
PHYSICAL REVIE% D VOLUME 42, NUMBER 4 15 AUGUST 1990

Supersymmetry, Foldy-Wouthuysen trausformations, and relativistic oscillators
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Dirac Hamiltonians expressed in terms of supercharges are analyzed in connection with super-

symmetric quantum mechanics. Unitary Foldy-%'outhuysen transformations lead to equivalent di-

agonalized Hamiltonians, functions of supersymmetric (nonrelativistic) ones. Such considerations

permit the definition of relativistic oscillators described by Dirac equations.

I. INTRODUCTION

The observation' that the square of a Dirac Hamiltoni-
an is intimately connected with a nonrelativistic super-
symmetric Hamiltonian has already been exploited in
different contexts dealing, on the one hand, with relativis
tic (massless) particles in interaction with (constant) mag-
netic fields and relating, on the other hand, such subjects
with recent results in supersymmetric quantum mechan-
ics. Supersymmetric quantum mechanics is particularly
rich in information about nonrelativistic harmonic oscil-
lators ' in ( n ) arbitrary spatial dimensions (and
specifically when n equals 1, 2, or 3) as well as about in-
teractions with (constant) magnetic fields (in the n=2
case, for example' ' ). Particle physics has also studied
oscillatorlike quantum systems' but relativistic ones
in connection with characteristics of hadronic mass spec-
tra, linear Regge trajectories, quantum chromodynamical
forces, relativistic strings, etc.

Through the above considerations relativistic and non-
relativistic physics can both profit from each other. In
this direction the main purpose of this work is to show
how the class of unitary Foldy-Wouthuysen (FW) trans-
formations ' " has to play an interesting role by exploit-
ing their original motivations. Let us mention that
Hughes et a1. have already used an FW transforma-
tion in order to discuss a realization of supersymmetric
quantum mechanics in the standard first-order Dirac
equation describing a (massless) Dirac particle in a mag-
netic field.

Here we recall after FW that an arbitrary Dirac Harn-
iltonian in the standard representation is a sum of odd
and even parts associated, respectively, with block-off-
diagonal odd (block-diagonal even) inatrices which (do
not) couple the so-called large and small components.
Then we observe that the even character of a supersym-
metric Hamiltonian as well as the odd character of all the
supercharges in supersymmetric quantum mechanics can
be put in correspondence with the FW even and odd ma-
trices showing that, in addition to their own interest (in

studying nonrelativistic limits of Dirac descriptions), the
FW ideas are well adapted in the language of superalge-
bra underlying even and odd generators. Such a remark
evidently absorbs Jackiw's observation' and extends it to
nonzero-rest-mass particles.

II. SUPERSYMMETRY AND THE
DIRAC-FW EQUIVALENCE

The description of a supersymmetric quantum-
mechanical system is subtended by odd supercharges Q'
(a =1,2, . . . , E) generating with the even Hamiltonian

Hss a superalgebra sqm(E) characterized by the struc-
ture relations

[ Q', Q I
=25'"H ss,

[Q', Hss] =0,
a, b=1,2, . . . , N .

(2.1)

The supersymmetric Hamiltonian appears as the square
of an arbitrary supercharge among the N ones. Let us
then define Dirac-like Hamiltonians as sums of odd and
even parts where the odd part is given by one of the su-

percharges [up to a factor &2 introduced for conveni-
ence; see the definitions (9)] while the even part contains
the mass term. %'e write

(2.2)

and choose the standard representation so that p is an
even matrix classifying the even 6 and odd 8 matrices
of the corresponding Dirac (Clifford) algebra according
to

[6,P]=0, IG,PI =0 . (2.3)

Because of the odd character of the supercharges, we ask
for

In the following we want to point out some properties
connecting supersymmetric quantum mechanics and
Dirac theory (Sec. II). Restricting the context to N=2
supercharges, we discuss the free case and the harmonic
oscillator within specific supersymmetrization procedures
(Sec. III) and more particularly in the spin-orbit coupling
considerations. In this way we get an ad hoc definition of
Dirac Hamiltomans associated with relativistic quantum
oscillators. Comments in connection with specific spatial
dimensions are then presented as well as some informa-
tion on (relativistic) symmetries admitted by the new
Dirac equation(s) (Sec. IV). We finally (Sec. V) summa-
rize the results and draw some conclusions.
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[Q,P] =o,
so that, through this condition, we immediately get

(2.4) (3.3a) and (3.3b) we get the standard one

H =
—,'[p +(VW) ]+—,'(a, a„W)[g,+,g„] (3.4a)

(HD) =2[Q] +rn =2Hss+m (2.5) while, with Eqs. (3.3a) and (3.3c), we obtain the spin-orbit
one

Such a result corresponds to a meaningful change of rep-
resentations in the first-order Dirac theory via a unitary
FW transformation as

Hss =
—,'[p +(VW) ]+—,'(B,Bk W)[g+,(„]
—

—,'[(8 W)p„—(B„W)p ]:-„. (3.4b)

HFw= UHDU =P(2Hss+m )'~

[HFW ] = [HD ]
(2.6}

The unitary transformation leading to this physically
equivalent representation is readily obtained on the form

U =exp(iS), S =S, S = — PQH —'8,l

—Htan8= v'2 —,[H,P]=0,
I HD, S I =0,m'

(2.7)

U= E+ 2pQ™,E-=(2H„+ 2)1/2
[2E(E +m ) ]'i~

(2.8)

III. THE N=2 CASE AND THE SPIN-ORBIT
COUPLING PROCEDURE

Let us choose the %=2 context subtending an already
large set of physical applications containing all the ones
mentioned above and the harmonic-oscillator case in par-
ticular. Let us then recall some specifications of the %=2
supersymmetric quantum mechanics by considering the
two Hermitian supercharges"

Q = —(p'0" +V W f ), Q = —(p 0 VW t')—,v'2

(3.1)

where we refer to the superpotential W(x) expressed as
usual in terms of bosonic "variables" x canonically con-
jugated to the "rnomenta" pk according to

[pk, ~, ]= i5k, ,kj—=1, . . . , n .

By defining the fermionic quantities

(3.2)

where H is even and defined as the positive square root of
the supersymmetric Hamiltonian. This transformation
can also be written

Let us now restrict the spatial context to three dimen-
sions (n =3,j,k = 1,2,3) as the more natural case in con-
nection with relativistic wave equations such as the Dirac
one. Then let us consider two specific applications: the
free case and the harmonic oscillator.

A. The free case

The free case evidently corresponds to a null superpo-
tential in both contexts and to an identical supersym-
metric Hamiltonian obtained from supercharges of the
following type:

[o)
v2 (3.5)

The Hamiltonian (2.2) becomes identical to the free Dirac
Hamiltonian and the transformation (2.7) or (2.8) identi-
cal to the original (free) FW transformation leading to the
FW Hamiltonian (2.6):

H' ' =PE E =(p +m )'
s (3.6)

B. The harmonic oscillator

If we are interested in the harmonic-oscillator context,
the superpotential is

W(x) =
—,'mcox (3.7)

and the supercharges are constrained by the fermionic
quantities qF (a=1,2} such that, for example, Eqs. (3.3a)
and (3.3c) are satisfied. A corresponding convenient
choice is given by

Such a result is the interesting Hamiltonian leading to the
(free) nonrelativistic Schrodinger Hamiltonian p /2m (if
~p~ &&m), a purely bosonic Hamiltonian which is super-
syrnrnetric and issued from a Dirac Hamiltonian.

g
—=

—,'(y '+ip'), (g +—
) =g (3.3a)

we can mainly distinguish" two particular procedures of
supersymmetrization, i.e., the so-called standard pro-
cedure characterized by

1CP:—O.j(3) 0. , =n

y, =o,cr~=iyj(aoo3)=ia p, .

leading to

(3.8)

I m; mk I
=2~' ~,k (3.3b)

[oj,ok]go3—jk 2 j& k (3.9)

and the so-called spin-orbit coup/i ng procedure
characterized" by

[v", vi)=»,

and to

I gj+, gk I =o&kI i=,k .

The resulting Hamiltonian (3.4b) becomes

(3.10)

(3.3c)
In correspondence with Eqs. (3.3) we are led in sqm(2) to
two types of supersymrnetric Hamiltonians: with Eqs.

Hs~s(no) =2(p +m ~ x }+ marco( o3o+2L.o)o3

(3.11)
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and coincides with Balantekin's result. Here it thus ap-
pears in the result (2.6) when the FW transformation (2.7)
or (2.8) is expressed in terms of one of the supercharges
(3.1) with the above characteristics.

For these reasons, we define the Dirac Hamiltonians
for the relativistic quantum oscillator as the ones given by
our Eq. (2.2) expressed in terms of a corresponding super-
charge Q—:(3.1) characterized by the relations (3.7) and
(3.8). We thus get two equivalent proposals leading to
the Hermitian Dirac Hamiltonians

and

HD, =a (p+ im coxP) +Pm

HD2 =a (ipP+mrox)+Pm .

(3.12)

(3.13)

= [pjpj+pf, (r)k 8')+mP]%(x),

iB,V( )=x(a 11+Pm)%'(X), II=—p+imcoxP .

(3.14)

(3.15)

This Hamiltonian form immediately leads inside the
current relativistic conventions to the covariant equa-
tion

(3.16)

equivalent to the one already obtained by Cook' ' in the
oscillator case.

IV. COMMENTS

The discussion in the preceding section has been
developed essentially for three spatial dimensions in the
spin-orbit coupling supersymmetrization procedure. Let
us erst notice that it is possible to show from an algebraic
point of view that the typical requirements (3.3a) and
(3.3c) on the fermionic quantities, realized by the matrices
(3.8) and (3.9), lead to the unitary Lie superalgebra
su(2

~

2) admitting a 4 X 4 fundamental representation just
convenient for studying the simplest Dirac theory. Such
a discussion is well adapted in order to understand that
the parallel consideration of the standard procedure of
supersymmetrization —remember Eqs. (3.3a) and (3.3b)

Both are linear in the bosonic operators (3.2) and lead to
quadratic nonrelativistic terms (as expected for the har-
monic oscillator).

The version (3.12) gives a Dirac equation already pro-
posed a long time ago by Cook' and recently reactual-
ized by Moshinsky and Szczepaniak ' and collabora-
tors. In fact, it is easy to convince ourselves that our
unitary FW transformation (2.7) or (2.8) expressed in
terms of the supercharge Q coincides, in this particular
context, with the one obtained by Moreno and Zentella
in order to get the nonrelativistic limit given by Cook.
The second version (3.13) could evidently be exploited in
a completely parallel way.

Let us end this section by noticing that the covariant
form of the corresponding Dirac equations can easily be
obtained from the above characteristics. For example,
we get, with the first supercharge (3.1) and the superpo-
tential (3.7),

i B,V(x) = (&2Q '+ mP)qi(x)

[id, —(a.11+Pm),X]=0, (4.1)

we find, in addition to the identity operator, Pve nontrivi-
al generators corresponding to the (expected) rotational
and time-translational invariances supplemented by a
new generator which can be put in the form

Y::(L o'+
~
o'o)S o'3

~
o'o o'3 (4.2)

It corresponds to an explicit supersymmetry contained in
the largest invariance superalgebra obtained by Balante-
kin for the supersymmetric equation associated with the

and the Hamiltonian (3.4a)—leads to a possible eight-
dimensional matrix realization when three spatial dimen-
sions are still required. Indeed, it is clear that Eq. (3.3b)
and the matrix P inform us we are dealing with a Clifford
algebra C12 + i which only gives us with n =3 an eight-
dimensional nontrivial representation. " The corre-
sponding relativistic Hamiltonian would be an 8-X-8
Dirac-like Hamiltonian, but all our developments can
still apply. The number of spatial dimensions and the su-
persymmetrization procedure have thus to play an im-
portant role in connection with matrix dimensions. If
n=2, the standard procedure is subtended by a Clifford
algebra C14 and its 4- X-4 matrices, so that the fundamen-
tal Dirac representation appears one more time here
while the spin-orbit procedure picks out 2-X-2 Pauli ma-
trices. These last properties justify a posteriori the
Hughes et al. and Jackiw' realizations, respectively.
Let us also stress on a physical interest of this n=2 case.
In fact, it is well known ' ' that there is a one-to-one
correspondence between the n=2 harmonic oscillator
and a particle confined to a plane in a constant magnetic
field, this last system being relevant to the study of the
quantized Hall effect when the mass is taken to be zero.
Our results could thus, in principle, be applied to all
these three contexts with their specificities. Finally, if
n=1, the procedures are identical and the usual Clifford
algebra C12 is responsible for the matrix dimension.

As a second comment let us remember that the spin-
orbit coupling procedure, ' initially applied to three
spatial dimensions, has been generalized to arbitrary n di-
mensions by Kostelecky et al. Its connection with the
standard procedure in the oscillator case (and, in particu-
lar, through the Kostelecky et al. contribution) has been
already analyzed (see Secs. 2.3 and 3.4 in Ref. 12), ex-
plaining different matrix dimensions recovered here as
discussed above. Let us also remark that the other pro-
cedure given by Kostelecky et ol. consists to supersym-
metrize the radial equation associated with an n-
dimensional harmonic oscillator (or any other separable
system), so that only one variable is still significant. Con-
sequently, this method essentially reduces to the n=1
standard treatment and does not need to be more
developed here.

A final comment concerns the (super)symmetries ad-
mitted by these equations for relativistic oscillators. Be-
cause of the interaction term, the Poincare invariance is
evidently broken and we have to determine what are the
efFective symmetries of Eq. (3.15), for example. By asking
for a general operator X such that
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[ Q, [P,X]I
=0 . (4.3)

Then all the symmetries of the Dirac Hamiltonian are
symmetries of the supersymmetric Hamiltonian Hss re-
lated to HD by Eq. (2.6), for example. Our five previously
determined operators trivially satisfy Eq. (4.3).

V. SUMMARY AND CONCLUSIONS

Kelativistic nonzero-rest-mass particle descriptions
such as Dirac wave equations are considered and studied
in connection with nonrelativistic information issued
from supersymmetric quantum mechanics applied to
harmonic-oscillatorlike systems. The main discussion
concerns Hamiltonian operators in both contexts when
three spatial dimensions are concerned in direct connec-
tion with Minkowski space-time developments. The link
between the associated Hamiltonians is realized via uni-
tary Foldy-Wouthuysen transformations having the origi-
nal motivation to get even matrices or diagonal
transformed Hamiltonians: the FW transformation elim-
inates the odd part of the Dirac Hamiltonian (readily ex-

Hamiltonian (3.11). This superalgebra ' " is
osp(2~2)eso(3) and the operator Y has to generate the
subalgebra so(2) of the even part of osp(2~2). The invari-
ance structure is thus the direct sum

[J„J~,J3ISIHD, YISI seen as a substructure of
so(3)e osp(2

~

2)8I. As already mentioned in Durand
et al. but for massless particles, we recover constants of
motion for nonrelativistic (supersymmetric) problems
from the symmetries of Dirac equations. In fact, as in
our case, we are dealing with nonzero rest mass particles,
it is easy to show that condition (4.1) expressed in terms
of one supercharge, let us call it Q, requires the can-
straint (when m %0)

pressed in terms of the odd supercharge) and leads to an
even result explicitly given in terms of the corresponding
nonrelativistic supersymmetric Hamiltonian. Applied to
the three-dimensional harmonic oscillator through the
spin-orbit coupling procedure of supersymmetrization,
the Balantekin Hamiltonian is recovered and related with
a relativistic Dirac Hamiltonian which is linear in the
conjugated (three) pairs of bosonic operators [see Eq.
(3.12), for example]. We thus have the opportunity to
define from such a study the notion of relativistic har-
monic oscillators through associated relativistic Dirac
wave equations such as Eqs. (3.15) in Hamiltonian form
and (3.16) in covariant form. Finally we have determined
the Poincare subsymmetries of such equations: they only
admit spatial-rotational and time-translational usual Lie
invariances.

Polarized by oscillator problems, our developments
have been here subtended by very simple assumptions.
Let us, for example, mention that the form (2.2) for the
relativistic Dirac Hamiltonian could be easily generalized
by including other euen terms in addition to the mass
term. The contexts of magnetic and electromagnetic in-
teractions having already been considered in the FW ex-
tensions (see the nice review article by De Vries and
references therein) apply also here in principle but this is
not the purpose of this paper. Open further problems
also appear in connection with other successful physical
applications treated in supersymmetric quantum mechan-
ics (such as the Coulomb problem, the hydrogen atom,
the quantum Hall effect, other types of potentials,
etc. ' '~) but these are once again developments which,
maybe, have the merit to be considered elsewhere. The
main physical relevance of this study lies in the connec-
tion between relativistic (Dirac) developments with super-
symmetric (nonrelativistic) quantum mechanics.
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