h, ) ] '. [M(K, h ) ]

X {[5,5l, +5„,5h +5, ,5h +5, „5„]M(Kl,h, ) M(K2, h2) ) i0)

+ 2N(l)1, 13[M(K,)h, } ] ' [M(K~)h2} ] '[M(K3, h3} ] ' [M(K, h ) ]

X {[5 „5I, +5„„,5I, +5, ,5l, +5„,,5h ]M(Kl, hl) M(K3, h3) Ii0)+ ii0) . (79)

To find a similar relation for H3, (3), we need to consider the effect of 2b (3)d, (1) only, which gives

iS) =2b (3')d;(1')ill, l~, . . . , 1 )

2N[l]NI(KI&hI, vI, m', )5;~5, , 5. h, &, 5, 5
K1 K3 h

1
A 3 v1 v3 m 1, rn 3

X{ll5 5„, „[M(K„h,) ] ' [M(K, h } ] i0)+

+ 2N(l)Np(K'l, hl, vl, m'l )NI(K3, h3, —v3, —m3)b; (K'„h'l

X {1,(l, —1)5, 5„, 5, 5„, „[M(K„h,) ] ' ' [M(K,h. )'] io) +

+ 2N(&)N&(K'&, h l, vl, m'l )Nz(K3, h 3, —v3, —m3)b, (K'&, h l, —vl, —m I )d (K3, h3, —v3, —m3)

where

X[M(K„hl ) ] ' [M(Kq, h2) ]
' [M(K3, h3) ] ' [M(K, h ) ]™i0)+

+'- l'-[5. .5-h ~'. .5~ ~ +5.
m' 3 m' 3 m —I' 1 m —1' 1 m —1' 3 m —I' 3 m' 1 m' 1

X[M(K„h, ) ] ' [M(K „h,) ] ' [M(K, h ) ]'" i0) I, (80)

N (K, h, v, m)=rl(h, v, m)N(K, h, v, m) . (81)

The first set of terms yields zero, because t,
' is traceless. The second set of terms will also give zero, because the integral

T+ (321) has a factor

C, (K3) h 3 )C~(K'„h, ) —C~(K3) h 3 )Cl (KI) h l ) . (82)

For massless fermions, this will vanish when h ', =h 3. Thus only the last set of terms will contribute.
For the second step in the discussion of the recursion relations, we consider the following operators, which arise from

typical terms of Eqs. (79) and (80):

and

H3(u, u)= g %2 (K)K )K)(5„„5h +5„„.5I, +5„„5l, +5„„5h ) 2M( „K, h) M(KU, h„)
It, ]C', K

(83)

H3, (u, u) = —p* 2N~ (K'„h I,vI, m I )NI (K3, h 3, —v3, —m ', )

Xb, (Kl, hl, —vl, —m&)d (K3, h3, —v3, —m3)T+ (321)T+ (426),I I I I f I I I I (84)

where u =(K„,h„}. These operators are similar in form
to the operators 0& and 0&, which were already shown
to satisfy similar recursion relations. It is, therefore,
again sufficient to consider only the simplest matrix ele-
ments

Ll, =(OiM(K3, h3)M(K4 h4)H3(u, U)i0) )

Lb = (OiM(K3, h3)M(K4, h4)H3, (u, v)i0) .
(85)

and the demonstration follows exactly the same lines as
in Eqs. (72)—(78).
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VI. PARITY

As we discussed earlier, the free Dirac equation is in-
variant under parity, and the Hamiltonian (14) is also in-
variant. It is not easy to see directly how this translates
into the transformation properties of the Dirac spinors,
because the spinor basis is also changed in a complicated
way. However, to motivate our construction of the pair
operators M, we made use of the expected form of scalar
and pseudoscalar operators. It is easy to see that we can
define an effective parity operator P such that the pertur-
bative vacuum is invariant under its action P~O) = iO)
and whose action on the pair-creation operators is, as re-
quired,

PM(x, h) P = —M(a. , —h) (86)

we have

X ~n, +,n, , . . . , n„+,n„, . . . ), (87)

8(n, +,n, , . . . )=P( —1) 8(ni, ni+, . . . ) .

Four of the operators listed in Eqs. (62)—(67) are diago-
nal in the occupation numbers n,+. The other two
operators have the property that the difference
Z =g (n, + n„) rem—ains constant, so Z is a good
quantum number. The sum N =g( n, ++n, ) will
remain either even or odd, depending on whether Z is
even or odd. The parity operation gives
M(ir, +)—+ —M(a, + ), and hence Z~ —Z. The energy
of eigenstates will depend only on ~Z, so for ZWO there
are pairs of degenerate states which form parity doublets.
For Z =0, there are both scalar and pseudoscalar states.
These are not degenerate, and there are also more scalar
states; for example, the state with no pairs, and also the
state with the maximum possible number of pairs, are
scalar.

If we allow the mass of the quark to have a finite value,
the helicity selection rules no longer hold. Then Z is no
longer a good quantum number, and there are, in general,
no parity doublets.

VII. NUMERICAL RESULTS

In this section, we present some numerical results for
SU(3) obtained applying the analytical formulation de-
rived above. We consider only the term in the Hamil-
tonian with E =1, as discussed earlier, and ignore the
constant factor G&. We assume that the coupling con-
stant g is so large that we can ignore the free Hamiltoni-
an, and concentrate on the Coulomb energy matrix.

The effective Hamiltonian (55) is invariant under the ac-
tion of this operator. For a state which has a definite par-
ity P and is represented in the form

+=QB(n&+, n&, . . . )

TABLE I. Ratios of doublet energies to singlet energies.

Two pairs

1.385
1.100
1.045
1.030
1.020

Three pairs

1.329
1.059
1.015
1.002
0.998

Four pairs

1.326
1.064
1.019
1.011
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Since we consider only massless fermions, the Hamiltoni-
an is invariant under the chiral transformation.

We evaluate the matrix elements of the Coulomb
operator in several different sets of states. The Nth set of
states includes states with zero, one, . . . , up to a max-
irnum of N pairs. The largest value of N considered is
N =4. In order to have a finite matrix, we introduce a
cutoff A such that ~ ~ A. Then we diagonalize the matrix
to obtain energy levels.

We define E~ to be the lowest energy for Z =0. This
state was found to be nondegenerate and to have even
parity. It resembles the usual perturbative vacuum. The
numerical calculations indicate that the lowest pseudos-
calar state is a state with iZi&0. Therefore, there is a
corresponding scalar state, with the same energy. We
define the energy of this lowest doublet state to be ED. In
Table I we list values of the ratio ED/Es for different
values of N and A. Notice that for N=3, when A=5,
this ratio is less than one. In this case, one can interpret
ED as the vacuum energy, and the vacuum state is degen-
erate. The vacuum will not have a definite parity, which
is a signal that the chiral symmetry is broken spontane-
ously. This kind of level crossing also occurs when
N = l, but with A =10. It is apparent that when N and A
are increased, the singlet and doublet energies become
more similar. It is plausible that if either N or the cutoff
A is big enough, a level crossing may occur.

As a result, we have some indication that the Coulomb
energy may provide the underlying dynamical reason for
the spontaneous chiral-symmetry breaking of QCD.
However, much further work needs to be done. Along
with Capstick and Joensen, we have carried out numeri-
cal calculations using larger sets of states, and also in-
cluding the kinetic energy. ' More general forms for the
assumed Coulomb interactions were also considered, to
study whether condensation depends on confinement.
We should also include more flavors of quarks in the for-
mulation. It will be interesting to study the effect of the
quark mass. Eventually, we need to use a better model
for the Hamiltonian, taking the gluons into account ex-
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