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Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann al-

gorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustra-
tion of a rigorous treatment of interacting fermion fields.

I. INTRODUCTION

With the goal of calculating the spectrum of states in
relativistic field theory, one line of research consists in
working in a null-plane frame. (For our notations con-
cerning light-cone coordinates, see Appendix A. ) The ad-
vantage of doing so is that the longitudinal-momentum
operator P+ is positive semidefinite; hence, the physical
vacuum is identical to the bare Fock vacuum (P+ is a
Fock operator because its expression in terms of the fields
does not contain any derivative with respect to "time"
x+). The hope is then to be able to do nonperturbative
physics in very much the same way one works in ordi-
nary quantum mechanics, namely, by diagonalizing the
Hamiltonian P in large, but finite sectors of the Hilbert
space. This method has been applied to various mod-
els. ' In an alternative approach, one builds a path-
integral formulation on the basis of the field eigenstates,
and computes the energy spectrum using lattice tech-
niques.

Either way, one needs to construct the Fock space at
fixed x+. The (anti)commutation relations between parti-
cle creation and annihilation operators are derived,
via the momentum-space expansions, from the
(anti)commutators between the fundamental fields. As
for the latter, they have been calculated in the case of sca-
lar and gauge theories ' by the methods of canonical
quantization.

In the case of free fermions, the functional form of
I g(x), g(y) I is known for all x and y, so it is no problem
to specialize to x+=y+ (we do this in Appendix B). As
for interacting fermions, the values taken by the
(anti)commutators have been proposed' ' in order to
satisfy the following requirements: (1) identity between
Heisenberg and Lagrange equations of motion, and (2) in-
terpretation of the total four-momentum operator in
terms of its particle content.

Nonetheless we feel it useful to establish these commu-
tation relations, in theories of fermions, on the same firm
footing as for the other theories, viz. , by means of a
canonical quantization. This calculation, to the best of
our knowledge, has not been presented so far. The pur-
pose of this paper is to fill this gap. As a by-product, we
shall gain a deeper understanding of light-front fermions
which can be provided only by the analysis of the struc-
ture of Hamiltonian constraints.

Given the singular nature of the system of coordinates,
namely, the choice of boundaries along x+ =const, con-
straints are always present in the null-plane quantization
and can be treated with the Dirac-Bergmann algorithm.
In order to keep this paper as brief as possible, the reader
will be assumed to possess some familiarity with the
method (for a review, including the quantization of fer-
mions in space-time, see Ref. 13).

To fix ideas about interacting Dirac fermions, we have
elected to carry out the null-plane quantization in the
framework of quantum electrodynamics. This should
not, we hope, obscure the general features of fermionic
theories. The organization of the paper is as follows: in
Sec. II we introduce the Hamiltonian and derive the
equations of motion; in Sec. III we classify the con-
straints into first and second class, and choose a suitable
set of gauge conditions; in Secs. IV and V we construct
the Dirac brackets. Section VI summarizes our results.

II. STRUCTURE OF CONSTRAINTS

The Lagrangian density for QED is

gled mfa——,' F"—"F„, j"A—„, —

where

and

j "=g gaby" g, F„,, —:B„A,—B„A„,

(We use "left derivatives, " see Appendix C.) Hence the
primary constraints are

C=—m. , C—:~ —F

,'F„,F"'=
—,'(F—+—)+F t, F+k —

—,'(F,2)2 (k =1,2) .

In the classical theory, g(x) and lb(x) are independent
complex Grassmann spinors. The canonical momenta
are, for the photon,

m =F', viz. , m =0, m =F+, m =F
and for the fermion
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while ~ is dynamical. The canonical Hamiltonian den-
sity is

&—:tran'A„+PP —gP —X

with the help of Eq. (2.1). Hence Gauss's law is autotnat-
ically conserved.

At this point it is nice to check that we have the
correct (Euler-Lagrange) equations of motion. First one
needs to calculate the time derivative of the fields:

'—y(—Z a-+q"a„)y+mqq+P A„,2

where the overdot denotes a derivative with respect to
x+. The primary Hamiltonian is

H =H, + x x uC+u„C"+I v —vt

where u, uk are bosonic and v, v are fermionic
(Grassmann) Lagrange multipliers.

In order to control the infrared divergences, it is cus-
tomary to enclose the system in a longitudinal box. ' We
shall do so henceforth; in particular the integrations over
x are to be performed from ( L/2) —to (+L/2). The
exact form of the quantum (anti)commutators depends on
the boundary conditions (BC's), so to fix the ideas we
choose antiperiodic BC for all the fundamental fields.

The Poisson brackets (PB's) between these fields are

I A„(x),n."(y)j + + =5„"5(x —
y )5 (xi —y, ),

[P (x),Pti(y)j + +=5 g(x —y )5'(x, —y, ),
(a,P=1,2, 3,4),

all the others being zero. Hereafter, the subscript
x+ =y+ will be omitted. Using

IC"(x),C'(y) j
= —25„iB"5(x —y )5 (xi —yi)

(k, I=1,2),
we determine the uk's by requiring the C 's to be con-
served in time:

0=
f C"(x),H j =dkn+B&F&k —.2B uk

—j" .

The conservation of C(x) yields Gauss's law:

O=G(x) =
I C(x),H& j

=8 m +dk~"

Similarly, using

A+ =
I A+, H j =u,

A„= j A„,H j =B„A +u„,
, H j =t}„u„—j

t't"=
I
n",H j

= —8 uk j "+—"t}IF&k,

It is then easy to obtain

FpV —J V

(i8 m —g—A )/=0, 0=/(iel+m+gA ) .

(2.2)

(2.3)

However, one notices immediately that the time evolu-
tion of A+ is left undetermined since we have no can-
straint imposed on u(x). Furthermore, Eqs. (2.1a} and
(2.1b) do not determine the time evolution of 1( and g,
viz. , v and V completely since y+ is singular; more pre-
cisely g and f each have two undetermined components
(see Appendix A). As is well known, " a particle that is
distinct from its antiparticle has in a null-plane frame
half as many degrees of freedom as it has in space-time.

This means of course that one needs now to choose ap-
propriate gauge conditions in order to fix the evolution of
the system.

III. GAUGE STRUCTURE

The algorithm calls for as many gauge conditions as
there are first-class constraints (the ones that have zero
PB with all the others). Clearly, C is one of them, while
the C"'s are second class. Closely related to G(x} is the
linear combination of constraints

X—:G+ig(I f+QI ) .

Il.(x), r(y) j
= —i} +5(x- —y-)5'(x, —y, },

one finds that v, v obey

0=
I I (x),H j

i(y a +}"t}—„)P+mP+gAQ iy+U . —

Finally, using

j G(x), I (y) j
= —gory+5(x —y )5 (xi —yi),

j G(x), I (y) j =g@+$5(x —y )5 (xi —yi),
one gets

IG(x),H j:—0

(2. la)

(2.1b)

It is first class, as one can easily verify.
Finally, what is the status of the fermionic constraints?

As spinors, I and I are made of four constraints each. It
turns out that I as well as I contain two first-class and
two second-class constraints. This must be contrasted
with the space-time quantization, ' where the analog of
I, I are all second class, and explains the above-
mentioned difference in the number of degrees of free-
dom, from the point of view of the Dirac-Bergmann algo-
rithm.

For simplicity, we switch now and for the remainder of
the paper to 1+1 dimensions; the generalization to four
dimensions is straightforward.

In 1+1 dimensions, the spinors have two components,
so we want to show that I contains one first-class and
one second-class component (and similarly for I ). This is
due to the fact that the PB's of I, I imply that (I y+)
and (y+ I ) contain one first-class component, while
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(I y ) and (y I ) contain one second-class component.
Let us concentrate, for example, on (I y+) and (I y ).

Since y+ is nilpotent but not zero, y,+z and yz+, cannot
be simultaneously zero. So the representations of Dirac
matrices fall into two categories.

y2, &0. Writing out explicitly the identities

[r(r )'],=o, [1(r )']2=o

one gets

(rr+), r,+, +(rr+)2r2'i =o

(rr )&r]p+(rr»r2$ 0.
&s r i2=(r+)i2=(yz&)*, one also has y, zAO. Hence the
spinor constraint I is equivalent to the set

(I y+), =0 (first class),

(I y )z=o (second class) .

In effect, assuming that (I y )2 was first class, its PB
with I 2 would necessitate (y+y ),2=0, viz. ,

which would contradict our assumption y2+&%0.

y, 2%0. Similarly the identities

[r(y')'], =0, [r(y-)'], =0

y =y
—(i y a —m ) iI'j, g=g(ia y +m)y+ .

The reader will immediately object that in doing so we
have selected a total of six gauge conditions instead of the
four to which we committed ourselves. In other words,
we are providing redundant pieces of information to the
system, with the result that the matrix of constraints will
be inexorably singular. So how can we reduce the total
number of constraints, while preserving the symmetry be-
tween 1( and p, and without having to pick a particular
representation of the y matrices? The solution to this lit-
tle puzzle will be given in the next section, but before let
us just verify that with our gauge choice the multipliers
are effectively determined unambiguously.

One finds that the condition A =0 is automatically
conserved, while the requirement

0=[~ +a A, + ]=a u —j

(the so-called null-plane gauge). ' To find the matching
gauge conditions on the fermions, let us start from Eq.
(2.3) (the Dirac equation):

(iQ m——gA )/=0 .

Multiplying on the left by y, one gets

y+(iy a —m —gA y )/=0 .

Hence we take as gauge constraints

are written out as

(lr' i)ri'z +(Ir' )2r+2=20
(I r ) y +(I'r ) r21

Here y2iAO, and I as a constraint is equivalent to the set

(I y ),=0 (first class),

(I y ), =0 (second class) .

We have gone through this somewhat tedious proof in or-
der to convince the reader that, independently of the
choice of representation, the set I, I is equivalent to two
first-class and two second-class constraints (four of each
in four dimensions). The importance of this result lies in
the fact that we have to match these two first-class con-
straints with two gauge conditions, even in the free fer-
mion theory. After gauge fixing, one of the components
of it becomes an explicit function of the other (and simi-
larly for f).

Our next task [in two-dimensional QED (QEDi)] is to
find four admissible gauge constraints (viz. , compatible
with the equations of motion, and turning all the con-
straints into second-class ones).

When the photon is coupled to fermions, one might
consider the gauge A + =0, but a second gauge constraint
on the electromagnetic field is needed, and no one was
found that would be compatible with Eq. (2.2) (this is the
same problem as the temporal gauge in a space-time
frame). Hence we select the gauge conditions

A =0, K=w +0 A+ =0,
which actually are standard in the pure gauge theory too

determines u (x). Using

[q, I I
=o, Ig, l ] =o,

Iy(x), i (y) ) =y+(iy a" —m )5(x —y ),
I (x), y(y) I

= —[y+(iy a' +m )]5(x —y ),
[I (x),j(y)J=( iy a"—+m)y+5(x —y ),
I ~/(x), 1(y)I = [(iy a' +m)y+]5(x —y ),

where the subscript T denotes the matrix transposition,
one gets

0= [y, H I =y (iy a —m )v,

o=[g,H I=V( iy a —+m)r+.
(3.1a)

(3.1b)

——y y+(a A )P ig A (a —P),

where the second line results from Dirac equation. Simi-
larly,

2 '+'g(a A, )qy+r +igA (a q)-.

Note that this expression for a U =a+a li is nothing
else than the Klein-Gordon equation; in effect, using the
covariant derivative D„=B„+igA„, the Dirac equation
1S

Manipulating Eq. (2.1b) together with Eq. (3.1a), one ob-
tains finally

2

a U= — — A+r'0 rr'a ——(A+0)-
2 2 + 2
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(ig —m )/=0 0=( —ig —m)(ig —m)g=(gg+ m )g=y+y (r)++igA+ )(8 g)+y y+8 (0++ig A+ )g+m g

=(2B 8 +m +igy y+0 A )P+2igA 0 tij .

In Sec. IV we construct a preliminary Dirac brackets by "inverting" I, I, g, and y. In Sec. V we obtain the final
Dirac brackets by incorporating C, G, 3, and K.

IV. PRELIMINARY DIRAC BRACKETS

To solve the problem discussed in the preceding section, we replace g and y by

y+my I" — y+m I y

The reason why these linear combinations work is that

(=0 O=y+g= — y I =0 (since y y+y =2y ),v'2

and using (=0 again we get finally

(=0 y=O and y I =0 .

Similarly

/=0 /=0 and I y =0 .

In this way we manage to impose not only the gauge conditions, but also one projection of each primary constraint
I, I . Therefore, in order to complete the set of constraints, one only needs to invert one more component of I (call it
A, ) and one component of I' (call it A, ) rather than the two minors Asuit.able choice of A, and A, will be given below.

Imposing g, g on the dynamics defines a first preliminary Dirac brackets (PDB1), then requiring the full I, I yields
PDB2.

The matrix whose elements are the PB's of g and g is

0
'(l iy y'—y )—

Its inverse is

&
—~r —x+x

0
m 5(x —

y ).

g —
1

1—~r —r X

Using

'(I —'y —y'y ) 5(x
- —y -)
m

[((x ), P(y )}= y+(iy 8" —m) i yy+——
2 v'2

[P(x ), g(y )}= (iB y +m)y i y+y- —+ . m + 5(x —
y )

2 ~2

one finds

[P(x ) P(p )}poa& = f«,«, [y(x ),g(. , )}&;, (...., )[g(., ), P(y ) }

(
—iB y +m)y i y+y —6—:'(x,y ) y+ —id y —m —i—y y

. m +
2



1188 DANIEL MUSTAKI 42

I g(x ),p(y ) IPDB1=5(x —y )
——Jdz1dzz5(x —z1)y b&&'(z1,z2) y+(iy a ' —m ) —1

2 y y+ 5(z, —y )

+
+ '—r a-" 5(x- —y-),

2 m

I P(x ), g(y ) ) pDB1=5(x —y )
——Jdz, dz2 [(ia 'y +m )y+ i——y+y ]5(x —z, )b &&'(z1,z2 )y 5(zz —y )

2

+ry +—ya" 5(x —y),
2 m

I p(x ),g(y ) I PDB1= —m Idz1dz2 I Q(x ), I'(z1) ) 5(&'(z1,zz ) ( I (zz ),g(y ) I

2

r ~(g(x y )r

I (x ) (y )IPDB1 t(t' PlPDB1 2 (0 PIPDB11 2
r'If PIPDB1 lr't0. 41PDBlr

y (a")5(x —
y ).

m

The other brackets between the fundamental spinors stay equal to zero.
To construct PDB2, we need to distinguish again between two categories of representations, according to the value of

the "antitrace, " viz. , (y, 2+ y21).
Zero antitrace. In this case

y, , =+y, zAO, y I =0, I'y =0 I 1=+I"2, I =+I 2,
so

X—=r, =O, X—=I,=O —r=O, I =0.
The PDB1's between A. and k form the matrix

2i „2, im Ix —y I
I./2—M= y, ,(a" ) 5(x —

y )a, M '= — o, ,
2

where

0 1

1 0

is the usual Pauli matrix. With the help of

+ — x
)1PDB1 2

+ ra"—5(x —y ),
a1

+
IA(x ),g (y )IPDB, = +—y a" 5(x —y ),

la

one finds

—y ~

——+ (y ) (y y+)»e(x —y )
2 2m

Ig (x ), fp(y ))PDB2= —f dz1dz~IQ (x ), &(z1)]PDB1M ~'(z1, z2) I&(zp), fp(y )IpDB1

+r r + 'r a"—-
2

im' (y'y ).1(y r') p1
4Xii 4

+ (y+y ),(y )1~ ~(x —y )—,(y ) 1(y )1B 5 (x —y )
2m m
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Th&s j.s simply

~ 2

)IPDB2= r lx —y I

————~(x —y ) —'—r 5(» —
y ) . (4.1)

Xonzero anti trace. Then, with

x—=r, +r, , x=—r, +r, ,

we have

g=o, g=o, x=o, X=o —r=o, r=o.
The PDB1's between A, and A, form the matrix

M= (r,2+r~, )(B" ) 5(x —y )a, M
2l

m

Using

2 +
»~(y )IPDB1 X +—r ~"-

2

I,m

2(r12+ r 21)

Ix y I Ln
2

0)

2 +
) 0 (y )IPDB1 X +—'r

ka

one finds

IW.(x»fp(y )IPDB2 f d~ld~2I 4(x ) ~(zl)IPDBlMkk (~1~2)I~ ~2) Pp(y )IPDB1

2 + —gxr
4(r12+r21) k, l = 1

lx —
y

L

ak

+

2 m
' ' ——'y-a'

lm

4(riz+rzi) k, 1 =1

).k(r r')lp
4

+ '
(r ).k(r r+)1@(x

2 2m

+ ' (r r ).k(r )1B (x y) ——, (r ).k(r )lg(x
2m m

Again, one can check that for all values of the indices this
expression reduces to Eq. (4.1).

Hence Eq. (4.1) is always true; it is the main result of
this paper. Clearly, it stands as the final Dirac brackets
in the free fermion theory. Furthermore, it is unaltered
by the interaction with the electromagnetic field (in the
null-plane gauge), as we now show.

Next, let us invert C(x) and E(x). The PDB2's of a fer-
mionic variable with m+ and I( are zero, so the PDB3 of
a fermionic with a photonic or fermionic variable is equal
to the PDB2. Further, the brackets of C and K form the
matrix

%=0 5(x —y )o& X '=
o& .e(x —y )

V. DIRAC BRACKETS One calculates easily

Since the constraints that have been inverted above do
not involve the electromagnetic phase-space variables,
the PDB2's of the latter are equal to their PB's; this is
also true for the brackets between the photonic and a fer-
mionic quantity. Specifically,

f~+, 6 ) =0, I sr+, A I =0,
Im. +(x ), K(y ) I

=8" 5(x —
y ),

I G(x ), A (y )I = —cV 5(x —y ),
IG,KI =0

I A (x ) E(y )) =5(x —
y

I A (x ), n {y )IpDB3=5(x —y ),
A (» )& A+(y )IpDB3:

E(x y )

2

fA , J =0, jA , GI =0.
Finally we invert 3 and G. Since the PDB3 of a fer-

mionic variable with A is zero, the Dirac brackets be-
tween fermionic variables are equal to the PDB2's, as ad-
vertised. Then from Eq. (4.1) we deduce
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Further, the PDB3's of A and 6 form the matrix

E(x y )0=—8 5(x —
y )u 0

1

f L
dz e(x —z )e(z —y ) =2 ix —y 2

With the help of the identity

L[A+(x ),8(y )jD=[A+(x ),8(y )jpDB3+ —,
' f dz ~x

—z
~

——[G(z ),8(y )jpDQ3

for any function 8 of the phase-space variables. In particular

[ A+, A+ jD =0,

[A+(x ) y(y )jD= ' —f—dz ~x
—z

~

——[j+(z ) y(y )jD,

and similarly with P(y ) replaced by f(y ). This is in agreement with the equation of motion
T

(8 ) A = —j+ A (x )= —
—,
' dz ~x

—z
~

——j (z ).L

Expressing j+ explicitly, one finds

[ A+(x )g(y ) jD = ——i ~x
—z

~

——g+(y )+—f dz ~x —z
~

——E(y —z )r+g+(z )

[See Appendix A for the definitions of lit+ and g .] Hence

[A+(x ), 8 @(y )jD= —— x —
y ~

—— —r +i d i s(x —y— ) P+(y ) .
L m

2
(5.1)

Also

[A+(x ), g+(y )jD= i ~x——y ~

——f+(y ) .
L

(5.2)

This checks with our gauge condition

r+(i r 8 —m)/=0 —8 g = i r+g+—, —

{A (x ), (j g(y )j =[A (x ), 8 f +8 g j
= 8 tr—['—A (x ),f (y j

yields Eq. (5.1). Similarly, one gets

[A+(x ), g(y )jD= —i ~x
—y ——g(y )A ——f dz ~x

—z
~

——e(y —z )g(z )r
L — m L — +

and

[A+(x»4(y )r'jD

(5.3)

VI. CONCLUSIONS

Taking our results over to the quantum theory, Eq.
(5.4) implies

Finally, putting together Eqs. (5.2) and (5.3), one obtains

{A+ i ' j oD. (5.4) and Eq. (4.1) becomes
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2

{@( ), @(y )j=— y+
I

—y

—i—e(x —y )+ y
. m 5(x —y )

4 2

where the brackets now have the meaning of anticommu-
tators (we set A'= I), in agreement with the result of Ap-
pendix B. Interpreting g as (g y ), and projecting out
components yields

Explicitly,

x =-x, x =x+, x.y=x y +x y —
x& y& .+ — + — — +

The same orthogonal transformation is applied to the
Dirac matrices, who still obey

{r",r" l =2g„, ,

but with the new metric. This makes y+ and y singu-
lar.

{4+(x»0+(~ )I= — A+
2

2

{p (x ), 1( (y ){=— — lx —
y l

——A
4 2 2

Similarly, Eqs. (5.2) and (5.3) become

{~+(x )@+(y )l= — lx —
y I

——@,(y ),g L

[A+(x ) g+(y )]=—— lx —y

(y')'=O=(y-)' .

Since

(y ) =y, (y') = —y' (j=1,2, 3),

one gets

(y ) =y, (y ) =y, (y ) = —y" (k=1,2);

therefore, the matrices

We have thus recovered all the fundamental
(anti)commutators used in the literature. The point of
this paper was to illuminate their origin and provide a
rigorous derivation of their value by means of the
machinery of canonical quantization. In our view, these
achievements are worth the effort of carrying out this
procedure, which turns out to be significantly more com-
plicated than the spacetime version. Now that these
techniques are under control, they can be applied to any
other theory with coupled fermions, e.g. , Yukawa models
or QCD.

The only limitation of this work is that the fermion is
assumed to be massive. As is well known, ' massless fer-
mions in a null-plane frame have peculiarities of their
own, and the application of canonical quantization to this
case would require a different treatment altogether.

APPENDIX A: LIGHT-CONE COORDINATES

are Hermitian. The latter are also projection operators,
viz. ,

(A+) =A+, A+A+ =0, A++A = I .

Their action on Dirac spinors yields

Note that all the matrices A+, y+—have the same rank
since

+

V'2 '

Because of the projection property of A+, this rank must
be equal to one-half the dimensionality of the spinors,
viz. , two in four space-time dimensions.

In 1+ 1 dimensions, these matrices are rank one (this is
obvious since they are singular). It is interesting to note
that in this case the chiral matrix is

We present here our notations regarding light-cone
coordinates, along with a few simple properties of the
corresponding y matrices.

The light-cone time and "longitudinal" coordinate are
defined, respectively, as

x'+x' x' —x'
~2 ' — ~2

with the "transverse" coordinates x~—:(x ', x ) kept un-
changed. Hence in the space of four-vectors
x =(x+,x ',x,x ), the metric is

so that g+ and g are, respectively, the right and left spi-
nor projections. For example, in the representation

'V «2 3'S =O
3

0 3

where the o. are the standard Pauli matrices, one has
simply

0+ =
()

0 0 0 1

0 —1 0 0
g=O

O —1O
1 0 0 0

APPENDIX 8: FREE-FERMION ANTICOMMUTATOR

The free-fermion anticomrnutator at equal x+ has been
derived from the standard general formula in Ref. 16.
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Since [P(x),g(y) I is a function of (x —y), one can simply
consider

[g(x), f(0)I = f [(p+m )e '~"+(p —m )e'~"],p
(2') 2'

where co& ——(p +m )' . We have expressed the integra-
tion measure in the familiar space-time coordinates, but
it is straightforward to convert it to light-cone coordi-
nates:

f =fd p5(p —m )8(p )=fd p~f dp+dp 5 p —
+ 8

On the null plane,

2

(2n) —~ 4p+

where

pg+mP=p'r + ', r' p'r" —(k=l 2)
2p

Assuming antiperiodic boundary conditions in x +, one must take

+ +
e —'~ " =+inc(x ),

&
e -'~ " = —m~x+ '

( +)2

Then one gets easily

[P(x),f(y) I +,= i e(x ———y )5 (x,—yj )+—,'r 5(x —y )5 (x~ —y~)

—
—,'r+ Ix —y 1[m' —5",]5'(x,—y~)+ —,'e(x —y )r, Bj5 (x,—y~),

where explicit translational invariance has been restored.

APPENDIX C: GENERALIZED
DIRAC-BERGMANN ALGORITHM

The generalization of the Dirac-Bergmann formalism
needed to include Grassmann variables was worked out
by Casalbuoni. ' The basic definitions and properties are
as follows.

A Grassmann algebra contains bosonic (self-
commuting) and fermionic (self-anticommuting) vari-
ables:

AB =(—l) " BA,

where n =0 for a bosonic, and n = 1 for a fermionic vari-
able. Note that the product of two fermionic variables is
bosonic, and the product of a fermionic and a bosonic
variable is fermionic.

The left-derivative of a fermionic variable is defined as

and, for a product of those,

(g.
, 4. )—= —5..g. y. +5..y. q. . q. + +( —i)'5..q.

a

The generalized Poisson brackets (PB) is given by

OB, aB, aB, aB,+
Bg; Qp

' Bl/J

BB2 BB]
Bg
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aF aB aB aF aF aB aB aF
aq, ap' aq; ap' a4. ay a4. ay

aF, aF, aF, aF, aF, aF, ~F, aF,

aq, ap' aq, ap' a

where 8 denotes a bosonic and F a fermionic function of
the phase-space variables (the canonical momentum P
associated to g is of course fermionic). For example, if
the canonical Hamiltonian is

one obtains

BH

ap
'

BH

ap

namely, the correct Hamilton's equations (the Lagrange
equation of motion is P =aL /ag).

It follows from its definition that the PB has the prop-
erties

[A,B}=—
(
—1) " '[B,A},

[ A, B+C}=
[ A, B j+ { A, C},

[4»j = —
a

In the case of a regular system, Poisson's equation of
motion A =

[ A, H j yields

{A,BC}=(—1) ' B[A,C}+[A,B}C,
[ AB, C j =( —1) [ A, C}B+A [B,C},
(
—1)" [A, [B,C}j+(—1) "[B,[C, A}j

+( —1) [C, [A,B}}=0.
The Dirac-Bergmann algorithm applies to a Grassmann
algebra without modification from the purely bosonic
case, and the Dirac brackets enjoy all the properties list-
ed above for the PB's. The last step in the canonical
quantization consists in promoting the Dirac brackets (or
the PB in a regular system) between phase-space func-
tions A and B to a quantum (anti)commutator between
operators A and 8 according to the rule

[A,B}D~——[A,B j

ifboth 2 and 8 are fermionic, and

[ A, B}D~——[A,B]

otherwise.
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