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A spectral representation of stationary two-point functions is investigated on the basis of the
operator formalism in stochastic quantization. Assuming the existence of asymptotic noninteract-

ing fields, we can diagonalize the total Hamiltonian in terms of asymptotic fields and show that the
correlation length along the fictitious time is proportional to the physical mass expected in the usual

field theory. A relation between renormalization factors in the operator formalism is derived as a
by-product and its validity is checked with the perturbative results calculated in this formalism.

I. INTRODUCTION

Since its proposal by Parisi and Wu, ' the stochastic
quantization (SQ) method has been applied to various

problems in field theories. It has been shown that this
quantization method is indeed applicable to scalar, spi-
nor, vector, and tensor fields consistently and their results
are equivalent to those obtained by the conventional
quantization methods.

In this scheme, we introduce an extra degree of free-
dom t (fictitious time or fifth time) in addition to the ordi-
nary four-dimensional coordinates. Though the pertur-
bative treatments are much more involved, this extra de-
gree of freedom has brought us many interesting and ap-
pealing features of SQ which would not be available
through conventional quantization methods. In gauge
theories, neither a gauge-fixing procedure nor the intro-
duction of ghost fields is needed in principle. ' Further-
more, we can consider a gauge-covariant nonconservative
force as a kind of gauge-fixing term. In numerical simu-
lations, t may be regarded as a computer time and the
Langevin equation which is one of the basic equations in
this scheme is directly simulated to give us the desired
probability distribution in the equilibrium limit. ' The
application to a system with a complex action has also
been proposed. ' New invariant regularization methods
have been devised within this framework ' and applied
to many problems.

A few years ago, another interesting possibility which
is only accessible in SQ and fully utilizes its extra degree
of freedom was pointed out by several authors. ' They
found the possibility that energy gaps or physical masses
are obtainable, not only from the asymptotic behavior
with respect to the usual Euclidean coordinates of equal-
time" two-point functions, but also from the large-~ be-
havior of the stationary two-point functions with a time
separation ~. They demonstrated its validity using a solu-
ble potential model. On the other hand, the renormal-
ization scheme within the framework of SQ which is
necessary in the field-theoretic discussion has been formu-
lated. ' ' The discussion in Ref. 10 is based on the
operator formalism in SQ' which enables us to use sitni-
lar techniques to those developed in canonical field
theory. These frontier works have stimulated some peo-

pie to calculate renormalization factors and P functions
in scalar theory' and the O(N ) nonlinear o model' in
their own formalisms. ' Numerical simulation of the sta-
tionary correlation function has also been done and its
asymptotic behavior from the viewpoint of the
renormalization-group equation in SQ has been dis-
cussed. '

The aim of this paper is to investigate the structure of
the stationary two-point functions on the basis of the
operator formalism of Namiki and Yamanaka' to get a
sort of spectral representation of them. This representa-
tion may give us a much firmer basis for the time correla-
tion of two-point functions. After a brief review of their
operator formalism in SQ in Sec. II, we discuss the gen-
eral structure of two-point functions in Sec. III. In Sec.
III, an assumption of the existence of asymptotic fields
together with the boundary condition that the equal-time
correlation functions should be equal to the correspond-
ing ones in field theories in the equilibrium limit deter-
mines the structure of the physical space. And we obtain
a similar spectral representation of two-point functions to
that in conventional field theory. ' From this representa-
tion we can conclude that the exponential decay rate with
respect to ~ of the stationary two-point functions with a
time separation ~ is in fact proportional to the physical
mass squared. In Sec. IV, we examine the spectral condi-
tion in this formalism. First an adiabatic factor is intro-
duced to cut the interaction off in the remote past and
then the matrix element of the total Hamiltonian is calcu-
lated. The spectral condition that the total Hamiltonian
can be diagonalized by asymptotic fields is proved. Sec-
tion V is devoted to a summary and discussions. A rela-
tion between renormalization factors in the operator for-
malism is derived from the spectral representation of
two-point functions and checked with the previous per-
turbative results for renormalization factors. ' ' Its pos-
sible interpretation is also given. An appendix is added
to present an alternative proof of the spectral condition
using an operator formalism in SQ reformulated in Min-
kowski space. '

II. REVIEW OF THE OPERATOR FORMALISM IN SQ

In this section we briefly review the outline of the
operator formalism in SQ. Details are to be found in Ref.
13.
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&2)(X) & =0, &g(X)q(X') & =2)~5 (X—X'), etc. (2.2)

Consider a hypothetical stochastic process governed by
the Langevin equation with respect to the fictitious time
t. In the equilibrium limit t ~~, equal-time correlation
functions are to become correct quantum vacuum expec-
tation values. In this paper we exclusively consider a
system of self-interacting scalar field tI) for simplicity and
definiteness. Let S[P] be the corresponding classical ac-
tion. We set up the Langevin equation

P(X)= —t~ +rt(X ),5S

(2.1)
5S 5S

5$(X ) 5$(x )
y( ) y(x)

where X represents the five-dimensional coordinate (x, t )

with x being the Euclidean coordinates and the overdot
stands for the partial derivative with respect to t. The
noise ri(X) in the above equation has the Gaussian
white-noise properties

p„=fd'x . a„y(X)
aj(x) "

= fd'x ~(X)a„y(X) . (2.9)

As it commutes with F, P„ is time independent as well as
F itself. This operator causes spatial displacement for the
operator

a„A= [A, P„] .
2K

(2.10)

For canonical operators t))t and m, the Heisenberg equa-
tions are now written as

(tt(X)= [P(X), F]=n(X) a. —
2K

T

m(X) = [(X),F)=trn(X).=1 a 5s
a x 5$(x)

(2.11a)

(2.11b)

We can also define a momentum operator P„as in the
usual manner:

A positive parameter v which has no effect in the equal-
time correlation functions in equilibrium has been put in

the above equation to show its important role in renor-
malization schemes io, &2, t6

Now it is an easy task to derive a transition probability
distribution T which has the path-integral representation

or alternatively as

(t,(X )
—e Ft /2xy(x

—
)e Ft /2tt

—(Ft+P x)/2xy(0) (Ft+P x)/2tt

n(X}=e ' 'n(x)e '

(2.12a)

T[(t)2, t2lttt), t)]=f 2)/exp — f dt d x A

with
'2

A=-,' P+tt 5S

(2.3)

(2.4)

e
—

( Ft + P x ) /2 ~(x0 )e ( Ft + P x ) /2x (2.12b)

where (()(x ) =t)))(x,0), m(x ) =m(x, 0).
Next we introduce an abstract vector i/0& in the

Heisenberg picture to represent the probability distribu-
tion $0[/]:

(2.13)

m.(X)= . = ()))(X)+tr
aA 5s

5 X
(2.5)

and subject to the equal-time commutation relation

The resemblance between the above expression for T and
the path-integral expression of the transition amplitude
naturally leads us to the operator formalism in SQ. Re-
garding A as a "Lagrangian" density and replacing i%
with 2~, we define a momentum operator m canonically
conjugate to (})t,

y(x ) ly' & =y'(x ) ly' &,

&yl(t'& =5[/ —y'], f duly&&pl = 1 .
(2.14)

In this (() representation, the momentum operator n is ex-
pressed as

(2.15)

Here the P-diagonal complete orthogonal set lt)It & has the
following properties:

[ttt(X), vr(X')]O=2tt..5 (x —x') . (2.6) which leads to the important properties of n., F, and P„:
Time development of an operator A is governed by the
Heisenberg equation

& 77(X)=0, & F=0, & P„=0 (2.16)

—A= —A+ [A, F],d 8 1

dt Bt 2x
(2.7)

Note that due to the normalization condition for the
probability distribution $0[(t)], the equation & l t)'to &

= f d ttt $0[/] = 1 holds.

Time development of the probability distribution can
be realized as the Fokker-Planck equation in the
Schrodinger picture, while the Langevin equation is real-
ized by the Heisenberg equations (2.11). The probability
distribution P[ttt, t] is represented by an abstract vector

F=f d x[m.(X)P(X)—A]

=f d x —,'w(X) —m(X)tt
5$(X)

(2.g)

where F is the Fokker-Planck "Hamiltonian" and is
defined through the Legendre transformation of A:
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~ g), in the Schrodinger picture, (2.18)

and is subject to the Fokker-Planck equation
If we make both pictures coincide with each other at
t =0, ~g), is expressed as

2~ W—[0 t]=F[4, 2~—5i54]0[4 t]a
at ~q) eFt/2rig ) (2.19)

or, equivalently,

p 4 5 5 5S
5$(x ) 5$(x ) 5$(x )

&&4[4 '] (2.17)

In the operator formalism correlation functions are
given by expectation values of the chronological (time-
ordered) product of the corresponding field operators.
For example, the two-point correlation function
& P(X)P(X') ) can be written as

& P(X)P(X') ) = 8(t t') f—dy dP'P(x ) T[P, t iP', t']P'(x')P[P', t']+8(t' t ) f d—P dP'P'(x')T[P', t'~P, t )P(x )P[P, t]
=~(t —t') & P(x ) r(t, t')P(x') P), + ~(t ' t ) & P(x—') r(t', t )P(x ) lg &,

(2.20)

Here the representation of the transition probability dis-
tribution

p~i~Fp i' ——— d x x

with

Z (t t') e F(t (') 2a/. —

(2.21)

(2.22)

with

Q (x)= rt(x )+a- s

(2.25)

(2.26)

has been used. In a similar manner, n-point correlation
functions are obtained:

(2.23)

The equivalence of the stochastic quantization method
to the ordinary ones can be proved also in this operator
formalism. The equal-time correlation functions calcu-
lated from the above equation (2.23) converge to the cor-
responding vacuum expectation values in Euclidean field
theory in the equilibrium limit. To show this, it is neces-
sary to investigate the spectrum of the Fokker-Planck
Hamiltonian F to get an eigenvector belonging to the
lowest zero eigenvalue. Note that we must consider both
right- and left-eigenvalue equations of F, or in other
words, eigenvalue problems for both F and F,

Fiu, ) = —2trk, , iu, ), F ~v, ) = —2aA, ;~v;), (224)

because of the non-Hermite character of F. The equality
of eigenvalues for iu;) and ~v, ) in the above equations
follows from the fact that F can be made Hermitian by
the use of a similarity transformation

It is manifest that the eigen values A, , are positive
semidefinite and include the lowest zero eigenvalue.
Eigenvectors i u, ) and

~ v, ) are given by

~u; &=e ~i )t$ ~v;) =e i ), (2.27)

where ii ) stands for an eigenvector of H belonging to A,

Then the completeness and orthogonality relations be-
tween iu; ) and ~v, ) read as

g iu;&&v, i=1, &v, iu, &=5,, (2.28)

Notice that the lowest eigenstate ~0) has its P representa-
tion

c
(2.29)

with c = f d p exp( —S[p]). The equal-time n-point

correlation function is rewritten as

&y( xt) y( xt)) = &y( xt) y(x„,t)ii/io)

+1 Xn ~n ~ Un 0

= ye '"'fdyy(» ) y(x„)e """&Pln &

fdic'""/2&nlrb')&0[&'].

(2.30)
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In the t~~ limit, only the contribution coming from
the lowest eigenstate survives to give us the desired result

lim (P(x, , t )
. P(x„,t ) )

I~oo

=c ' Idge(x, ) . P(x„)e (~) . (2.31)

It is possible to construct a formal perturbation theory
based on the operator formalism. We can follow the
same procedure as in the usual field theory. Dividing the
Hamiltonain F into free and interaction parts, Fo and FI,
and going into the interaction picture, we get the general
perturbative expression ("Dyson formula" ) for correla-
tion functions. For details, see Ref. 13.

III. SPECTRAL REPRESENTATION
OF TWO-POINT CORRELATION FUNCTIONS

One of the great advantages of the operator formalism
in SQ lies in the fact that we can utilize various tech-
niques developed in canonical field theory owing to the
introduction of the n field conjugate to P. In the stochas-
tic diagrams generated by the original Langevin equation
which have only P fields as external legs, it is impossible
to define "substochastic diagrams" by cutting the internal
lines, ' ' because of their specific character ' which
may be attributed to the existence of two different kinds
of propagators in this scheme. This problem has been
resolved by the introduction of the m field. We can define
substochastic diagrams in the generalized stochastic dia-
grams with n. legs as well as P legs. In this formalism, we
can also discuss the asymptotic behavior of stationary
correlation functions (TP(X, ) P(X„)i/0) with t; tj-
being fixed.

From the formal resemblance of the operator formal-
ism in SQ to the conventional canonical formalism, one
may expect a similar form of the spectral representation
of the stationary two-point correlation function in SQ.
We can intuitively understand that the large time-
difference behavior of the two-point functions could
reAect the properties of the one-particle asymptotic
states. We should, however, notice that there are essen-
tial differences: We do not have a symmetry that could
provide us with a "five-dimensional dispersion relation, "
while the Lorentz invariance of the theory definitely
prescribes the structure of the spectral function in the
usual case. Furthermore, the meaning of the "time" is
quite different in both cases. We need, therefore, a de-
tailed analysis of the two-point functions within the
framework of SQ.

In this section the general structure of the stationary
two-point correlation functions is investigated on the
basis of the operator formalism described in Sec. II. It is
shown that the same physical mass as in the conventional

field theory can be extracted from their time correlation
length. This conclusion is closely related to the asymp-
totic condition in our formalism which is the subject of
Sec. IV.

Let us consider the two-point function
( Tp(X, )$(X2)ll(o) in the Heisenberg picture. Substitut-
ing P(X; ) by the expression (2.12a) we have

The assumption of nondegeneracy of the vacuum state of
F implies the equality ( =&c (Uol which, together with
the normalization condition of i/0) and (2.16), has been
used in deriving (3.2). Note that the stationary correla-
tion function only depends on ~=t, —t2 and x, —x2,
which is the manifestation of the translational invariance
in the large-time limit. Of course, the assumption of the
existence of a discrete and nondegenerate zero eigenstate
is essential at this point and care should be taken in deal-
ing with, for example, gauge fields.

Further, by the use of simultaneous eigenstates of F
and P„, l u;, s;p ) and

l v;, s;p ), satisfying

F
l u;, s;p &

= —2vA, , lu, ,s;p &,

F lu„s'p &
= —2s~;lu;, s;p &,

P„lu, ,s;p ) =2xip„lu;, s;p ),
Pt lv;, s;p &

= 2xip„l —
U, ,s;p &,

the right-hand side (RHS) of (3.2) is expressed as

(3.3)

d4p
4 U{) 0 Q]'~s~p Ul'~s~p 0 Qo

(2m )

'7 1P (x x )
1 2 (3.4)

Here the index s refers to quantum numbers other than i
and p. Setting ~=0 after differentiating with respect to ~,
we get

(3.1)

Here we have assumed t, =t2+~ t2 for simplicity and
used Eqs. (2.16). Inserting a unit operator
1 =g; lu; ) (U, into the above equation, we easily find

that the stationary correlation function is represented by
the "vacuum-to-vacuum" expectation value in the large-
time limit:

lim ( Tp(X, )p(X~ ) l $0 )
I2~ oo

d4
(U, ly(x, )

' Fy(x, )lu, )= —f "P, y( ly(UO)l s;up&(U, , pigs(0)luo)A. ,
e"" ""

2v (2m. )4
(3.5)
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The LHS of this equation can further be reduced to

1
««Ptx, ) [F, P(x~(] ««)2K

G(X],X2) —= »m & Ty(X] )7r(X, )it(], )
min(t l, t2 ) oo

d4
g( )f P g

—](, x ('p (x( —x~(

(2' );~o

6S
«« P(x, ( »(xz( —» ««)5 x2

A. Free case
(3.12)

= —
—,
'

& v(] (t((x] )]r(X2)luo)

K5 (X] X2)

where the stationary condition for
I uo &

(3.6)

n(x) —2K luo) =0,5S
(3.7)

g & vol&(0)lu;, s;p ) &v;, s;pl&(0)lu ) = ' (i&0)
S l

and the relation &vole(x)=t c '&n(x)=0 have been
used. Thus we can set

To get physical quantities from the above two-point
functions, it is necessary to clarify the structure of the
function p; and the spectrum of the Fokker-Planck Ham-
iltonian F. As the simplest case, let us consider the free
case. Though the exact expression for two-point func-
tions is known in this case, the procedure developed
below will be of help when we take interactions into ac-
count.

The explicit forms of the Heisenberg equations for ()I(

and m in (2.11) are

~ 1
[{t(X), F]]]=~(X)—K( —8'+ m 0 ){()(X),

(3.13a)

with the normalization condition

(3.8) 1
[]r(X),F(]] K( —a'+ma)~(X), (3.13b)

p,. =1,
iWO

(3.9)
where Fo is the free Hamiltonian

Fo = ,
' fd —x]r(x )[rr(x ) —2K( —8 +m o )()]((x ) ] . (3.14)

and the following expression of the stationary two-point
function is obtained:

D(X„X2)= lim & T((](X]){(((X,)l]I'j, &

min(t &, t2 )~ oo

Note that Fo can be written as a product of two operators
a(p, t) and a (p, t):

Fo= —
—,
' f d p a ( —p )2K(p +m 0)a(p ) (3.15)

4
p Kpl —

A, lv~ lp (x —x )
( 1 2

(2n. )";~p ~;
(3 10)

a(p, t)= f Ip(X) n(X)/[2K—(p. +m(])]I
X

In this expression, the contribution coming from the in-
termediate vacuum state has been omitted as in the usual
scalar field theory. The above expression shows the gen-
eral structure of the stationary two-point function, and
physical quantities are extracted from eigenvalues A. , and
the function p, . The positivity of p, can be shown using
the relation between lu, ) and lv, ) [see (2.27)] as follows:

x -'~'

a (p, t)= f ]r(X)e
d x

(2~)

(3.16a)

(3.16b)

These operators satisfy the equal-time commutation rela-
tion

Kp, =I](,, g & vol(]]((0)lu, , s;p ) & v;, s;p l(t((0)luo )

[a(p, t), a (q, t)]=2K5 (p+q)
and the commutation relations with Fo:

(3.17)

~&; y &v(]l{()(0)lu;,s;p &&u;,s;pie y(0)e lv(])

=A, g l&v, l{(](0)lu,,s;p &l'~0 . (3.1 1)
[ F(], a(p, t)]=—2—K (p +m(])a(p, t),
[ F(], a (p, t ) ]= 2K—(p +m O2 )a t (p, t ) .

(3.18a)

(3.18b)

The function p; can be considered as a sort of generaliza-
tion of the spectral function in conventional field theory.
Its connection with the ordinary spectral function will be
discussed below.

It may be worthwhile to note that the eigenvalues A, ,
and the function p, characterize not only the stationary
P-P correlation function as in (3.10) but also the station-
ary ()](-m correlation function in the form

Two operators a and a may be interpreted as "annihila-
tion" and/or "creation" operators depending on which
states, luo) or &vol, they act on. Note that the lowest
zero eigenstates of F„, luo), and &vol satisfy

a(p)luo) =0, &vola (p)=0 .

Then we have the n-particle state with momentum p„:
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~n, k„,s„;p &
=

which satisfies

n

a t(p, )~u, &

i=1,
XI;=I

(3.19)
and s„represents quantum numbers other than n„and
rn„. In the same way, the eigenstate of F0 or left eigen-
state of F0 also belonging to the eigenvalue A, „ is con-
structed:

Fp~n, k,„,s„;p ) = —2' k„~n, A,„, s„;p )

P„~n,k„,s„;p ) =2aip„~n, k,„,s„;p & .

(3.20a)

(3.20b)
(n, X„,s„;p) =(v,

~ a(p, ) . (3.22)

Here the eigenvalue k„ofF0 is parametrized by two real
numbers a„and m„as

k„=o.„p +m„

with the conditions

(3.21a) These bras and kets, after being properly normalized, are
orthogonal to each other,

a„~—,m„~ nmo (n & 1),2)
n'

1 m1=~o
A,0=0

(3.21b)

(n, X„,s„;p ~n ', k'„., s„', ;p')

=5„„5(p+p')5lA, „—A, '„)5ls„—s„'),

and form a complete set:

(3.23)

1=f 4 g f,dk, „f ds„n, A.„,s„;p)(n, A,„, „s;p~
=O " 0

=~uo)(vo~+ f f "deaf ds y f„(A,, s)~)n, A, s;p&, (n, X,s;p~ .
(2~)' n=1

(3.24)

A positive function f„()(,, s) has been introduced to take
the conditions (3.21a) and (3.21b) into account.

Now we are in a position to get the explicit expression
of (3.10). Substituting the summation over i in (3.10) by
the integration over 1 we have

4
p f co po ~

g) /p(x) x~)

(2~)'

and depends on p through the p dependence of A,

(3.21a) as is shown below in the free case. Taking the p
dependence of X (3.21a) into account, we can see that
there exists a function po(a, m ) defined by

po(k)= f "da f "dm 5(ap +m —k)po(a, m )
0 0

with the normalization condition (3.9):

Here po(A, ) is similarly defined by (3.8),

apo(A)=A f ds g f„(A,, s)(vo~g(0)~n, l, ,s;p)
n =1

X (n, A, ,s;p ~(t)(0) ~uo ),

(3.25)

(3.26)

f d&po(k}= f da f dm po(a, m )=1 . (3.28)
0 0 0

Note that owing to the above definitions of p0 and p0 and

the normalization condition, the function p0 cannot de-

pend on p . The above correlation function is rewritten
as

D(~ ~ )
—f P d "d z ' ~(aP'+m'))~Po(a, m )

l~ 2 (2') o 0 ap +m

The positivity of the integrand in (3.26) is explicitly seen from

n n

(vo~y(0)~n, l, ,s;p)(n, )(,, s;p~/(0)~uo) v() y(0) P a (p;) u() v() g a(p, )(t(0) u()

(3.29)

n n

uo e '(t(0) Q a (p, )e '
v v g a(p )$(0) u

n n= Q 21'(p; +m ) v Q a(p )(t(0} u
i =1 j=1

(3.30)
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P(0)= fd p a(p)+ a (p)
2a.(p +m o )

we find that only the one-particle state contributes to po
which is reduced to

p, (A, ) =Af, (A, )2~(p'+ m,') ~
(1,2.;p ~P(0) ~u, ) ~'

=Af, (A, )
+~o~

=5(p +ma —
A, ) . (3.31)

Then the well-known results for the stationary two-point
functions follow:

d p 1 —lp+ o)l I 'p(, —
&)

e
(217) p +ma

where the relation between a and a,
So y

—So
e 'a (p)e '=2m(p +mo)a (p),

has been used.
We can further calculate matrix elements of P in (3.26).

Rewriting P(0) as

B. Interacting case

In the usual field theory, the total Hamiltonian can be

diag onalized by means of asymptotic fields. These

asymptotic fields, though they are Heisenberg fields,
satisfy free field equations with the physical renormalized
mass term. Physical states are spanned by asymptotic
states and possible bound states.

In this subsection, we solve the eigenvalue problems of
F (3.3) to get eigenvalues A, , and investigate the structure
of the "spectral function" p, in (3.10) in the interacting
case. For this purpose we must find such a representa-
tion that makes the Hamiltonian F diagonal. As we have
already got vacuum states ~uo) and ~UO) even in the in-

teracting case [see (2.27) and (2.29)], we need to find an
operator whose commutator with F is proportional to it-
self. Then it would give us all eigenstates of F.

Recalling that the m field itself has satisfied this condi-
tion in the free case [see (3.13b)], and in the interacting
case its commutator with F is still proportional to itself
but with the P-dependent coefficient (2.11b), we are natu-
rally led to look for an operator 5. which is generated
from m by a similarity transformation U:

G(X X )=2~e(~)f P e
"' ' o'e"'"~ '~'

(2n )

(3.32a)
rr(X)=U '(t)4r(X)U(t) . (3.33)

(3.32b) The commutator between F and Fr is easily calculated

[4r(X), F]=U '(t)I [m(X), F]+[m(X),[U(t), F]U '(t)] j U(t)
r

=2aU '(t) I~a(X) +[4r(X), U(t)U '(t)] U(t) . (3.34)

This expression shows that if the similarity transforma-
tion operator U is so defined as to subtract nonlinear
terms in 5S j5$ (the interacting part of F), then %meets.
the requirement. The operator U should satisfy

$(X)=sr(X) x~( —8 +m —
R )$(X),

5.(X)=v„(—8 +m „)5(X),

(3.36a)

(3.36b)

5St
U(t)= — F,(t)U(t)= fd'x 4r(X) U(t)

2K 2K

in this limit. Quantities with subscripts 8 stand for re-
normalized ones. The operator U must satisfy

(3.3Sa) lim U(t)~1 (3.37)

or

~ 1 — 1 as,
U(t ) = — U(t )F,(t ) = U(t ) f d4x e(X )

2K 2K 5$(X )

(3.3Sb)

where quantities with tildes are similarly defined as in
(3.33).

To determine U(t) we must specify its initial value
which turns out to prescribe the asymptotic behavior of
fields. Here we assume, as in the usual field theory, that
the interaction Harniltonian FI is switched off in the re-
rnote past, and as a result, field variables are governed by
the free Heisenberg equations

and is expressed as

U(t ) = T exp — f dt'F, (t')
2K

=T exp — dt'FI t'
2K

(3.38)

where T is an antichronological ordering operator.
Here the limiting procedure (3.37) which implies

Q~(X)~P(X), 4rq(X)~5(X) as t~ —0O, (3.39)

should be considered as a weak limit, and we must intro-
duce an adiabatic factor to switch off the interaction in
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this limit. In the discussion below, however, we simply
assume (3.39) and explore its consequences. More careful
analysis concerning the asymptotic behavior is to be dis-
cussed in the next section.

It is worthwhile to mention that the relation f da f dm p(a, m )=1
0 0

(3.45)

Unlike in the free case, we cannot get the detailed
structure of p. However, the normalization condition
(3.9) or (3.28), i.e.,

U(t)F =F()(t)U(t)

or, in other words,

(3 40) and the equality at r=0,

D(X(,X~)~, ()= ( Tp(x()p(xi))FT, (3.46)

Ff P, n ]= U '(t )F,(t ) U(t ) =Fo[f,rr] (3.41)

is derived from (3.35). This means that the total Hamil-
tonian F can be diagonalized and has a simple form if it is
expressed in terms of asymptotic fields Fr and P. The
free Hamiltonian Fo takes the same form as in (3.14) with
renormalized quantities Kz and m& and is in fact time in-

dependent:

Fo=—,' f d—x[ m(X)[5(X)—2trR( —8 +m tt )(i}(X)]

where the RHS stands for the conventional two-point
function in the field theory, give us several important
properties of the stationary correlation function. The
usual spectral representation of the two-point function

( TP(x ( }ti}(xi) )FT

pF(m ),p.(„„)
(2m. ) o p +m

and the above equation (3.46) give us

=0.
+5(X)[fr(X) 2'„(——8 +m t()$(X)])

(3.42)
0 0 ap +m o p +m

Now we can follow the same procedure developed in
Sec. IIIA to construct a set of eigenstates of F0 which
also diagonalize F. It is easily shown that the stationary
two-point functions are expressed as

D(X„X2)=Z„f,f "da
(2m) o

2 p(a, m )
—rq(ap +m ))r)fX dm 2' 2e

ap +m

Xe
IP {X —X )

(3.43)

G(X„X2)=21~(9(r)f f da
(2~)'

( + )
X f "dm p(a, m )e

0

where pz is the conventional spectal function. After
changing the integration variable m ~m a and using
the uniqueness of the Laplace transformation, we obtain

Z, dap a, m a =p+ m . 3.49
0

Assuming the nature of the physical states as' '

pF(m )=Z~5(m m„)+oF—(m }, (3.50)

p(a, m )=Z, '[Z&5(a —1)5(m —mt()+o(a, m )]

(3.51)

where Z& is a wave-function renormalization constant
and 0.+ stands for contributions from continuum states,
we can determine the structure of p:

I 2ip (x —x )

(3.44)
with

where Z, =K/K„ is a renormalization constant for K.

The spectral function p is similarly defined as in (3.26)
and (3.27) and is a non-negative function. Here the p
dependence of the spectral function p is assumed to ap-
pear only through the eigenvalue of the asymptotic Ham-
iltonian F0, which implies that the total dynamics is as-
sumed to be completely prescribed by this asymptotic
Hamiltonian. This is only an assumption, but its con-
sistency is seen by proving the spectral condition in the
next section. Under this assumption, the spectral func-
tion p is a momentum-independent function by construc-
tion.

f dao(a, m'a)=oF(m') .
0

(3.52)

Note that the contribution to p from the one-particle
state is seen in (3.51) in the form of the 5 function which
is a consequence of the conditions (3.21b), and that the
structure of p derived from (3.49) implies that the one-

particle state defined by the operator N. has exactly the
same renormalized mass as that in the usual theory
(mR =m„).

Substituting p in (3.43) and (3.44) by (3.51), we finally
obtain

d p ip (xl —x2) t)It
—~&{p +m& )l~l ~

2 g (am ) —~&{ap +m )l~l

(2m ) p +mz ap +m
(3.53)

( +m )
G(X(,X2)=2m&8(r) f e ' '

Z&e + f da f dm o(a, m )e
(2m. ) 0 0

(3.54)
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with the normalization conditions (3.45) and (3.52), the
former being written as

Z&+ f "da f "dm o(a, m )=Z„. (3.55)

It may be worthwhile to stress again that under the above
assumption (3.39) concerning the asymptotic fields, the
exponential decay rate with respect to the fictitious time
of stationary two-point correlation functions gives us the
very mass we expect in conventional field theory. It is by
no means a trivial fact, though naively anticipated al-
ready in Ref. 10.

IV. SPECTRAL CONDITION

The asymptotic behavior mentioned in Sec. III clearly
needs a much more careful treatment. First, we must in-
troduce the adiabatic factor which allows us to consider
noninteracting fields in the asymptotic region. Second,
we must remember that the limiting procedure is taken in
a weak sense, that is, the equality holds between matrix
elements separately, not between operators themselves.
Here we try to show that the total Hamiltonian F is
indeed diagonalized by asymptotic fields (the spectral
condition) taking the above points into account.

If we introduce a naive adiabatic factor e ' ' to follow
the usual procedure to calculate the matrix elements of F
between eigenstates of Fo, we encounter a serious prob-
lem of divergent matrix elements. This problem has its
origin in the fact that the basic Langevin equation is a
diffusion-type one and every matrix element except for di-
agonal ones has an exponentially blowing up (or deca~-
ing) time dependence. So the naive adiabatic factor e
has nothing to do with controlling the exponentially in-
creasing contributions at It I

= ~, in contrast to the situa-
tion in conventional field theory where the oscillating
time dependence can be suppressed by this factor. For
our purpose, it is indispensable to find a way around this
divergence.

To get the finite results, let us suppose that the interac-
tion is confined to a finite region [ —T, t]. We introduce
the following adiabatic factor (plus an operator) g (t ):

that the second term reduces smoothly to zero in the
T~ ao limit (e & 0) and g(t ) satisfies

f (ti) it'
(

(@+k)t

erat

—eT)1

oo 6'+ A,
(4.2a)

dt'g(t')e ' = e"g ' 6+
(4.2b)

(alFlb ) =lim lim (a IF(t)lb),
0 T~oo

(4.3)

where (al and lb) are eigenstates of Fo belonging to ei-
genvalues —2K',, and —2K',b, respectively, and

F(t)=U(t)[F, +g(t)F, (t)]U '(t) . (4.4)

Here the similarity transformation operator is given by

U(t)= T exp — f dt'g(t')Ft(t')
2K

(4.5)

which leads to the following Heisenberg equation for an
operator 3:

—A=A+ [A, FO].
dt 2K

By the use of the relation

(4.6)

where t ~0 is assumed for simplicity. We can see from
these equations that potentially divergent terms such as

e "are completely canceled out owing to the presence
of the second term in g(t). The two limiting procedures
e~O and T~ ~ should be taken in such an order that
the T~a(- limit is followed by the @~0 limit after in-

tegrations over t. Only in this order, the relation

lim lim g(t)=1
@~0 T-~ oo

holds and we can recover the original dynamics.
Now the matrix element of the total Hamiltonian F is

defined by

dtg(t)=8(t+T) e I I e
e+d,

(4.1)

where e is an infinitesimal positive parameter and d,
stands for the total derivative with respect to t. Note

F(t)=F( —~)+f dt', F(t')t d
dt

=F0+ f dt'U(t')g(t')F, (t')U '(t'),

the matrix element of F(t ) is expressed as

(4.7)

(a IF(t)lb ) = —2&A.,5,(, + f dt'(a
I
U(t')g(t')Ft(t')U '(t')Ib )

= —2aA, ,6,(, + f dt, g(t, )(a IFJ(t, )lb )+ f '
dt, f dt, g(t, )g(t, )(a I[Et(ti), Ft(t()]lb )

'2
tl E~

+ — f dt, f dt, f dt, g(t, )g(t, )g(t, )(al[F,(t, ), [F,(t, ), F,(t, )]]lb)+—oo —oo —oc

(4.8)

Using the relations (4.2a) and (4.2b) we can easily calculate the lowest-order contribution:

f «(g(t()&alFt(t()l»= e ' &aIFt(0)l» (&.o—=&.—&~)
oo e+X.b

(4.9)
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Thus after eliminating the adiabatic cutoff we find that only the diagonal term survives to contribute to the total Hamil-

tonian, i.e.,

lim lim f dt, g(t, )(a ~Ft(t, )~b) =5,b(a ~Ft(0)~a ) .
g~P T—+ oo —oo

(4.10)

We subtract this contribution from the interaction Hamiltonian FI and define a new Hamiltonian F I which has no di-(1)

agonal matrix element. This subtraction causes the shift in eigenvalues of Fp,

—2al, ,~—2al., + (a ~Ft(0) ~a ) = —2~A, ',",
and we have

(a ~F(t) ~b &
= —2~X."'S.b+— llf «, f dt, g(t, )g(t, )(a [F',"(t,},F)~'(t, )]~b)+ (4.11)

The next-order contribution is similarly calculated to be

tl
dt& f dt2g(t, )g(t2)(a ~[F t"(t2), F t' '(t, )]~b )

(2@+A, b))t

,~, b (e+A,"„')(2 ,e+A,b'),
(e+X(")r —eTab

(e+ A,,"„')(e+A, ',")
(2~+X."b) )t (~+&"b) )i —~T

E'e E'e

(e+A, '„")(2e+A,',") (e+A, '„")(e+k,"')

X (a ~F t"(0)
~

n ) ( n F t"(0)
~
b )

(2e+A. b't
1 ee 1

2g+ kgb' p+ ~a'n
(a ~F t"(0)~n ) (n ~F t"(0)~b )a+ X(„'b)

„I&nlF I"(0)la & .
2K n~a ~an

(4.12)

It is easily seen that the T dependence only appears
through such terms as e ' even in higher-order terms,
which enables us to take T~~ without any serious
problems. Repeating the same procedure we arrive at the
conclusion that the total Hamiltonian F is diagonalized in
the space spanned by the properly renormalized basis of
the asymptotic Hamiltonian Fp.

Alternatively, we can reformulate the operator formal-
ism in Minkowski space to prove the spectral condition
using the naive adiabatic factor e ".(See Appendix. )

V. SUMMARY AND DISCUSSIONS

In this paper, we have investigated the structure of the
stationary two-point functions on the basis of the opera-
tor formalism in SQ. In the operator formalism, correla-
tion functions in the stationary state are given by vacuum
expectation values of T products of operators and the
techniques used in canonical field theory are available. In
deriving the spectral representation of the stationary
two-point functions, knowledge of the eigenvalues and
eigenstates of the total Hamiltonian is indispensable. We
have assumed the existence of asymptotic free fields.
This assumption which prescribes the structure of the
physical space, together with the canonical commutation
relations of P and n, the stationary condition for the vac-
uum state, and the boundary condition in the equilibrium
limit, has played an important role in the derivation of
the spectral representation of two-point functions (3.43)
and (3.44).

The assumption of the existence of asymptotic fields in
SQ which is an essential point in our formalism clearly
needs some interpretation. In conventional field theory,
the existence of asymptotic fields is required from the
physical background, i.e., the physical setup of the
scattering process. Although there is no such physical
situation in the stochastic process with respect to ficti-
tious time, the notion of noninteracting fields seems
necessary in considering the spectrum of the total Hamil-
tonian even in this case. In the usual terminology, the
asymptotic fields considered here are in fields. We may
imagine the "physical" situation as follows. In the re-
mote past, there is no interaction and field variables are
subject to free field equations. As t proceeds, the interac-
tion is turned on adiabatically and in the t ~ ~ limit the
quantum field theory is reproduced irrespective of the ini-
tial distribution go[/]. And what has been shown in this
paper is that if we assume the existence of such an
asymptotic field, then it should satisfy the free Heisen-
berg equation with the same physical mass expected in
the usual field theory. The exact expression of two-point
correlation functions in the O(X) nonlinear o model in
the large-X limit which has essentially the same form as
(3.43) seems to support our assumption about asymptotic
fields in this scalar field case. Of course, whether we can
expect asymptotic fields or not depends on the details of
the dynamics and is an important problem to be ex-
plored.

To prove the spectral condition, we have had to choose
the special adiabatic factor (4.1). Any other choices
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would result in divergent matrix elements of the total
Hamiltonian due to their exponentially blowing up time
dependences. This fact implies that we have very small
leeway in which to achieve adiabatic switchings in dissi-
pative systems. This may be an origin of the difficulty in
the analytic continuation between the Euclidean space
formulation and the Minkowski one. However, we have
only assumed its existence in the Appendix where the
naive adiabatic factor e '~' is shown to be sufficient to
prove the spectral condition. There is another comment
in connection with the proof given in the Appendix. The
limiting procedures should be taken in such an order that
the imaginary part of the mass is first set equal to zero
followed by the ~t~~~ limit. If the order were re-
versed, we would encounter the problem of divergent ma-
trix elements.

One of the conclusions reached here is that under the
assumption mentioned above the physical mass can be
derived from the correlation length along the fictitious
time direction of the stationary two-point functions. To
extract the physical mass, we only have to integrate them
over x and to consider their exponential decay rates:

f —~ m'~~~
d x D(x&,xz) — e

I~i~~ m~2

2

4XGX1 L2 —2 Rzbe R R

7 ~ oc

(5.1)

(5.2)

d p 1 &R(p +mR )~~~

(2m. ) p +m~
(5.3)

This property has already been anticipated and numeri-
cally investigated in the frontier works ' and in the re-
cent analysis based on the renormalization-group equa-
tion. ' It is also consistent with the exact solution of the
O(F) nonlinear 0 model in the large-5 limit. The spec-
tral representation explored here justifies their anticipa-
tion and gives a firmer basis to the time correlation of sta-
tionary correlation functions in SQ. To get the physical
mass m& from the exponential decay rate in the numeri-
cal simulation, however, there remain some problems to
be clarified. For example, the uniqueness of ~„which is
one of the crucial points in numerical investigations must
be proved. But if we approve the assumption about
asymptotic fields mentioned above, the consistency of the
theory seems to require the uniqueness of ~„. To deter-
mine the value of ~z we need much more detailed infor-
mation about the physical content of the underlying
asymptotic theory.

As a by-product, we get a relation between renormal-
ization factors from the spectral representation. Because
only asymptotic fields P and 5 have one-particle state
contributions to two-point functions, we can extract them
from (3.53) and (3.54) to obtain

D(X, ,X )—:lim(TQ(x, )p(x )~1( )

where field variables are renormalized as

y(x)=QZ, ((,(x), ~(x)=&z.~, (x) (5.5)

and the asymptotic conditions (3.39) are assumed. Recal-
ling that the asymptotic fields are free fields and subject
to the same equal-time commutation relations as (2.6)
with ~ being replaced by aa =a/Z„, we are led to the re-

lation

QZ&/Z„= 1 (finite) . (5.6)

The notation used in this paper is slightly different
from those used in Namiki and Yamanaka' and in

Okano and Schulke. ' In their notation, the above rela-
tion is written

Z„'QZ&/Z =1 (finite), (5.7)

where Z,'stands for Z,, in Ref. 10 and Z& in Ref. 15. We
can easily check the validity of this relation using the ex-
plicit expressions for Z factors calculated in the lowest-
order perturbation of P theory' and of the O(X) non-
linear 0. model. '

We may understand the above equality between Z fac-
tors as follows. In our notation, the ~ field is given by
(2.11a). As far as the equal-time commutation relations
are concerned, the m. field may be considered essentially
equivalent to the (t field. The P field usually gets the
same renormalization factor as that for (t itself and the
relation (5.6) follows. The equality (5.7) is understood
following the same line of thought if the appropriate
translations are made between different notations.
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APPENDIX

Here an alternative proof of the spectral condition is

given using a Minkowski-space formulation of the opera-
tor formalism in SQ.

To begin with, we briefly describe SQ formulated in

Minkowski space. As a basic equation we set up a com-
plex Langevin equation

G(X„X )=—lim( Tp(X, )Fr(x )~1( )
5S

P(x) =is +g(x), (A 1)

d4=2.„e( )v'z, /z. f d P„, """"
(2m )"

(5.4)

where x in L stands for the Minkowski coordinates and

S~ is the Minkowski action corresponding to S in (2.1).
The Gaussian white-noise ri(x) is assumed to have the
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5 5
5$(x ) 5$(x ) 5$(x )

(A2}

ISMIt is manifest that the Feynman measure e is nothing
but the stationary solution of the effective Fokker-Planck
equation.

Now we can formulate an operator formalism on the
basis of the above Hamiltonian Fwhich is rewritten as

F=—,
' x~x m x +2at (A3)

with a momentum operator m. We assume here the same
equal-time commutation relations between P and m as in
(2.6). Although the above Hamiltonian resembles that in
the Euclidean case (2.8), the presence of i in it results in
an essential change in our previous argument. It is very
difficult to make F Hermitian by similarity transforma-
tions. Its eigenvalues are complex in general.

First, consider the free case. In this case the free Harn-
iltonian Fo is expressed as

Fo= — pa —
p 2~p —mo a p (A4)

same statistical properties as in (2.2). The Fokker-Planck
equation has been derived from the complex Langevin
equation (Al) and its explicit solution in the free case has
clarified the important role of the damping factor in SM
in the large-t limit. ' Though the Fokker-Planck equa-
tion directly derived from (A 1) takes a somewhat compli-
cated form, the effective Fokker-Planck equation which
governs the time development of a complex distribution
defined for functionals of a real P field takes a simple
form with an effective Hamiltonian: '

eigenstates of Fo belonging to eigenvalues

—21ri A„,= 2—1r i (a„p m—„) (a„&0) (A6)

P(X)= rr(X)+i tr (
—8 —m )P(X),

5(X)= is—„(—8 —mz )n(X) .

(A7a)

(A7b)

These fields are connected to the Heisenberg fields
through a similarity transformation

U(t ) =T exp — f dt'e '~' ~Ft(t') t ( ao, (A8)
2K

where the naive adiabatic factor e '' has been intro-
duced. Then the matrix element of the total Hamiltonian
F is given in the limit

(a ~F ~b ) = lim(a ~F(t)~b ),
e-~0

(A9)

where (a
~

and ~b ) are eigenstates of Fo belonging to ei-
genvalues 2tri A, —and , 2Iri —Ab, res, pectively, and

F(t)=F,(t)+e "F,(t)
=U(t)[F, +e '~'~F, (t)]U '(t) . (A10)

Using the same techniques as in Sec. IV we can easily see
that the lowest contribution to (a ~F b ) turns out to be
diagonal in the a~0 limit (A.,b

=—A., —
A, b ):

are similarly constructed as in (3.19) and (3.22). Note
that A. , = a(p —m o ).

Let us consider the interacting case. We assume the
existence of asymptotic fields satisfying the free Heisen-
berg equations

Here operators a and a similarly defined as in (3.16)
satisfy the equal-time commutation relation (3.17) and an
infinitesimal imaginary mass is understood to be in mo.
From the commutation relations of these operators with
Fo,

(e+IA, b)t

ef dt'e" (a ~Ft(t')~b ) = (a ~Ft(0)~b )—oo E'+ l A,~b

~5,b(a Ft(0}~a) .
a~0

(Al 1)

[Fo, a (p, t ) ]= —21' i(p —m 0 )a (p, t ),
[Fo, a (p, t)]=2m t'(p mo)a t(—p, t),

(A5) After a similar subtraction of the diagonal part of FI, we
can calculate the next-order contribution and get

f dt, f dtze ' ' (a~[Ft"(tz), F~ t(t, )]~ b) ~5b g „(a~Ft"(0)~n )(n~Ft"'(0)~a) . (A12)

Repetition of the above procedure proves the spectral condition in Minkowski space.
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