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We demonstrate that the Bessel function solutions obtained prevoiusly are related to the (2+1)-
dimensional vortex solutions when the Higgs fields are absent. Time-dependent solutions are also

exhibited.

I. INTRODUCTION

Physics in (2+1)-dimensional spacetime has some
bizarre character,' e.g., fractional statistics is allowed
and may be relevant in the understanding of high-T, su-
perconductivity. Adding a Chern-Simons (CS) term to
the Yang-Mills (YM) action will render the gauge field
particle massive without violating the principle of local
invariance.? For the SU(2) gauge group, the action is

S=[d*x(Lyy+Lcs), (1a)
Lyy=—¢F"Fj, , (1b)
Los=(£/2)e" %3, 4545+ 1" A2 4545),  (lo)

where for convenience we set the gauge field coupling
constant g=1 and the metric is g,,=(—++). The
equations of motion can be written as

D, F*=]", (2a)
J'=—EF'=—(£/2)€"FF 4 , (2b)
D, J'=D F*=0. (2c)

Equation (2a) is intriguing since the ‘‘external” source
current of the YM field is given by the dual of the field
strength itself which is covariantly conserved by virtue of
the Bianchi identity (2c). In the absence of the CS term
(£=0), Eq. (2¢) is just a kinematic statement. The CS
term couples the pure YM equation with the Bianchi
identity so that Eq. (2c) is now a constraint equation for
the source current J” of the YM field. In contrast with
the (3+ 1)-dimensional case, the source current there is
usually expressed in terms of the matter (fermionic or bo-
sonic) fields or is simply a given fixed external source.
Classical solutions play a preliminary role in our under-
standing of the quantized theories® and it will be interest-
ing to see whether solitonlike solutions can be found for
Egs. (2). In Ref. 4 numerical solutions of Egs. (2) were
obtained and in Ref. 5 we constructed some exact analyti-
cal solutions. The first family of the solutions given in
Ref. 5 is valid in Minkowski and Euclidean spacetime
and is expressed in terms of the modified Bessel function
of the third kind K :

A“=[— ¢ h(x)+85/ple’ (3a)
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Sz(}?alﬂ](X) ’ (3b)
P (x)=dKy(p), d=const, (3c)
D(x)=dK,(p) , (3d)

where p=(x{+x3)'/? and ¢ denotes a unit vector:

¢'=€e"x"/p=e€"n', i=1,2 4)
with ¢*=0. The second family of solutions, valid only in

Euclidean spacetime, is given by Jacobi’s elliptic func-
tions E (u) with U =B, x":

A, =[(a"a,+v e +(v%a,—a’y,)f1E (u)
—iB°B,(§/2), (5)

where e and f are constants and «,3,y are mutually per-
pendicular unit vectors. Solutions (5) are periodic since
the elliptic functions E (u) are periodic in their argu-
ments. They are however not valid as wavelike solutions
in Minkowski spacetime because one of the three unit
vectors a,3,¥ must then be timelike which would lead to
inconsistency.

The purpose of this paper is first to demonstrate that
the first family of solutions in terms of the Bessel function
given in Ref. 5 are related to the vortex solutions found in
Refs. 6 and 7. Second we exhibit a new ansatz to obtain
time-dependent solutions of Egs. (2) in Minkowski space-
time. The solutions lead to zero action and vanishing
energy-momentum tensor but are unfortunately complex
and they can probably be understood as real solutions if
one complexifies the gauge group SU(2) to SL(2,C) (Ref.
8). Finally we end with some remarks.

II. THE BESSEL FUNCTION SOLUTIONS
For the solutions (3) the field strengths are given by
E!=F§=§6d¢nK,(z), z=€&p, (6a)
B=1e'Fi=—£dp'K(z) . (6b)
The magnetic field has the right asymptotic behavior for
the vortex configuration® at large distances. This natural-
ly leads one to suspect that solutions (3) are related to the

vortex solutions found in Refs. 6 and 7 and we show
below that they are in fact gauge related when the Higgs
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fields vanish.
In the absence of the Higgs fields the ansatz of Refs. 6
and 7 is
A%=—85p'A(p)/p, A§=854,(p) . (7

The YM equations with the CS term, Eq. (2), then be-
come

B"—B'/p=—¢pAy, (8a)
Ag+Ay/p=—EB'/p, (8b)
where B=1+A(p) and the prime indicates

differentiation with respect to p. These equations are
those of Refs. 6 and 7 when the Higgs fields are set to
zero and can easily be solved to give

B=(dp)K,(z), (9a)
Ay=dKy(z) . (9b)

To see solution (9) is indeed related to solution (3) we ap-
ply a gauge transformation U(X)=expl(imn;o'/4) to
solution (3):

A,=A4,20°/2=U4,U""+i3,UU", (10)
where o are the Pauli matrices. Since

Up°c'U '=03, (11)
we obtain, after some straightforward computation,

A"=—850 (4~ 1/p)

Ag =83, ,

which is just the solution (9). Thus the Bessel function
solutions found in Ref. 5 are in fact the vortex solutions.
They are actually Abelian solutions embedded in the
SU(2), and valid everywhere except at the origin where
the presence of a point source (Dirac delta function) is re-
quired.

(12a)
(12b)

III. TIME-DEPENDENT SOLUTIONS

Many wavelike solutions have been found for YM
equations in (3+ 1)-dimensional spacetime,'® hence it is
interesting to see whether the (2+1)-dimensional YM
equations with the CS term also admit wavelike solutions.
The Jacobi function solutions of Ref. 5 can be regarded
as periodic solutions in Euclidean spacetime but we have
so far been unable to construct non-Abelian progressive
wave solutions for Eq. (2). However time-dependent
solutions can be derived. Our starting point is to modify
the ansatz (3) so that it cannot be gauge rotated to the
Abelian form.

Replacing the ¢° in the ansatz (3) by a null vector 6°
we arrive at the ansatz

A“=(6°R(p,x°)+8%/p)p'—ig°n'H (p) , (13a)
§=0T(p,x") , (136)
0°=n’+id3, 69°=0. (130)

Substituting the above ansatz into Egs. (2), we get re-

duced coupled nonlinear equations for the unknown func-
tions R, I, and H. Setting

R(p,x")=w(z"R (p), 2°=&x°,
I(p,x")=w(zI (p) ,

(14a)
(14b)

the reduced equations can be simplified tremendously to
yield

—I'+HI =¢&R , (15a)

L'=HL , (15b)
with

L(p)=R'+R/p—HR , (16a)

o(z%)=a cosz®+b sinz®, a,b =const . (16b)

We observe that ansatz (13) can reduce the YM equation
(2) to effectively two coupled first-order differential equa-
tions, namely, Eq. (15a) and L=0, a special case of Eq.
(15b). To obtain solution for Eqs. (15), we first express
the function L in Eq. (15b) in terms of the function H (p),
then solve for the function R from Eq. (16a) and finally
the function I from Eq. (15a). The result is

L =cexp fde(p)] , (17a)
R =(c\p/2+c,/plexp fde(p)] ) (17b)
I=—E(c,p*/4+c,lnp+c; exp fde(p)], (17¢)

where ¢, ¢,, and c; are arbitrary constants. Expressions
(17a)-(17¢) and (16b) give the gauge field potential 4
via the ansatz (13) which is then a solution of Eq. (2) in
terms of the function H (p).

The field strengths for the ansatz (13) can be written as

E“=0%¢'dw/dx°+Ewn')R , (18a)

B?=—06°L . (18b)
As 6% is a null vector, we necessarily have

EfE/=F F}, = (19)

although individually F} Fgz (no sum over a) does not
vanish. Note that if the arbitrary constant ¢, is set to
zero, the magnetic field strength B? vanishes and if fur-
thermore cy is also set to zero, then the electric field
strength E? also vanishes and hence solution (17) be-
comes trivial. Because of the result (19), the YM action,
the energy-momentum tensor, and the angular momen-
tum all vanish. We proceed to compute the total charge
of the system from the solution (17). The total charge
density is given by 3; E% and can be simplified to

3,E“=[6°(z°)(R'+R /2)+(¢°R /z)d (z°) /dz°]&? ,
(20)

where R’'=dR /dz. If we project along the direction 6°
in the internal group space, the charge is zero. Projecting
along the direction ¢' (i =1,2), the total charge is
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Q= fdzx ¢@%d,E“

=z7r[dm(z°)/dz°]f0°°dzR (z) . (21a)

By a suitable choice of the function H(p), Q is finite.
Note that Q here is time dependent and real. However if
we project along a direction perpendicular to ¢’, say 64,
then Q becomes imaginary and can be made finite:

0 =2mm(z°)fo°°d(zR) . (21b)

IV. REMARKS

We end with some comments.

(a) The Bessel function solution (3) can be modified to
be valid in Euclidean spacetime. This Euclidean solution
yields a zero action. As we discussed earlier, (3) is in fact
a vortexlike solution. The physical interpretation of the
time-dependent solution (13) is however not clear at the
moment and it may not have any relation to solution (3)
although it also leads to a zero action. In passing we note
that time-dependent solutions of (3 + 1)-dimensional YM
equations related to the Wu-Yang monopole!' have been
given in Ref. 12.

(b) Consider the Bessel function solution in the Abelian
gauge frame (7). Then Egs. (2) become

9, Fr=J", (22a)

a,J"=0. (22b)
For the solution (9), the continuity equation (22b) is

€;0EV=0, (23a)

EY=8n'tdK (z) . (23b)
At z~=0 we have

EY~8ni(&d /z) (24)

so that Eq. (23a) is not satisfied near the origin. In other
words, near the origin there is a violation of conservation
of “charge.”

(c) In Refs. 6 and 7 it was claimed that finite-energy
vortices can have electric charge. We wish to stress here
that the electric charge referred to is in fact that of the
matter fields (Higgs fields), it is not the total charge of the
whole system consisting of the YM fields and the Higgs
fields (together with the CS term) which must be zero be-
cause of the finite-energy requirement. When Higgs fields
are present, the equations of motion (2) become
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D, F¥=—§¢FY+J) , (25)

where J,, is the current contributed by the Higgs fields.
For the ansatz of Refs. 6 and 7 the gauge field potential
AZ is along the direction 8%; hence, the time component
of Eq. (25) is

(3, E®)88=(J 20— EF0)5¢ . (26)

Because of the finite-energy requirement, E% has to van-
ish faster than p~? at large distances. This leads to the
result that the total charge of the whole system given by

[ d?x 3, Es3

must vanish. Thus on integrating Eq. (26) over all space,
one has

On=[dxJ2%i=¢ [ d’x B . 27

That is, due to the presence of the CS term, the total elec-
tric charge of the Higgs fields is the same as the magnetic
flux, and that it is discrete is due to the fact that the mag-
netic flux is quantized: II,(SUQ)/Z,)=Z,. We em-
phasize that there is no conserved Noether charge for the
whole system (YM+Higgs boson+CS) since the (con-
tinuous) symmetry is completely broken in order to have
topologically stable solutions. From Eq. (27) we observe
that any solution which leads to nonzero magnetic flux
will provide a nonzero electric charge for the Higgs fields
but this in general will not be discrete. For comparison
we note that the electric charge of the (3+ 1)-dimensional
dyon'? is in fact that of the whole system (YM + Higgs
boson) and is given by

[ax o, F°.

Furthermore this is a Noether charge due to the U(1)
symmetry and needs not be discrete at the classical level.
One does not have a corresponding CS term in (3+1)-
dimensional spacetime which could relate the electric
charge of the matter fields to the magnetic flux.

(d) The total action for solution (17) is in general not
zero, but can be easily made to vanish by setting, say,
H(p)=—p, c,=c3=0in Egs. (17).
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