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Two-loop chiral anomaly as an infrared phenomenon

V. I. Zakharov'
Institute ofParticle and Nuclear Physics, Uniuersity of Virginia, Charlottesuille, Virginia 22903

(Received 22 December 1989)

We consider a two-loop chiral anomaly within the dispersion approach to matrix elements of the

axial-vector current. The anomaly is known to be ultraviolet ambiguous to this order and our goal

is to trace the ambiguity in terms of imaginary parts of the matrix elements which are "observable. "
We find that the matrix elements depend crucially on details of infrared regularization which is

needed to specify the imaginary part. In particular, if one sets the masses of the particles inside the

loop equal to zero first while letting the virtuality of external particles go to zero next then the

anomaly does not receive a two-loop contribution. If the limiting procedure is reversed then one

reconstructs the so-called supersymmetric current which acts as a partner of the energy-momentum

tensor in the supermultiplet of currents. The results are applied to the problem of renormalization

of topological charges.

I. INTRODUCTION

There exist two alternative approaches to the anomaly
issue. The most common one' assumes the following se-

quence of steps: (a) first, identify the chiral-symmetry
transformations of the Lagrangian, say, chiral rotations,
'IiL it 'IiL tt exp(+ia ); (b) construct then the corre-

sponding axial-vector current

a =%y y, %, t)„a =0 (classically);

(c) add a heavy regulator field with mass MH (MH ao):

~L =~H~H~H+

or use some other ultraviolet regularization; (d) finally,
calculate the triangle graph of Fig. 1(a) both with physi-
cal and regulator fields inside and establish the anomaly

CXB„a„= F„F„
4m

where F„ is electromagnetic field-strength tensor and

F& is its dual, F„„=z
E'p

p Fp, and a is the electromag-

netic coupling constant.
Clearly enough, this picture blames regulators, or

short-distance physics, for the anomaly. The other ap-
proach avoids mentioning regulator fields at all. Name-

ly, let us consider the same triangle graph but for the
current, not its divergence:

is proportional to the fermion mass squared mI, so that it
does vanish as mI tends to zero. From dimensional con-
siderations alone one would conclude then

2

Imf (q )= —— ln2 cx mf 1+v
2 q 1 v

(4)

where v is the fermion velocity in the c.m. system.
Finally, evaluation of the real part of f (q ) reveals the

anomaly

f (
2

)
1 I Imf (s )ds

7T 4mI s —
q

2
n ~y ds 1+v a

ln2' q 4m& s 1 —v 4~q

Indeed, unlike the imaginary part the real part off (q ) is
not proportional to mf'. The reason is that the dispersion

Imf (q ) ~mI/q

while the explicit calculation brings some extra log fac-
tor:

Here q„ is the four-momentum carried by the current,

f (q ) is the form factor to be calculated, and the photons
are considered to be on mass shell, i.e., k

&
=k2 =0. The

next step is to evaluate the matrix element associated
with the triangle graph via dispersion relations.

The corresponding imaginary part is determined by the
Born graphs and respects for this reason all the sym-
metries of the classical Lagrangian. In particular, as a
manifestation of the chiral symmetry the imaginary part

FIG. 1. (a) Anomalous triangle graph for the divergence of
the axial-vector current. Solid line represents fermions, wavy

lines stand for photons or gluons. (b) Unitarity cut of a triangle

graph associated with the matrix element of the axial-vector
current a„carrying momentum q„. Breaking of a line means

that the corresponding particle is on mass shell.
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integral is saturated by s ~ rn and produces the mf fac-
tor.

We see that within the latter approach when one exam-
ines first the matrix elements of the current the anomaly
emerges as a pure infrared effect. Since the imaginary
parts are associated, generally speaking, with some ob-
servable cross sections one might think that the disper-
sive approach is more directly related to physics. The
't Hooft consistency condition' which relates the quark
graphs to physical coupling constants of pseudoscalars
may be considered as a realization of this idea (in cases
when the condition applies).

The final result for the classic one-loop anomaly is the
same, no rnatter what technique is used. However, the
two-loop anomaly is known to be ambiguous (see, e.g. ,
Ref. 4) and this knowledge seems to conflict with the gen-
eral belief that imaginary parts of matrix elements are
uniquely determined. Motivated by this seeming con-
tradiction we will address ourselves to considering the
two-loop anomaly by means of dispersion relations.

Our main conclusion is that the result depends crucial-
ly on the way the infrared regularization is performed al-
though finally we set both mf and k

& 2 equal to zero. The
results allow for a fresh approach to the problem of topo-
logical charge renormalization. In particular, if one
chooses the regularization in a physically motivated way
the topological charge is not renormalized.

The organization of the paper is as follows. In the next
section, we review the results on the two-loop chiral
anomaly. In Sec. III we introduce an alternative way to
regularize the imaginary part of the triangle graph by
means of a nonvanishing virtuality of external particles.
In Sec. IV we demonstrate the infrared instability of the
imaginary part considered. In Sec. V compare ambigui-
ties inherent to ultraviolet and infrared regularizations
and claim to establish a one-to-one correspondence be-
tween the two. In Sec. VI we apply the results obtained
to the problem of renormalization of topological charges.

II. TWO-LOOP PUZZLE

Since a lot of work on the anomaly has already been
done by considering ultraviolet regularization we review
briefly the results obtained, emphasizing possible implica-
tions for the infrared treatment we keep in mind.

It is convenient sometimes to invoke supersymmetry
(SUSY) and consider SUSY Yang-Mills (YM) theory. It
is worth emphasizing however that supersymmetry is ac-
tually not essential and the conclusions we are going to
reach are of a general nature. The function of supersym-
metry is to fix some matrix elements and provide us with
insight as to which structures may occur in the matrix
elements in general. Once supersymmetry is abandoned
these structures can appear with an arbitrary weight.

Historically, the so-called Adler-Bardeen current was
introduced first into the theory. It is specified by the
condition that the anomaly equation has no higher-order
contributions:

where 6„'„ is the gluon field-strength tensor, a„ is the
gluino axial-vector current, the gauge group is SU(N)
and a is the color index while cz, is the coupling constant.
Note also that we have changed the chiral anomaly for
electromagnetic background into a very similar one, for
an external gluonic field.

On the other hand, supersymmetry allows us to unify
various anomalies. In particular, the conformal anoma-
ly is proportional to the whole p function:

p(a, )
6„',,6„'

4Q
(7)

where 8„„is the trace of the energy-momentum tensor.
The two anomalies naturally fall into the same supermul-
tiplet so that there exists the so-called supersymmetric
axial-vector current whose divergence is given by

P(lz, )

(B&a„,)sUsv= —
3

G„', G „'„.3' (8)

It is worth emphasizing that classically the axial-vector
current is uniquely determined:

lr lassieal p
~ r„7 5~ (9)

5ap ~a, krpy5A, (10)

and introduction of such a counterterm reduces to a mere
redefinition of the classical current which is of little in-
terest. So we can forget about this possibility (for a
thorough discussion see Refs. 7 and 8).

An ingenious solution to the problem has been found
in Ref. 9. In this paper the ultraviolet dimensional regu-
larization is used. If one changes the dimension some
components of a d =4 vector field, gluon in our case, are
to be treated as scalar particles since the Lorentz vectors
incorporate different number of fields in different dimen-
sions. Thus there emerges a new freedom as to which ax-
ial charge to be ascribed to these scalar particles. In
somewhat symbohc way the new counterterm can be
written as

where A,
' is the gluino field and a is the color index. Thus

the difference in ultraviolet regularization prescriptions
has been blamed for the difference in the resulting anom-
aly equations. However, as we have already learned the
anomaly condition can be converted into an equation for
the matrix element of the current with a nontrivial imagi-
nary part. Therefore, having both Eq. (7) and Eq. (8) im-
plies varying the imaginary part although we start from
one and the same classical current (9). Thus one may
wonder what happens to the unitarity condition.

First, one turns to the question of which counterterms
can arise in the process of evaluating the first loop. If
there existed some freedom in choosing one-loop subtrac-
tion constants these counterterms could produce a
change in the two-loop imaginary part and distinguish
between various currents. However the only counterterm
possible is proportional to the classical current itself,

p p )Adler-Bardeen

o.,N G„'„G„'„+(no a, corrections),
4~

(6)

6a ~(d —4) ~ ~ ~

P

where d is the number of dimensions and the factor d —4
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5(B„a„)~ a, (d —4)/(d —4) ~ a, (finite number) . (12)

This solution of the anomaly puzzle makes our prob-
lem even more acute since if one translates the result, so
to say literally, into the language of the infrared regulari-
zation one would expect the effect of the unphysical par-
ticles to show up in the unitarity condition. Although
this is not exactly what actually happens there is some
truth in the hint. Namely, if we stick just to the physical
dimension d =4 and rely on the unitarity condition to
evaluate the anomaly the result still turns out to be un-
certain because the imaginary part appears to be depen-
dent on the way one performs the infrared regularization.

indicates that the current is constructed from the fields

disappearing at d =4. Although the counterterm van-
ishes once d tends to d =4 it produces a nonvanishing
effect to next order because of ultraviolet divergencies.
In the same symbolic way the extra piece in the diver-
gence of the current can be written as

mentioned that the imaginary part is determined by the
Born graphs and all the symmetries of the classical La-
grangian become manifest. What is going wrong howev-
er is that the matrix element of the current is no longer
described by a single form factor and for this reason the
knowledge of the divergence of the current does not im-

ply the matrix element of the current to be fixed.
In more detail, the matrix element of the current now

reads

(O~aq 2y}=f, (q, k )q„FF

+f,(q, k )(k E„„A„F + ), (13)

where A„ is a vector potential and the ellipsis denote
terms proportional to i3„A„. Note the appearance of the
vector potential A„, not just of the field-strength tensor
F„„which became possible since the whole form factor

f2 is proportional to k and vanishes on mass shell.
The vanishing of the imaginary part of the divergence

now implies
III. MORE ON INFRARED REGULARIZATION

q Imf, =k Imf2 . (14)

Now we are coming closer to the subject of our im-
mediate interest and consider the infrared regularization
in more detail. For simplicity we shall consider in this
section photons as external particles in Fig. 1.

The first question is why we need any regularization at
all to calculate the imaginary part. The reason is that for
all the particles being massless and on mass shell the fer-
mionic pole in the graph describing the transition of two
photons into two fermions [see Fig. 1(b)j falls into the
boundary of the physical region and the imaginary part is
not formally determined. Thus there arises the necessity
for an infrared regularization.

Once one starts to regularize the imaginary part there
appear two alternative possibilities both of which deserve
discussion. First, one can introduce an infinitesimal fer-
mionic mass and let this mass go to zero at the end of the
calculation. Such a procedure was implied in fact in our
discussion above. The advantage of regularizing by
means of the fermionic mass is its simplicity. In particu-
lar the matrix element of the current is described by a
single form factor [see Eq. (3)] and for this reason calcu-
lating the matrix element of the current and of its diver-
gence is actually one and the same thing. The disadvan-
tage is that this regularization does not respect chiral
symmetry and it is just this violation of the symmetry
which goes into the final answer and manifests itself as
the anomaly.

Thus one might be encouraged to look for another reg-
ularization which does observe chiral symmetry. Indeed
such a regularization can be constructed. Namely, let us
consider the external photons to be off mass shell:

k, =k~—=k WO,

where k
&

and kz are the four-momenta of the vector par-
ticles.

Then both the imaginary part is well defined and chiral
symmetry is observed. Therefore at least the imaginary
part of the matrix element of the divergence of the
current is identical to zero. Indeed, we have already

As for the Imf
& z themselves they do not vanish. More-

over applying the same kind of dimensional analysis as in
Sec. I we estimate Imf, as

Imf, ~k /q

and the corresponding dispersion integral remains finite
once k tends to zero:

dsRef &(q, k ) ~ k f . (15)
4&' s (s —

q ) k2-0 q

As for the contribution of f2, it disappears in the limit
considered and we see that the anomaly reemerges in new
terms.

To summarize, already at the one-loop level one can
use various infrared regularizations. Moreover, within
the approach developed it is not a priori clear that
different regularizations would lead to the same numeri-
cal answer (although the very existence of the anomaly
can readily be substantiated).

IV. TWO-LOOP INFRARED REGULARIZATION

We are in a position now to consider infrared regulari-
zation of two-loop graphs. Actually the procedure is no
more complicated than that for one loop. The point is
that the intermediate three-particle cut (see Fig. 2) which
might cause the most trouble is actually very simple to
handle. Indeed, consider the regularization

FIG. 2. A three-particle unitarity cut. Only one graph of the
whole set is depicted.
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qpqv-Sa„~a, ", X'y,y,X'
q

(16)

which can be called a "nonlocal zero. " Indeed, the non-
locality is evident since we have the q factor. As for
the "zero," the extra piece (16) vanishes by virtue of the
Dirac equation for massless gluinos which can be applied
since we are considering imaginary part. Because it is
equal to zero the term (16) is beyond control within the
dispersion approach we are pursuing. However, in view
of the experience of the previous sections we should not
be surprised if the contribution of this term at the next-
loop level is not vanishing.

Construction (16) may look artificial and one could feel
inclined to disregard such terms altogether. It is super-
symmetry which provides us here with a guide, implying
that such terms do appear. The trick is that SUSY re-
lates the divergence term B„a„which vanishes on mass
shell to the GG term which is generated by the first loop
with a well-defined coefficient. Indeed, it is well known
(see, e.g., Ref. 10) that only the combination

GG —2(B„a„)

appears in superfield language. Therefore the one-loop
matrix element of (a„)sUsY actually looks like

mf =0, k =0, mrWO,

where k is the external particle four-momentum squared
while m z is the infinitesimal mass of the photon in the in-

termediate state.
As we have already mentioned, in the case of external

momenta k =0 there exists a single form factor [see Eq.
(3)]. Moreover the imaginary part is regularized now in a
chiral-invariant way. Therefore Imf (q ) vanishes identi-
cally implying vanishing of the whole contribution.
Thus, there is no anomaly associated with the three-
particle intermediate state. It might be worth noting that
our derivation echoes at this point the original arguments
of Ref. 5, where the ultraviolet regularization was con-
sidered. Namely, vanishing of the three-particle contri-
bution corresponds to the observation that higher loops
are not divergent and do not contribute to the anomaly.

Thus one has to worry only about the two-particle in-
termediate state (see Fig. 3) since this contribution cannot
be regularized in a chiral-invariant fashion by ascribing
mass to the photon inside the loop.

Moreover let us imagine that the first loop results in
the contribution

(a) mf@0, mf ~0, k =0 .

Then one can readily check that the first-loop anomaly
reiterates itself. ' '" Indeed, in this case we just have

q„(q„a„)P V V q„q, q„q q, GG
~a~

2
av~aq

q„GGP

q

Or, in more detail, the two-loop contribution into the
imaginary part Imf (q ) associated with the term (17) is
equal to

a,N a,N mf
[Imf (q )],„,)„=+ ln

477 7T q 1 —v
(19)

so that the contribution to the two-loop anomaly is non-
vanishing and well defined:

&Ol(a„a„)I2g &...„,.„= a, N

4m

a,N

2' GG . (20)

Since in the supersymmetric case the axial-vector current
does receive higher-order contributions such a reiteration
of anomalies suits (a„)sUsv.

Let us try, how'ever, another regularization:

(b) mf=—0, k %0, k 0.
Then the effect of our "nonlocal zero" term is identical

to zero. Indeed, since the gluinos are on mass she11 we
can rely on the Dirac equation for massless particles so
that

[Imf (q, k )],„„~„=constXIm(OlB„a„l2g )„& =—0 .

(21)

and we come to the realization of the Adler-Bardeen
current.

Thus, in the both cases (a) and (b) we end up at the
same physical point, i.e., mf, k =0. However, the limit-

ing procedures are different. What we find is that, unlike
the first-loop result, the two-loop matrix element of the
current does depend on the details of the infrared regu-
larization procedure.

GG —q, k 'y y5A,
'

(ap )sUsY
4 qp4m q

Thus we are led to consider the effect of the term (16)
carefully in the general case as well.

The crucial point is that different infrared regulariza-
tions produce different results for the two-loop anomaly
induced by (16). Consider first the case of a nonvanishing
fermionic mass:

V. INTERPRETATION

FIG. 3. Two-loop, two-ferrnion unitarity cut.

To be sure that we identified correctly the origin of the
ambiguity it is desirable to establish links to the results
obtained within other approaches and to access the phys-
ical meaning of the "nonlocal zero" discussed above. In
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this section we will address ourselves to both issues.
From supersymmetry we learn that once the axial-

vector current is postulated to be in the same multiplet as
the energy-momentum tensor its matrix elements get
uniquely determined. What is the analog of this obser-
vation in our language?

One can consider the conformal anomaly starting from
the matrix elements of the energy-momentum tensor it-
self 8„,not just of its trace 8„„.What happens then is
that we get a similar pole structure. Indeed Eq. (17) can
be readily generalized to the case of matrix elements of
the supercurrent J . (Ref. 6) which unifies the axial-

vector current and the energy-momentum tensor:

providing an alternative way to measure the charge.
Now, the point is that these two definitions result in

different answers once one accounts for the term (16)—a
phenomenon which has no parallel in the case of an elec-
trical charge. Moreover our definitions (a) and (b) of the
charge turn out to be in one-to-one correspondence with
the (a) and (b) infrared regularizations described in Sec.
IV.

Indeed definition (a) above implies a nonvanishing
change in the axial charge:

0'~X qpqp 1
(fi~0 )sUsY ( 2), ~ 'y0l P4~ q02 2

(22)
a,N

( a 0 )classical (25)

where a and a are Lorentz indices in chiral notations,
W' is the superfield describing gluino and gluon, W ', is

its conjugate, and 8, is a derivative in chiral notation.
In particular, Eq. (22) implies the following matrix ele-

ment of the energy-momentum tensor:

(23)

where ~2g ) is a two-gluon state. Note that Eq. (23) actu-
ally incorporates both the pole term and the local term
needed to uphold the energy-momentum conservation.
Taking the trace of Eq. (23) we come back to the confor-
mal anomaly (7).

Now, in case of the energy-momentum tensor there ex-
ists one extra requirement. Namely, the energy, or the
matrix element of 800, should not get renormalized by the
loop corrections (23). Therefore, we must treat the pole
term in Eq. (23) in such a way that it does not vanish and
cancels the contribution of the local term proportional to
gpp. Since the supersymmetry relates all the pole terms it
means that the pole term in the axial-vector current [see
Eq. (17)] is not vanishing either. In Sec. IV we came just
to the same conclusion starting from very different con-
siderations.

As for the physical meaning of the "nonlocal zero" (16)
it can be clarified by considering the definition of the axi-
al charge upon accounting for one-loop effect. Let us re-
mind the reader that there exist in fact two different
definitions of the charge.

(a) One can define the charge Q„by considering the in-

tegral over the zeroth component of the axial-vector
current:

Q„= lim J exp(iq0t)a0(x, t)d x .
qo ~0

0 )Adler-Bardeen (26)

and the current constructed in this way is just the Adler-
Bardeen current.

Thus the axial charge is not uniquely determined and
depends on the details of infrared regularization. The
two-loop calculation of the anomaly transforms this am-
biguity in defining the charge into the ambiguity in the
anomaly equation.

VI. GENERALIZATION TO BOSONIC AXIAL CHARGE

Inspection of numbers shows however that the nonlo-
cal term (16) is not sufficient to account in full for the
difference between (a„)sUsY and (a„)Adl«Bardee„. To
resolve the remaining discrepancy one has to consider the
gluonic loops of Fig. 4. In terms used in the present pa-
per the graphs introduce another two-particle intermedi-
ate state, namely, a two-gluon state. From the point of
view of a supersymmetric theory it is only natural that

which means that the charge gets renormalized as an
effect of the first loop. Moreover, the coefficient turns out
to be exactly the same so as to reproduce correctly the
two-loop anomaly (20). Note also that taking q=O while
q0%0 ensures a vanishing loop correction to the inatrix
element of 800 [see Eq. (23)].

If one relies on definition (b), however, then one consid-
ers the physical values of the momentum transfer —while
the point qp&O, q=0 is unphysical for a massless particle
scattering —and B„a„,=O since the gluino is on mass
shell. Thus, in this case there is no renormalization of
the axial charge,

In momentum space such a procedure corresponds to the
space components of q„being identical to zero while the
time component qp tends to zero if we are interested in
large times.

(b) One can introduce some auxiliary field coupled to
the current a„and consider the Coulomb-like scattering
of gluinos on an external field. Then at small momentum
transfer the cross section is determined by the charge FICs. 4. Two-loop, two-gluon unitarity cut.
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gluons and gluinos produce similar contributions, as we

will demonstrate later. It is worth emphasizing, however,
that the crucial role of these graphs to resolve the anoma-

ly puzzles was established first earlier. '" In particular in
Ref. 11 all the numbers are traced up to the very end and
Eq. (8) is checked explicitly to two-loop order. However,
it is implicitly assumed in this paper that the two-loop
anomaly is unique so that the correct equation is just Eq.
(8), and this assumption is in variation with our con-
clusions.

To consider a reiteration of the gluonic piece of the
anomaly one has to evaluate the matrix element of the
GG term associated with the first loop. A11 the calcula-
tions can be made parallel to those outlined above for the
ferrnionic piece. Indeed, let us represent first GG as a
divergence:

1 e
192m 2m

(31)

y J aotx, xo)d'x yI= — y f K~d'x y)

which exhibits the same phenomenon of the reiteration of
anomalies.

Note that the analogy between a„and E„extends in
fact further. In particular the charge associated with the
K„current measures the helicity of free photons (or
gluons) (for more detail see Refs. 12 and 14). Therefore,
if one defines the charge by taking q:—O, qo&0 (see Sec.
V) then photons acquire a nonvanishing axial charge as a
result of the one-loop contribution to ao:

GG = —2B„E„,
where

Sa=+ 2' ' (32}

(27)

(O~K„~2g ) =a,f (q )q GG . (28)

Then one can proceed just in the same way as in the case
of the matrix element associated with the graph of Fig. 1

(see Sec. I). The final result looks very similar to Eq. (5):

a, N q„(OK ~2g)= "GG.
2~ q'

(29)

Moreover if one applies this treatment to evaluate the
matrix element of the GG term associated with the first
loop the two-loop anomaly equation (8) for (a„}s„sv is
reproduced. "

For the sake of completeness let us also mention that
practically exactly the same technique can be applied' to
evaluate the matrix element of the E„current associated
with photonic field over a gravitational background:

(O~F„F„2grav) = —2B„(O~E„„A 8 A 2grav)

2 296m q
(30)

Here ~2grav) stands for a two-graviton state, R„ is the
Riernann tensor and R„ is its dual. The final result for
the divergence of E„can be derived by means of ultravio-
let regularization as well. '

Moreover Eq. (30) implies the following two-lop chiral
anomaly in a gravitational background

and proceed then to evaluate the matrix elements of E„.
It is worth mentioning at this point that although the
current E„ is not gauge invariant classically this nonin-
variance does not go onto the loop corrections. The
reason is that by splitting 3„into classical and quantum
parts one actually confines all the gauge noninvariants
into the purely classical part of E„while evaluation of a
loop graph implies integration over the quantum part of

Therefore for the external gluons being on mass shell
the graph of Fig. 4 is described by a single form factor f:

where the plus and minus signs correspond to left-handed
and right-handed photons, respectively. Thus we see that
photons are no longer neutral with respect to the axial
charge and this effect is to be taken into account once we
decide to look for an interpretation of Eq. (8).

However, as is the case with the two-fermion inter-
mediate state, the contribution of the two-gluon state is
in fact ambiguous. The point is that a convenient way to
derive, say, Eq. (30) is to introduce an infinitesimal pho-
ton mass. Then derivation of Eq. (30) runs parallel to
that of Eq. (5).

Moreover, one can also argue that the result is infrared
dependent. Indeed, the chirality of a photon propagating
through a gravitational background is known to be con-
served (for a thorough discussion of the corresponding
chiral symmetry see Refs. 14 and 15). As a manifestation
of this the matrix elements of FF naively vanish which
means that the imaginary part of these matrix elements
vanishes for sure. The only problem is to provide an in-
frared regularization which observes the symmetry. This
can be done again by ascribing virtuality to external grav-
itons. In that case the two-loop contribution to the chiral
anomaly in the gravitational background vanishes. Seem-
ingly, we may skip further discussion of the infrared reg-
ularization of the bosonic axial charge since it just
reiterates the argument of Sec. V.

VII. APPLICATIONS

The infrared dependence of the chira1 anomaly to two-
loop order seems to resolve the apparent clash between
the topological nature of some operators and the fact that
these operators get renormalized by quantum correction.
The point is that to establish the topological nature of,
say, GG it is convenient to represent GG as a total diver-
gence. The corresponding current is not conserved, how-
ever, and as a result the topological charge gets renormal-
ized by quantum corrections. Now we have learned that
even representing GG as B„E„doesnot fix its matrix ele-
ments. Concentrating on the gravitational anomaly for a
moment we find, to two-1oop order,
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but

k
[b,Q&]

'"" o= f d x RR
192m.

=(integer number) (33)

k
[bQ„] '"" o= f d xRR 1—

192m

=(noninteger number), (34)

where k is the four-momentum squared of the external
gravitons. While Eq. (33) is readily reconciled with the
production of fermions in a nontrivial gravitational back-
ground, Eq. (34) disavows our physical intuition.

Now that we have learned about the infrared depen-
dence of the results we can try to approach the problem
anew and look for a proper infrared regularization. Then
the regularization

are to be smaller than the virtuality of the field. The con-
dition applies both to bare and physical fermions con-
straining both the fermion and photon masses.

Thus, we see that a physically motivated regularization
(35) leads to the reasonable answer. The observation that
it is just the infrared regularization which matters fits
well the fact that establishing topological properties of
any operator assumes integration over all the distances.

Therefore the topological charges —at least those
which can be represented as full divergencies —are get-
ting the status of nonrenormalizability provided that a
motivated infrared regularization is picked up.

Infrared instability might have some implications for
the theory itself. The point is that evaluation of the P
function of, say, SUSY-YM theory can be reduced to an
evaluation of the matrix elements of GG, as emphasized
in Ref. 11. Then the P function becomes dependent on
details of the infrared regularization starting from the
third loop.

mfmr—=0, k „„%0, (35) ACKNOWLEDGMENTS

where mf ~ are the infinitesimal photon and fermion
masses of the corresponding quantum fields and k is the
virtuality of the external field, seems to be the appropri-
ate one. Indeed, the nontriviality of the background field
implies that k is nonvanishing. Moreover, since we are
discussing actually the change of the axial charge, or par-
ticle production by this field, the masses of the particles
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