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The late-time evolution of binary systems of compact objects (neutron stars or black holes) is

studied using the Damour-Deruelle (post)' -Newtonian equations of motion with relativistic

corrections of all orders up to and including radiation reaction. Using the method of osculating or-
bital elements from celestial mechanics, we evolve the orbits to separations of r =2m, where m is

the total mass, at which point the (post)' -Newtonian approximation breaks down. With the orbits
as input, we calculate the gravitational wave form and luminosity using a post-Newtonian formal-

ism of Wagoner and Will. Results are obtained for systems containing various combinations of
compact objects, for various values of the mass ratio m I /m2, and for various initial values of the or-

bital eccentricity.

I. INTRODUCTION AND SUMMARY

Binary systems containing compact objects, black holes
or neutron stars, which approach a state of coalescence
because of gravitational-radiation damping have recently
been the focus of increased attention as promising
sources of gravitational waves, especially for beam
gravitational-wave detectors, such as the proposed
Caltech-MIT Laser Interferometric Gravitational Obser-
vatory (LIGO). The gravitational waves emitted in the
late stages of the evolution of such systems have charac-
teristic amplitudes of h =10 out to 100 Mpc, and can
have frequencies in the kHz range, that increase as the
orbital period decreases by virtue of the gravitational-
radiation reaction that leads to the coalescence. ' Stra-
tegies have been studied for extracting the characteristic
"chirp" signal from noisy data in an array of detectors,
and using the signal to obtain such information as the
source s direction, its characteristics, and its distance.

As early as 1963, Dyson considered the problem of
two coalescing neutron stars, estimating the energy emit-
ted in gravitational waves and the characteristic frequen-
cy. The problem was revived by Clark and Eardley, who
considered in some detail the effects of tidal disruption,
mass stripping, neutrino and gravitational-wave emission,
and the frequency of occurrence of such events. The or-
bital evolution of the system was estimated using
Newtonian theory together with the quadrupole approxi-
mation for gravitational-wave energy loss. Lattimer and
Schramm treated the case of black-hole neutron-star
binaries, focusing on the tidal disruption of the neutron
star and the ejection of matter into the interstaller medi-
um. Here, the orbital motion was described using the ap-
proximation of a test body on a black-hole spacetime, to-
gether with a relativistic formalism for analyzing tidal
effects.

The rate of occurrence of such coalescences is uncer-
tain, but the estimates are high enough to be interesting.
Clark, Van den Heuvel, and Sutantyo estimated three

neutron-star binary coalescences per year out to 100-200
Mpc, based on observations in our own Galaxy. The pos-
sible formation of dense clusters of neutron stars and stel-
lar mass black holes in galactic nuclei may lead to a
number of annual coalescences out to the Hubble dis-
tance. A cosmological distribution of binary black holes
representing the dark matter has also been proposed, as
have supermassive black-hole binaries formed in the
coalescence of galactic nuclei. One firm source is known
for future observations: the binary pulsar is predicted to
decay and coalesce in =10 yr. ' In view of the impor-
tance of these sources to strategies for gravitational-wave
observatories, Thorne' has urged that many of these rate
estimates be carefully restudied.

Their importance also motivates a careful study of the
orbital evolution and gravitational-wave emission from
coalescing binaries. One approach to such a study is to
use the full machinery of numerical general relativity, to-
gether with hydrodynamics, in the case of neutron
stars. " To date, only limited progress has been made on
this front: head-on collisions of black holes and neutron
stars have been analyzed, ' but these are expected to be
rare events compared to coalescence following the decay
of a binary orbit. Oohara and Nakamura' treated
coalescing, orbiting neutron stars using a Newtonian
three-dimensional (3D) hydrodynamics code, with an ini-
tial configuration of two spherical stars in contact.
Blackburn and Detweiler' studied the late stages of
binary orbiting black holes using an approximate initial-
value formulation, and a quasistationary assumption. A
full numerical treatment of the problem may be several
years in the future.

Our approach is to use approximate equations of
motion based on an assumption of weak interbody gravi-
tational fields and slow orbital motions, known as the
post-Newtonian approximation. ' However, in order to
evolve a binary system as close to coalescence as possible,
where the interbody gravitational fields may not be so
weak, and where the orbital speeds may not be so small
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compared to the speed of light, we must use equations of
motion carried to the highest practical order of approxi-
mation, in order to achieve some measure of reliability.
Roughly speaking, the post-Newtonian approximation in-
volves an expansion of the corrections to Newtonian
gravitational theory in powers of e=(m /p) =U, where m
is the total mass of the binary system, p is a measure of
the orbital separation, and U is the orbital velocity. (We
use units in which 6 =c =1.) Schematically, the equa-
tions of motion have the form
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where x and r=~x~ are the vector and distance between
the two bodies. The first term in square brackets
represents the Newtonian acceleration, the second term
O(e) represents the post-Newtonian corrections, the
third term O(e ) represents the post-post-Newtonian
corrections, the fourth term O(e ) represents the dom-
inant gravitational-radiation-reaction effects, called
(post) ~ -Newtonian terms, and so on.

The two-body problem in general relativity has a long
and tortuous history, ' but following the discovery of the
binary pulsar in 1974 and the report of apparent
gravitational-radiation damping of its orbit in 1978, a sys-
tematic effort was made by many groups to obtain ap-
proxirnate two-body equations of motion which included
the effects of radiation reaction, which could treat com-
pact objects such as neutron stars as well as noncornpact
objects, which relied on approximation methods in which
the errors could be controlled or estimated, and that were
free of ad hoc assumptions, such as the use of "point"
masses. Of the many different, though equivalent, equa-
tions of motion that have emerged from these programs,
we have adopted those developed by Damour and
Deruelle, ' ' which contain all the corrections through
radiation-reaction (post) -Newtonian order in a con-
sistent manner, and which are applicable to neutron
stars. With more confidence than rigor, it is believed that
they also apply to black holes. The principal restriction
is that tidal effects are ignored (the Damour-Deruelle
equations also contain terms due to spin, but these are
not included in our analysis at present). In the absence of
a full 3+1 numerical integration of Einstein's equations,
these are the most accurate and self-consistent equations
for the evolution of such systems available at present.

We convert the Damour-Deruelle equations of motion
to a set of first-order differential equations (Lagrange
planetary equations) for the six "osculating orbital ele-
ments" that specify the Keplerian orbit that is tangent to
the true orbit at the moment in question. ' Of these, the
orbital inclination and angle of ascending node are con-
stant. We evolve the eccentricity e, angle of pericenter co,

and semilatus rectum p [related to the usual semimajor
axis by p =a(l —e )], all the way to zero separation, in
principle. The nature of the system being treated deter-
mines the point at which we must terminate the evolu-
tion.

We have found that, when the post-Newtonian correc-
tions, of order m /p become comparable to the eccentrici-
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FIG. 1. Evolution of e, p/m, and r/m for equal-mass quasi-
circular orbit, plotted against P/2ir=number of orbits and
against time in units of 100m. Initial condition is p; =25m. Re-
sidual oscillations reAect approximate nature of quasicircular
condition for e; [cf. Eq. (3.5)].

ty e, the osculating element description of the orbit can
violate one s Newtonian intuition. For instance, to post-
Newtonian order, a circular orbit (r =const) does not
correspond to zero eccentricity, instead, is an orbit with
fixed e and p, with e and the periastron angle given by

e =(3—Iu/m )m/p+O((m/p) ), tu= —m+P, (1.2)
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FIG. 2. Quasicircular relative orbit for equal masses.
Marked points denote separation in units of m. Around r =7m,
orbit enters fina "plunge. "

where p is the reduced mass of the system and P is the or-
bital phase. Notice that the periastron advances at the
same rate as the orbit. Thus the system is in a state of
"perpetual apastron" (P —co =m. ). To (post)
Newtonian order, Eqs. (1.2) are suitably corrected, and p
decreases because of radiation reaction. We show that
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any initially noncircular orbit evolves toward such a
"quasicircu ar or1 orbit" on a radiation-reaction time scale.

The effects of the higher post-Newtonian terms are
most dramatic for black-hole binary systems, since tida
effects are not expected to be important until the separa-
tion is of the order of the sum of the Schwarzschild ra ii
of the holes. (In the harmonic coordinate system which

th S h arzschild radius is m instead of 2m. )

For a quasicircular orbit of two equal-mass blac o es,
for example, with p =25m initially, the evolution of r and
e and of the relative orbit are shown in Figs. 1 and 2. t
a separation o arounf ound 7m the bodies enter a final orbit
in which they "plunge" toward each other.

The gravitational radiation emitted by the system is
determined using the post-Newtonian gravitational wave
forms derived by Wagoner and Will, ' which contain the
1 d' "quadrupole formula" terms, and the first post-ea ing
Newtonian corrections thereto. By ana ogy wi q.

(1.1), these wave forms have the schematic form

h,, =(2plR )[O(e)+O(E )+O(E )+ . ], 1.3

where R is the distance between the observer and the
binary system. Although these formulas are formally not
as accurate as the orbit, we expect them to give a good
semiquantitative picture of the radiation, and of the secu-
lar evolution of the wave-form shape and frequency. Fig-
ure 3(a) illustrates the X polarization gravitational wave
form emitted along the orbital axis by the evolution o
Figs. 1 and 2. The changing frequency of the wave form,
leading to the characteristic "chirp" signal, can be seen.
The gravitational luminosity is also obtained from the
Wagoner-Will post-Newtonian formalism. Approximate-
ly 0.3% of the rest mass of the system is emitted by the
time the separation has reached 9m where the approxi-
mation for the luminosity was deemed to break down.
We also study the evolution and radiation from a quasi-
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circular orbit of two bodies with the mass ratio 10:1. The
corresponding wave form is shown in Fig. 3(b). Figure
3(c) shows the wave form of the late decay of a system of
two equal masses which has been captured into an eccen-
tric orbit through gravitational-radiation damping, with

an initial value of p of about 40m. The effect of the ec-
centricity is seen in the structure of the wave form.

The remainder of this paper provides the details of the
method and further results. In Sec. II we summarize the
Damour-Deruelle (post) ~ -Newtonian equations of
motion and the Wagoner-Will post-Newtonian gravita-
tional wave-form formalism, and evaluate the importance
of tidal effects. Section III treats the evolution of the or-
bits and Sec. IV treats the gravitational radiation emitted.
Section V contains concluding remarks. In Appendix A
we study in detail the evolution of generic orbits toward
the quasicircular state described by Eq. (1.2), and in Ap-
pendix 8 we estimate the effect of tidal dissipation in
black holes.

II. BASIC EQUATIONS FOR ORBITAL MOTION
AND GRAVITATIONAL RADIATION

A. Damour-Deruelle equations of motion

We adopt the equations of motion for two condensed
bodies with all contributions up to and including the
(post) Newtonian, or radiation-reaction terms,
developed by Damour and Deruelle. ' ' They can be
written schematically as

cut the evolution off at states, which depend on the na-
ture of the two bodies, beyond which tidal effects must be
included or the approximation breaks down.

To discuss the expected accuracy of these equations in
describing coalescing binaries, we must distinguish be-
tween dissipative and nondissipative effects. The even-
order post-Newtonian corrections in Eq. (2.1) produce
nondissipative effects, such as periodic perturbations of
the Newtonian orbit. Since the P N correction is includ-
ed, the errors are of order e (Th. ese terms also produce
nondissipative, but secular effects, such as the periastron
advance, but these are not central to the present discus-
sion. ) The odd-half order terms, such as the P ~ N terms,
produce damping. Over an orbital time scale, these terms
produce corrections of order e, but since they are secu-
lar, they can ultimately produce a deviation from the ini-
tial fixed Newtonian orbit that is of order unity, if in-
tegrated over a dissipative time scale proportional to
e . Therefore, although formally the error in the dis-
sipative term in the equation of motion is of order e
(the first odd-half-order term ignored), the relative error
in such damped quantities as the orbital separation after
a dissipation time scale will be of order e.

We now convert the two-body equations of motion
(2.1) to an effective one-body problem. From the
Damour-Deruelle equations one can derive an integral of
the motion to post-post-Newtonian order, which can be
taken as the center of mass of the system. Choosing a
coordinate system with its origin at this center of mass,
we can change variables to a "relative" coordinate
x=—x, —x2 using the equations

a, =d x, ldt x, =[ m/2m+( r51m/2m )(v —m/r)]x,
(2.2)= —(m2/r )n

+(m2/r )In[(PN)+(P N)+(P ~2N)]

+v[(PN)+(P N)+(P N)]), (2.1)

where n is the unit vector from body 2 to body 1, r is the
separation, and v is the relative velocity. The leading
term is the usual Newtonian contribution, and the post-
Newtonian and higher contributions are represented by
the notation P N. The equation for a2 is found by inter-
changing subscripts 1 and 2 and changing the sign of n
and v in the equation for a, .

These equations are an expansion in the small parame-
ter e=v =m /r. As this parameter approaches unity the
equations become invalid. Furthermore, the derivation
of the equations assumed that tidal interactions could be
ignored, so that there is an "effacement" of the internal
structure of the bodies, whose consequence is that their
motions depend only on their masses. However, as the
bodies approach each other, tidal effects will play a role.
These effects are discussed in Sec. IID. The Damour-
Deruelle equations do include terms involving the spin of
the bodies, but those terms also do not become important
until the bodies are close to each other. Thus we shall
treat the idealized problem of two effaced compact
masses in mutual orbit and will evolve the system, at least
formally, to infinitesimal separation. When we apply the
results of our idealized analysis to real systems, we shall

x2=[ —m, /m +(rt 5m l2m )(v —m lr )]x,
where we define m =m, +mz—, p=—m, mz/m,
5m =m, —m2, g—=pjm, r —= ~x~, x=rn, v—=v, —vz.

For our purposes, only the post-Newtonian corrections
are needed in Eqs. (2.2), since the Newtonian acceleration
is automatically expressed in terms of x, and the change
of variables is needed only in post-Newtonian and higher
terms. By taking a time derivative of Eqs. (2.2) and using
the Newtonian equations of motion in any post-
Newtonian terms, one can obtain analogous transforma-
tions for the velocities.

Using the transformations defined above, we obtain the
relative acceleration

a=a& —a2=(m jr )[(—1+ 2 )n+Bv], (2.3)

where A and B represent post-, post-post-, and (post)
Newtonian correction terms. Writing A —= A, + A 2

+ A s /2 and B—=B, +B2+Bsjz we have

A, =2(2+ g )
——(1+3g)u + er-
r 2

'2

A2 = ——(12+29') — —g(3 —4g)u
4 r

(2.4a)

8 2
q(1 —3g)r + —g(3 —4g)u i

+ —g(13—4q) —u +(2+257)+2g ) r', (2.4b)—
2 r r
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8 m. 2 17m
A =—g—r' 3v+5/2 3 r

B,=2(2 —g)r',

(2.4c)

(2.4d)

definitions

x'=r cosf,
y'=r sing,

(2.5a)

(2.5b)

B~ = r' —q(15+4')U (4—+41'+ gg~)—
2 r

—3q(3+2m])r

8 m 2 m8 2= ——g—v +3—5/2

where an overdot denotes d /dt.

(2.4e)

(2.4f)

z'=0, (2.5c)

p/r —= 1+e cos(P —co),

r —= (m /p)' e sin(g —a&),

r g= (m—p)'

(2.5d)

(2.5e)

(2.5f)

where p is the angle in the orbit from the ascending node,
p =a(1—e2), and the relations between the primed and
unprimed coordinates in terms of i and 0 are

B. Osculating orbit elements
and the Lagrange planetary equations

Viewing this as a Newtonian orbital problem with per-
turbations suggests using the method of osculating orbital
elements from celestial mechanics' (for a description in
terms of an alternative set of orbit elements, see Ref. 21).
The basic picture is the following: at any given instant
one can find a Keplerian orbit that is "tangent" to the
true orbit in the sense that the position and velocity of
the particle on the true orbit coincide with the position
and velocity of the tangent Keplerian orbit at that mo-
ment. Such a Keplerian orbit is called an "osculating or-
bit." At a subsequent instant the actual orbit will, in gen-
eral, be tangent to a different Keplerian orbit. Thus, as
time advances, the orbital elements for the osculating or-
bit will change smoothly.

A general Keplerian two-body orbit is uniquely
specified by six parameters (see Fig. 4): i, the inclination
of the orbit relative to a reference plane, 0, the angle to
the line of ascending node, co, the angle between the line
of node and the pericentric line, a, the semimajor axis e,
the eccentricity, and T, the time of pericentric passage.

The position and velocity are then found from the

z'

x =—x'cosQ —y'sinQ cosi+z'sinQ sini,

y =x'sinQ+y'cosA, cosi —z'cosQ sini,

z =y'sini+z'cosi .

(2.6)

r cosP
( )1/2

r sing
(mp)' sini

2a
a = — [eR sin(g —co)+(p/r)S],

( mp)1/2

di/dt = (2.7a)

(2.7b)

(2.7c)

e=(p/m )'/ IR sin(P —co)

+[e(rIp)+(1+r Ip)c so(g co)]S), —

(2.7d)

cia=(p/m)' [ —R cos(l(t —t0)+(1+r/p)sin(l(t —co)S

e(r/p)co—ti sin(l( —co) W], (2.7e)

m T=a [2r —(p /e)cos( f co)—
—3(m Ip)' e(t —T)sin(g —co)]R

If we now view these equations as a change of variables
from x and v to i, 0, co, a, e, and T and substitute into the
original perturbed problem, we find a set of equations for
the time derivatives of the osculating orbital elements,
called the Lagrange planetary equations. Resolving the
perturbing acceleration into a radial component R, a
component S perpendicular to R and in the direction of
advancing g, and the component W, perpendicular to the
orbital plane, we can rewrite the Lagrange planetary
equations as

+(a/e)[(r +p)sin(l( —co)

—3(mp)' e(t —T)/r]S . (2.7f)

BIT

X

FIG. 4. Osculating orbit elements. Orientation of osculating
orbit in space is determined by i, 0, and co. In orbital plane, os-

culating ellipse is determined by a and e.

Notice that co can becomes singular for e =0. This prob-
lem can be avoided by making the change of variables
a=e coscu, P=e simo and determining the evolution of a
and P.

In the problem considered here, the perturbing ac-
celeration is a linear combination of n and v, so that
8' =0, and the orbital plane is fixed (di Idt =df) /dt =0).
We therefore choose the orbital plane to be the x-y plane
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x = r(e„cosP+ easing), (2.8a)

and the line of nodes to be the x axis. We then have g=P
(P is the usual polar angle), and the definitions de m= A sinf +2

dP p

1/2

B(e+cosf ),
1/2

(2.9b)

v=(m/p)'i [—e„(sinP+e since)+e (cosP+e costa)],
m

e = —A cosf+2
db p

B sinf, (2.9c)

(2.8b)
or the equivalent set

p /r = 1+e cosf,
r =('m /p)' e sinf,

2y —
( )

I/2

(2.8c)

(2.8d)

(2.8e)

have

'2
d(a/m) a m

m p

m+
p

1/2

B(1+e +2e cosf )

(2.9a)

where f=P co. —In addition we
R = ( m /r )( A + r'B ) and S= ( m /r )PB.

With the use of Eq. (2.8e) for P to change dependent
variables, our Lagrange planetary equations are then

d (p/m)
dP m

1/2

B, (2.10a)

da m= A sing+2
dP p

1/2

B(a+costI)), (2.10b)

1/2

(2.10c)
dP = —A cosP+2 — B(P+sinP) .

m

dP p
Since the time of pericentric passage T amounts to an ini-
tial choice of time, we shall not consider it further.

When the definitions of x and v [Eqs. (2.8)] are substi-
tuted into the expressions for A and B, these equations
become coupled first-order differential equations for the
variables e, co, and p, given by

2

(3—g)sinf +(5—4g)e sin2f + [(56—47')sinf —3g sin3f ]
8

—,'(36+73' —8' )sinf +(11+31'—3q )e sin2f

m

15 p

2

+ [(60+245' —64ri )sin3f +(92+181g—32ri )sinf]
16

3

+ [(2+25'—16' )sin4f +4(3—1 lg —10' )sin2f ]
8

+ ~ e [15(1—3g)sin5f —3(73+53')sin3f —2(477+161')sinf ]
128

5/2

[192cosf+16e(19+20cos2f)+2e (91cos3f+269cosf )

+e (121+180cos2f+35cos4f)+6e (3cos3f +5cosf )], (2.11a)

2

e =——(3 g)cosf+e[—3 —(5 —4g)cos2f]+ [3qcos3f +(8+21')cosf]
8

2

—,'(36+73' —8g )cosf+e[(7+5' —7q )+(11+31'—3q )cos2f ]

e2
+ [(84+79' 224ri )cosf +(60—+245' —64' )cos3f ]

16

+ [(2+25'—16' )cos4f —271(1+24')cos2f —(2 —21g+48q )]
8

m

15 p

+ e [15(1—3g)cos5f +3(33—19')cos3f + 10(27—41')cosf ]
128

5/2

[192sinf +320e sin2f +2e (91 sin3f +115sinf )

+5e3(7sin4f +26sin2f)+18e (sin3f+sinf )], (2.11b)
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d (pjm) =4(2 —rI)e sinf
d

+e —[ —2(2+13rI+2g )sinf ——'(4+117))e sin2f+ —'g(33 —2q)e sinf+ 3g(3+2')e sin3f]
p

2 4

3/2
8 m

5 p
(8+18e cosf+7e +5e cos2f+2e cosf ) . (2.11c)

(The equivalent set of equations for a and P are given in Appendix A. ) Given a solution for these variables, one can
then integrate Eq. (2.8e) to determine P as a function of time. The solution can then be substituted back into the
definitions (2.8) to obtain the motion of the system.

C. Post-Newtonian gravitational wave forms

Once we know the motion of the system as a function of time we can determine the gravitational wave form and the
gravitational luminosity. An observer at a distance R from a binary system in the x-y plane will see the two polariza-
tion states h+ and h ~ of the gravitational radiation wave form given by

h—:h = —hrr =
—,'(1+cos e)[cos24(h""—h )+2sin24&h" ]——,'sin e(h""+h»»),

h „=h =h =cose[cos2@h" —
—,'sin24(h"" —h» )],

(2.12a)

(2.12b)

where e and 4 determine the observation direction, and TT denotes the transverse traceless part.
For A' we use the post-Newtonian formulas developed by Wagoner and Will. ' These are based on the Epstein-

Wagoner formalism which gives a post-Newtonian expansion for the far-zone metric perturbation h ' in terms of time
derivatives of integrals over the near zone of the stress-energy distribution (the boundary between the far zone and the
near zone is a region of size given by the wavelength of the gravitational waves). Assuming an effective point-mass
model (nonrotating perfect-fluid balls with negligible tidal effects), Wagoner and Will obtained the post-Newtonian for-
mula

h)z =(2pjR )(2(u'u mx'x —Ir')+(5m Im )[3(N x)(m lr )(2u 'x" rx'x'Ir) ——(N v)(2v'v J mx'x Ir )]

+ —,'(1 —6g)(mjr)[2u'v~ (x'x Ir —)(2E+3m/r 3r' ) 4vI'x r'—/r—]

+2I(l —3 7))v' uE —(mx'x'lr )[3(1+rI)E—(2 —4rl)mjr —3rlr' ]+(4— 2r))u'x "m—r'/r
I

+(1—3q)I2(N v) (v'u~ —
—,'mx'xjjr )

——', (N v)(N x)(mlr )(8v "xj' 3r'x'x /r)—
—

—,'(N x) (mjr )[14u'v (x'x lr )—(6E+13m/r —15r' ) 30v'x~~rj—r]) )&r,

where N is a unit vector toward the observation direction, and where

E =
—,'u —m /r+ 0(e ) .

The luminosity is given by

L=
—,', (p m Ir )I(12u —1lr' )+24(E+mjr)[147)E —(6—97))mlr]

—2r' [2(33 +43')E +3( 8+12g)m/r ——,'(20+3 ))r7]'
+4(1—6g)[(E+m lr)(6E+7m lr) —3'r (21E+23'm lr —6r' )]

+ —,'(1 —3')[16(E+m Ir)(17E—10m lr )
—

,
'r' (144E —440m jr+ 1—05r' )]

+ —,'(1 —4g)[(E+m Ir)(345E+397m lr)+4(m lr) —r (319E+349m'lr —297r' /4)] } .

(2.13)

(2.14)

(2.15)

Equivalent formulas have been obtained by Blanchet and
Schafer. The Wagoner-Will wave form contains only
the first post-Newtonian correction beyond the dominant
quadrupole contribution, thus in some sense the formula
is not as accurate as the orbit, which is valid through 5/2
orders beyond Newtonian theory. Nevertheless, it is an
improvement over the simple quadrupole expression, and
therefore we shall use it to give a better, though limited

approximation to the gravitational wave form and lumi-

nosity from the coalescing system.

D. Tidal effects and termination
of the evolution

There are three kinds of tidal gravitational eAects to be
considered in determining the extent of validity of the
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34/3 m1

2
R 1+ (2.16)rs=

m2

Substituting R = 11 km, a characteristic neutron-star ra-
dius for masses in the range 0.5 to 1.5Mo we find that for
various masses, the stripping distances estimated from
Eq. (2.16) agree within 10% with those determined by
Clark and Eardley from numerical simulations. Equa-
tion (2.16) can be rewritten in the form

r& =10 Mo
[-,'(1+X)]-'"

m2
(2.17)

where X=m, /m z. Figure 5 plots values of rz /m against
m2 for various mass ratios. For two neutron stars of
1.4Mo each, the minimum separation is about 7m.

Tidal interactions produce orbital perturbations which
compete with the post-Newtonian effects which we are
studying. One way to estimate their importance is to
consider the additional periastron advance produced by
the mutual tidal deformation of two bodies. The advance

Damour-Deruelle equations: tidal stripping and disrup-
tion (for neutron stars), orbital tidal effects, and tidal dis-

sipation.
When tidal forces are sufficient to strip matter from

one of the component stars, the orbital evolution can
change dramatically. For instance, mass transfer can
cause the or'bital separation to increase, despite the dissi-
pative effect of gravitational radiation. Similarly, if one
of the stars is completely disrupted, hydrodynamics will

play an important role. Therefore, for systems of two
neutron stars or of a neutron star and a black hole, the
separation at which this occurs marks an obvious ter-
mination point for our purely gravitational evolution. A
useful approximation to this "stripping distance, "

rz is
given by the separation at which the Roche radius of one
of the stars equals its physical radius R. For the star la-
beled 2 this is given approximately by

' 1/3

per orbit is given approximately by
5

m1 R2
AGO 307T k 2 +k,

mp p

'5-
R1

(2.18)

m
min

X
2 8Mo

' 1/3
@+@—1

(2.19)

with a comparable result for one neutron star and one
black hole. This is smaller than the stripping distance for
most systems of interest. For two black holes, tidal
effects are smaller, since RH =m~, and k~ ~ 1, so that
the resulting minimum separation is given by

1/3
]/3 X( 1+X) )

(2.20)
12(1+X)m min

where the quantity in square brackets is smaller than uni-

ty.
The third effect of tidal interactions is tidal dissipation,

which competes with the gravitational-radiation reaction
(see also Ref. 27). For bodies with rotation axes normal
to the plane of the orbit, and for a circular orbit, the rate
of change of the orbital period due to tidal dissipation is
given by

where k, is the "apsidal-motion constant" for each star,
having representative values of 0.1 for polytropes of in-
dex 5/3, and 0.75 for homogeneous stars. We have ig-
nored a factor of order unity dependent upon the orbital
eccentricity. If we adopt as the point of termination of
the orbit that separation at which the tidal periastron ad-
vance is comparable to the post-post-Newtonian contri-
bution, given roughly by b, ti)pp~ 6m(m/p), we obtain a
minimum separation for two neutron stars given by

' 1/3 ' 5/3
k

0. 1

20

P
P

'8
672~ mm, R2 R2('rI2)

25 m& p m~

15—

10—

(2.21)X (1—Qz/n )+(2~1)

where n =27r/P is the orbital mean motion, 0 is the an-

gular velocity of the body, and ( g ) is an average
coefficient of viscosity given by

(g) =(9/R }f rlr dr,
0

(2.22)

0.5
m2iMo

1.0 1.5 where g is the local coefficient of viscosity in units of
g cm s, The gravitational-radiation reaction in a cir-
cular orbit gives

FIG. 5. Stripping radius, at which Roche radius of star of
mass m, equals its physical radius; for smaller separations tidal

stripping or disruption of star will occur. Curves are labeled by
mass ratio X=m, /m2. For comparable-mass neutron stars of
1.4 Mo each, stripping radius is around 7m.

P/P ——"pm /p

These effects will be comparable when

(2.23)
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m min

=7X10 ' R
11 km

9/4
m

2.8Mo p, e,

304+ 121e2

304+ 121e,
(3.2)

X(1+X)[(q )(1—0 /n)

+X (g, )(1 f—l, /n )]'

(2.24}

For neutron stars Eq. (2.22} shows that (g) will be dom-

inated by dissipative processes in the crust of the star,
where the density is less than 2X10' gcrn; calcula-
tions of the viscosity for densities in this regime (in the
absence of magnetic fields} yield 71 & 10', so that
viscous damping is always negligible compared to
gravitational-radiation damping.

For slowly rotating black holes, the effective coefficient
of viscosity is (ri; ) =a/m;, where a =5/7n(see A. ppen-
dix B). In this case, tidal and gravitational-radiation dis-

sipation will be comparable when

=(1+X) '[1 02/—n+X (1—0, /n )]'~
min

(2.25)

in other words, when the post-Newtonian approximation
breaks down.

In summary, for coalescing binaries containing one or
more neutron stars, we shall terminate our purely gravi-
tational orbital evolution at separations between 10 and

7m, when tidal stripping is expected to dominate, and for
black holes, we shall terminate the evolution around 2m,
when the entire approximation breaks down.

III. EVOLUTION OF THE ORBIT

A. Evolution of nonrelativistic systems

When the parameter m/p «1, so that the relativistic
corrections in the Lagrange planetary equations are
small, and so that the time scale for gravitational-
radiation damping is much longer than an orbital time
scale, Eqs. (2.11) can be solved by iteration: substitute in-

itial, constant values for e, m, p, etc. , into the right-hand
sides, and integrate. When integrated over a complete
orbit (b,/=2' ) the results are

A multiple-scale analysis of the Lagrange planetary equa-
tions yields the same result (Appendix A). From Eq.
(3.1b), the orbit-averaged p necessarily decreases with
time. Thus as the orbit shrinks because of gravitational-
radiation losses, the average e decreases, consequently the
orbit is "circularized" by gravitational-radiation damp-
ing. This is expected because gravitational radiation de-
creases both the energy and the angular momentum of
the orbit.

de/d$=0, dp/d$=0, (3.3)

B. Relativistic systems and quasicircular orbits

According to Eq. (3.2), e decreases, while m/p in-
creases. Eventually, the leading relativistic perturbation
on the right-hand side of Eq. (2.11a), of order m /p, will
be comparable to e itself. The question is, what is the
subsequent evolution of the system in the language of os-
culating elements, and does it correspond to a circular or-
bit? A true circular orbit cannot be a solution to our
(post) -Newtonian equations, of course, since the
radiation-reaction terms cause an inspiral of the system.
Instead, one might ask whether it is possible to find a
solution to the post-post-Newtonian order equations (i.e.,
without radiation-reaction terms) which is a circular or-
bit. The obvious guess of seeking a solution for which
e =0 fails immediately since, according to Eq. (2.11a),
de/dg@0 when e =0.

On the other hand, from Eq. (2.11b), as e becomes
comparable to m /p, den/dP becomes comparable to uni-

ty, in other words, the periastron advances at a rate com-
parable to the orbital motion. This suggests that we try
an elliptical osculating orbital of fixed p and nonzero e
which precesses at the same rate as the orbital motion.
This will produce an actual orbit which is circular, since
the particle will always be at the same point on the oscu-
lating ellipse as they both revolve. The condition that the
particle and osculating orbit advance at the same rate
means that de/d / = 1 or that f=P co is a constan—t. A
solution will exist if we can choose a value of f so that
the Lagrange planetary equations reduce to a consistent
set of equations. Trying f =n, in Eqs. (2.11a) and
(2.11c),we have, to post-post-Newtonian order,

b,e= —(ge/15)(m/p) (304+121e ),
b(p/m)= —(8q/5)(m/p) (8+7e ),
Aco=6mm /p+0((m/p )~) .

(3.1a)

(3.1b)

(3.1c) e=A)+A~ . (3.4)

and, since e des/dp—:e, we obtain, from Eq. (2.11b) or
(2.9c),

For e and p, the post- and post-post Newtonian effects are
small and purely periodic; only the radiation reaction
terms have a secular effect, while for co, the post-
Newtonian term contributes at leading order, giving the
well-known relativistic periastron advance. Taking the
ratio of Eqs. (3.la) and (3.1b), we obtain an equation for
the "orbit averaged" derivative de/dp, which can be in-

tegrated to yield '

Solving Eq. (3.4) iteratively we see that these equations
will be consistent if

e =(3—g)m /p —(15+—", g+2g )(m /p) (3.5)

Substituting these orbital elements into the definitions of
the orbit, Eqs. (2.8), we obtain
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r =p/(1 —e)

=p[1+(3—i))m /p —(6+—", i)+i) )(m /p) ], (3.6a)

v=(m/p)' [1—(3—i))m/p+(15+ ", g—+2')(mlp) ]

post-post-Newtonian equations, one might seek a "quasi-
circular" solution of the form

e=(3—7I)u —(15+ ", i—)+2g )u +5e u~, q ~5/2,

(3.7a)
X (

—e„sing+ e cosP),

P=nt+Po,

n =(m lp )' [1—2(3 —rt)m/p

(3.6b)

(3.6c)
f=~+f, u", r ~1, (3.7b)

where u =—m /p. Substituting this ansatz into the
Lagrange planetary equations we have

+(39+—', rt+5i) )(m lp) ], (3.6d) de /d P = —
( 3 —

)i) u" + 'f, + —4 i)u '~ +0 ( u "+ ), (3.8a)

which are equivalent through post-Newtonian order to
the circular orbit formulas of Wagoner and Will. '

The radiation-reaction terms in the full (post) ~-
Newtonian equations will produce a secular decrease in e
and p, in addition to periodic variations, thus preventing
the static circular solution found above. However, since
the (post) -Newtonian terms are a perturbation on the

du/dg= —u d(p/m)/dg

=u-'[ —", i)u'~ +4(2 —i))(3—
li) u"+'f

)

——",'i)(3 —i))u' +O(u"+ )],
and thus

(3.8b)

de —5'flu —(3—7))u "f, +O(u"+')

u [—", i)u '"+4(2—i) )(3—i) )u
"+'f, ——",'il(3 —il )u '"+O(u "+'}] (3.9)

However, this equation must be consistent with the origi-
nal ansatz, which gives de/du =(3—rt)+O(u). This
yields a solution for f, provided r =3/2. The result is

f=a+ u +O(u )
64
5 3 —g

(3.10)

Substituting this and Eq. (3.7a) back into Eq. (2.11b), we
find that q =3, so that the original solution for e [Eq.
(3.5)] is valid through (post) -Newtonian order. With
this solution we then find that u and P evolve according
to

du /dg=(64/5)flu +O(u ), (3.11a)

1gldt = (mp)' r =—m 'u +O(u ), (311b)

with the solutions

p =p, [1—(256/5)rtu; (t —t; )/m ]'

p =p; + ( 32')u )

(3.12a)

X [ 1 —[1—(256/5 )i)u, (t t, )/m ] ) . (—3.12b)

The orbit can then be obtained from Eqs. (3.6a) and
(3.6b). Notice that the number of orbits and the elapsed
time to coalescence from an initial value of p are given
approximately by

At = (5m /256') )(p, Im )

=(0.42s)(4i)) '(m/2. 8 Mo)(p, /25m), (3.13a)

N =(64m')) '(p, Im )

=62(4i) ) '(p; /25m ) (3.13b)

Is this quasicircular orbit an isolated solution of the
Lagrange planetary equations, or is it the end point of

evolution of a general initially nonrelativistic orbit? In an
appendix we verify that it is the latter. Using a "two-
scale analysis" of the planetary equations, we find that
the orbit averaged e evolves according to

(e ) =e (u /u )' +(3—i)) u (3.14)

where uo represents the leading, secular behavior of m /p,
given by Eq. (3.12a), u; is its initial value, and e; is the in-

itial eccentricity. Initially, uo =u; &&e;, and thus the ini-

tial term dominates, leading to the behavior described in
Sec. IIIA, Eq. (3.2). As uo increases, the first term de-
creases, while the second increases, and eventually the
quasicircular behavior of the eccentricity of Eq. (3.5) is
established. Figure 6 shows the behavior of e as a func-
tion of uo, for various initial values of u and e. Systems
will evolve toward the right down an approximately
straight line with slope —19/12 until they reach the line
marked "quasicircular orbits" whereupon they evolve up
to the right. The different tracks correspond to different
initial values of e for a given initial u. If the orbits are
projected backwards in time, and if their evolution is
governed purely by the post-Newtonian equations with
radiation reaction, it is known that they necessarily be-
come unbound (e ~ 1) at a finite value of p, and at a finite
time in the past.

%'hether or not an orbit has time to circularize, say,
before tidal forces becomes dominant, or before the post-
Newtonian scheme breaks down at uo=1 can be deter-
mined from the figure. For example, a system such as the
binary pulsar (track labeled A), with e, =0.6 and

u, =3 X 10, will circularize when u = 10,well before
tidal effects are significant. On the other hand, a double
neutron-star system formed by capture due to
gravitational-radiation dissipation in a dense cluster of
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FIG. 6. Evolution of osculating eccentricity as a function of
p/m. Gravitational-radiation damping causes p to decrease, so
systems evolve from left to right. For systems with e))m/p
eccentricity decreases approximately as (p/p, )' ', until quasi-
circular condition e=(3—g)m/p is reached. Current state of
binary pulsar PSR 1913+16is marked; its future evolution will
follow track A. Track B denotes evolution of system captured
into a highly eccentric, bound orbit, with p;/m =100; such a
system barely becomes quasicircular before relativistic plunge
occurs (cf. Fig. 12).

compact stars, with an initial periastron separation of
around 200 km (Ref. 7b) (track B), would have e; = 1 with

u; =10 and would be likely to remain elliptical until ti-
dal or hydrodynamical effects set in. The analogous cap-
ture of two black holes will not approach a quasicircular
orbit until u =0.1, at which point the orbit enters a final
"plunge" phase. These qualitative considerations are
confirmed by the numerical solutions discussed in the
next subsection.

C. Numerical evolution of orbits

The approximate analytic solutions obtained in the
previous subsection relied upon the assumption that
m/p « l. In the late stage of coalescence, this assump-
tion is no longer valid, and a direct numerical integration
of the Lagrange planetary equations is needed to follow
the evolution further, until the entire (post) -Newtonian
approximation breaks down. The results of such numeri-
cal integrations serve two purposes, first to provide input
for the gravitational wave forms summarized in Sec. II C,
and second to provide approximate initial conditions for
further evolution of such systems using hydrodynamic or
fully general-relativistic codes. '

We begin with the quasicircular case. This case gives a
single, universal orbit for each value of q=p/m, for the
following reason. Since both co and e are functions of
m/p, the solution depends only on the initial value of p.
Since p decreases secularly with time, then for any p!m,
the solution depends only on the initial moment of time,
which is arbitrary. The only factor which distinguishes
one quasicircular orbit from another is the orientation in
space, which is determined by the fixed inclination i and
angle of nodes Q, and by the time of initial periastron
passage. This universality is also illustrated by the com-
mon quasicircular track in Fig. 6.

Consider a system of equal masses (g= I/4). Working

0 —50 —40 -30 -20
Pi2n

—10
---' 0

FIG. 7. Evolution of "orbital period, " 2~d(t/m)/dP for
equal-mass quasicircular orbit. Scale at right gives period in
milliseconds for two 1.4 Mo bodies.
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RADIAL AND TANGENTIAL VELOCITY
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—30 —20
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FIG. 8. Radial and tangential orbital velocities for equal-
mass quasicircular orbit.

in terms of the rescaled time t /m, and beginning the nu-
merical integration at p;/m =25, we find the solutions
summarized in Figs. 1, 2, 7, and 8. The initial values of e
and co are determined from Eqs. (3.7a) and (3.10). Figure
1 shows e, p/m, and the orbital separation r/m as func-
tions of P. The initial residual oscillations are a conse-
quence of the fact that the chosen initial conditions are
still only an approximation to the true quasicircular or-
bit. As the orbit evolves, these oscillations damp out as
the orbit becomes more quasicircular; r/m decreases,
while e =2.75m/p increases. Figure 2 shows the actual
relative orbit in space; the points marked 10, 7, 5, and 2,
correspond to values of r/m The fi. nal "plunge" orbit
begins around r =7m. Figure 7 shows the evolution of
2m d ( t /m ) /d P, which is a rough measure of the instan-
taneous orbital period in units of m. Notice that, for a
system of two 1.4Mo bodies, the period decreases from
about 13 ms when r =25m to about 3 ms when r = 10m in
an interval of about 0.5 s. Figure 8 gives the radial and
tangential velocities as a function of the separation r. Ini-
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tially, the radial velocity is very small because the orbit is
a slowly decaying circle, but by the time of the plunge,
the radial and tangential velocities are comparable.
These velocity values could be used as initial conditions
for a given initial separation to begin a hydrodynamical
evolution of two coalescing neutron stars. '

Notice that the orbit decays from p =25m in about 55
orbits, about 10% fewer than the estimate given in Eq.
(3.13b). The latter estimate was obtained from Eqs.
(3.11), which procedure amounts to inserting the
Newtonian approximation for the orbit into the
radiation-reaction terms. However, in the numerical
solution, the full (post) -Newtonian orbit is inserted
into all terms at each stage of the evolution. Formally,
this is inconsistent, since the (post) ~ -terms A&zz and

Bs&z in Eqs. (2.4) have already been simplified using
Newtonian equations of motion, and the higher-order,
(post) ~ -Newtonian terms have been neglected. Thus the
secular evolution of the orbital separation is accurate up
to a relative error of order m /p, which in this example is
around 10%. Therefore, this analysis cannot reliably
determine whether the actual orbit will decay more
quickly or more slowly than the Newtonian estimate
(3.13b); only a fully general-relativistic analysis can do so.

For stars with a mass ratio of 10:1 (ran= 10/121), the or-
bits are shown in Figs. 9 and 10. Since the quasicircular
values of e and co are only weakly dependent on g, the
dominant change is in the time scale for decay of the or-
bit, which is inversely proportional to g. Figure 9 shows
the expected threefold increase in the number of orbits
for decay. From Fig. 10, we see a slower spiral and a
final plunge which occurs at a much smaller separation,
around 4m. In fact, further decrease of g would lead to

! ~

(

I I &

! I & I

10—

1
o t-

—10 (—

—20 ——
0 10

x/m

FIG. 10. Quasicircular relative orbit for m, = 10m z.

quasicircular motion without a plunge persisting to
smaller and smaller separations: even though m/p~l
and the post-Newtonian corrections are becoming large,
the radiation-damping term remains small because of the
smallness of g. Very small values of g would correspond
astrophysically to a stellar-mass neutron star or black
hole spiraling into a supermassive black hole. However,
in such cases the post-Newtonian approximation used
here is inadequate to approximate the final motion, be-
cause it does not properly describe the existence of an in-
nermost circular orbit for test-body motion around a
black hole, which occurs at r =Sm for a nonrotating hole
(in harmonic coordinates), inside which the body would
plunge toward the hole, even with arbitrarily weak radia-
tion damping. For two comparable-mass holes, such an
innermost orbit also exists, but as Fig. 2 shows,
gravitational-radiation damping in that case is suSciently
strong to produce a plunge before that orbit is reached.

Another set of orbital solutions is shown in Figs.
11—13, corresponding to equal masses, with the initial
condition e =1. These highly noncircular orbits would
be produced by binary capture due to gravitational-
radiation damping in a dense cluster of compact stars.
Quinlan and Shapiro argued that this process plays an
important role in the evolution of such clusters, and
could lead to promising sources of gravitational waves.
They showed that the maximum value of p/m leading to
such capture is given by

0 I

-150
I

-100
Pi2lr

I

—50
0

m max

!u, —u, !=90(4' )
103 kms

(3.15)

FIG. 9. Evolution of e and r/m for m 1
= 10m2 quasicircular

orbit, plotted against P/2m =number of orbits. Initial condition
is p; =25m. Approximately three times as many orbits are re-
quired to coalesce compared to equal-mass case {Fig. 1) because
gravitational-radiation damping {proportional to g=p/m) is
three times weaker.

For initial values of p we choose 90 and 40m. Figure 11
shows the evolution of the eccentricity in the two cases.
The results confirm the behavior discussed in Sec. III C:
decrease of the average eccentricity (while oscillating be-
cause of periodic post-Newtonian corrections) until
e = m /p, then an increase, together with a reduction in
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the amplitude of oscillations as the orbit approaches the
quasicircular state of Eq. (3.5), and then a rapid increase
as the plunge ensues. Notice that in neither case does the
orbit quite make it to the quasicircular state. This is also
s own in Fig. 12 which displays the evolution of the or-

ital separation in the final 20 orbits in each case. The
noncircular nature of these orbits will be rejected in the

e or it in space ofgravitational wave forms (Sec. IV). Th b't
t e more compact capture (p =40m) is shown in Fig. 13;
the rapid advance of the periastron as the orbit decays
and attempts to circularize is apparent.

40 ~

10

CAFE URE AT 90 m

(a)

IV. GRAVITATIONAL WAVE FORMS
AND LUMINOSITY

I t I I

(b)

The analytic and numerical solutions for the orbits ob-
tained in the previous section yield the coordinate rela-
tive position vector x(t) and velocity v(t) as functions of
time, through (post) ~ -Newtonian order. These are then
input for the post-Newtonian gravitational wave forms of
Sec. II C, Eqs. (2.12) and (2.13).

For the quasicircular case, the wave forms can be writ-
ten to post-Newtonian order in a relatively simple form
using the solutions of Eqs. (3.6), with the result

40 —-

30

10'—

CApTURE AT 40 m

I I

(a)

0
-20

$/2n

—10

CAFI'URE AT 90 m FIG. 12. Evolution of separation for equal-mass capture or-
bits. Final 25 revolutions are shown in each case

I
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o.o !
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—BO —60 —40 —20 0

$/2n

FIG. 11. Evolution of eccentricity for equal-mass capture or-
bits with initial p; of (a) 90m and (b) 40m. Initially, eccentricity
decreases on average, while oscillating because of post-
Newtonian perturbations; as quasicircular state is approached,
average eccentricity increases while amplitude of oscillations
decreases. Neither s sty em quite reaches true circularity before
plunge.

40

—40

I I
I
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x/rn

FIG. 13. Relative orbit for equal-mass capture at 40m, show-

ing final 20 revolutions. Rapid advance of apastron is evident.
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2ph+= 1 I(1+cos 8)cos2% ——
p 2 p

' 3/2

sin8[sin%'+ —'(1+cos 8)(sin++9 sin3%)]4

'n 8[2cos2ql+(1+cos 8)(cos2%+4cos4%)] JI —,'(37 —9g)(1+cos 8)cos24+(1 —3r/)sin cos
3 p

h = cos8 2 —sin2%'+—2
X

p 4 p

3/2

sin8(cosqr+3 cos3%)

(4.1a)

'2

37 —97) )sin2%+ 4( 1 —3r/)sin 8(sin2qr +2 sin4qr ) ]3 p
(4.1b)

qr —=C!—~&, and where p and p evolve accordmg towhere
qs. (3.12). However, in the followmg numerica

the full orbital solution was substituted into the original
(2 13). For the equal-mass quasicircular case,

14 shows the wave forms (R /2p)h+ and (R / pFig. s ows e
for various observing angles relative to the or i, p oh orbit lot ted

I

alas functions of p Shown are the waves from the fina
eight orbits before termination of the evolution at r = m.
Because of the equal-mass symmetry, the waves occur
pre ominan yad

'
anti at twice the orbital frequency. The ampli-

tude increases with time roughly as m/p. For neutron-
star binaries, the wave form generated by purely gravita-
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0

0.0
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&=0
------- @= 45'
———@= 90'
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0

h and h x for equal-mass quasicircularFIG. 14. Gravitational wave forms h+ an
axis 45' from the axis, and in the orbital plane (where h x —=0).7

orbit. Shown are observation directions along orbital
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for the fina1 seven orbits are shown in Fig. 16. The h+
wave forms in the orbital plane [Fig. 16(b)] show addi-

tional components at the orbital frequency and at three
times the orbital frequency, because of the mass asym-

metry [cf. 5m/m terms in Eq. (4.1)]. The dependence on
4 of these orbital-plane wave forms, primarily in the final

orbit, reflects asymmetric beaming of the radiation,
which could lead to a net radiation of momentum and a
consequent recoil of the system. We are currently ad-

dressing this question.
The capture orbits lead to a complex wave form and

luminosity, shown in Figs. 17 and 18 for the case of cap-

ture at p =40m. Shown are the final 24 or so orbits, by

which point the eccentricity has decreased to 0.2, and the

minimum separation at periastron is around 14m. The

wave form here is plotted against time. The sharp pulses

correspond to radiation emitted at periastron. The
changing shape of both the pulses and of the interpulse
waveforms reflects the rapid advance of the periastron
relative to the line of sight, as seen in Fig. 13. The wave

form from the final few orbits in each case is shown on an

expanded scale, illustrating the trend toward a circular
orbit in the final stage of coalescence.

FIG. 15. Gravitational luminosity and emitted energy for
equal-mass quasicircular orbit.

tional motion would be cut off around r =7—10m, corre-
sponding to P/2n = —1 to —2. The post-Newtonian
corrections in the wave forms increase from around 7%
of the total wave form at p =25m to almost 10% at ter-
mination. If we denote the amplitudes plotted in Fig. 14
by h, then the observed wave forms at Earth will have the
amplitude

h,„,=7X 10 (4g)
0

100 Mpc
R

h

0. 1

(4.2)

The gravitational luminosity and the integrated emitted
energy are plotted in Fig. 15. The dimensionless luminos-
ity 10 corresponds to 3.6X10 erg s ' or 0.2 Mos
The numerical results for the luminosity are cut off some-
what earlier than those for the orbit and wave form be-
cause the post-Newtonian correction in Eq. (2.15), which
turns out to be negative, becomes comparable to the
Newtonian term early because of large numerical
coefficients, causing the total luminosity eventually to
turn negative. An "exact" expression for the luminosity
must, of course, be positive definite; thus, in some sense,
our result can be viewed as a lower limit on the luminosi-
ty. This problem illustrates the inherent danger in push-
ing approximations to the limit of their validity. Wagon-
er and Will' offer alternative expressions for the post-
Newtonian luminosity for circular orbits in an attempt to
mitigate this problem; however, in the absence of higher-
order terms, there is no unique way to do this.

For unequal masses, in the ratio 10:1, the wave forms

V. CONCLUDING REMARKS

We have used an approximation procedure to study in
detail the coalescence of a binary system of compact ob-
jects. In the final analysis, a complete description of this
process will require the full machinery of general-
relativistic hydrodynamics or of black-hole interactions,
carried out in a complete numerical integration of
Einstein's equations. Nevertheless, the post-Newtonian
approximation which we have employed gives accurate
results in appropriate cases. The orbital evolution is for-
mally accurate up to errors of O((m /p ) } in the instan-
taneous orbit and up to relative errors of O(m lp) in the
secular decay of the orbit, while the wave forms are for-
mally accurate up to errors O((m/p) ) relative to the
dominant contribution. For neutron-star systems, we ter-
minate the evolution around p = 10m because of the dom-
inance of tidal effects, thus we expect the orbit to be accu-
rate to a tenth of a percent instantaneously, and the wave
form to be accurate to l%%uo. For two-black-hole systems,
we continue the evolution to p =2m, by which point the
approximations have become invalid.

To improve the accuracy of these results further would
require extending both the equations of motion and the
gravitational wave forms to higher post-Newtonian or-
der. It remains to be seen whether the benefits of such
extensions would outweight the effort, in view of the pro-
gress being made in the realm of numerical relativity.

However, one simple extension may yield a payoff.
The axial asymmetry that appeared in the wave forms for
the unequal-mass quasicircular case [Fig. 16(b}] suggests
an asymmetry in the radiated energy, and thereby a pos-
sible recoil of the system. The net momentum radiated
by a coalescing binary system depends on a cross term be-
tween the "half-order'* or 5m/m terms in the gravita-
tional wave form h '~, and the dominant Newtonian quad-
rupole term. If the quadrupole term is O(m/p), this
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term is m p0((m / ) ). Therefore, by determining the
can obtain a0((m/ ) ) term in the wave form, we can o tain a

more accurate expression for the momentum ra
'

radiated.
This term has already been calculated formally y p-
stein and Wagoner, an sd W and should be readily reducible to
the binary-system form. Using our accurate orbital evo-
lution we will then be able to obtain an improved esti-

for the gravitational radiation "rocket effect" or
two black holes, and can then study its astrop y

'
h sical

9(b)implications.
ich willAnother possible extension of our approach which wi

be important for neutron-star coalescence, is the incor-
poration of tidal effects, possibly by the ad hoc device of
adding a Newtonian-style tidal potential to the equations

1 edThese and other applications of the methods deve oped
in this paper are currently under study.
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at one and three times orbital frequency,xis mass as mmetry introduces waves at one an ree

nd four times orbital frequency, leading to modulation shown. ave- ormtwice an
*

recoil of s stem.may represent net radiation of momentum, leading to rec y

are as in Fig. 14. For
in addition to those at
(c) during final plunge
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FIG. 17. Gravitational wave forms for equal-mass capture orbit at 40m. Right-hand panel shows final wave form on a time scale
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periastron (Fig. 13) relative to line of sight.
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APPENDIX A: EVOLUTION OF ORBITS
TO THE QUASICIRCULAR STATE

In Sec. IIB we found a quasicircular solution of the
Lagrange planetary equations given by the orbit elements

e=(3—g)u —(15+ ", ri—+2' )u +O(u ),
f=sr+ —64'(3 —g) 'u z +O(u

0.5 '—

where u =I /p, and where u evo1ves according to

u =u, [1—+5'r)u, '(t t, )—/m] (A2)

00K ~.
—30 —20

Qi27t

—10

I

!

I
J

U

0

FIG. 18. Gravitational luminosity for equal-mass capture or-
bit at 40m.
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Here we demonstrate that this is the general late-time
evolution of a binary system governed by the (post)
Newtonian equations of motion, given su Scient
radiation-reaction damping before the approximation
breaks down. (Because the approximation becomes
worse as the desired evolution proceeds, this analysis will
not be rigorous. This is to be contrasted with the
rigorous analysis by Walker and Will of the evolution
projected toward the infinite past, where the post-
Newtonian approximation becomes better and better. )

Because the initial, nonrelativistic evolution given by
Eq. (3.1) leads to small values of e we use the nonsingula

1p anetary equations for a and p, instead of those for e
and co, Eqs. (2.11). These have the form

d a /d P = ( m /p ) [ ( 3 —g )sing —3P+ ( 5 —4g )(a sin2$ —P cos2$ )

+—' 56—47 —8+21+ —,
' 56—47ri a —8+21g)P ]sin(( —

—,'(32 —13rt)aP cosP+ —', g(P —a }sin3$+ —,'rtaP cos3$ j
2 ]+ m/p) [

—
—,'(36+73rt —8g )sing —(7+5'—77) )P+(11+31'—3 )(Pcos2$ —a sin2

—
—,', [(92+1817)—32rt )a +(84+79'—224' )P ]sin((i+ —'(4+51 +96 )aPcos8

+ —' 60+245+ —„60+245'—64' )[(P —a )sin3$+ZaPcos3$]+ —,'(2 —2lri+48rt )P(a +
—

—,'[(3—1 lg —10' )a —(3—
10g+ 14' )P ]a sin2$

+ —,
' [( l2 —43' —167)')a' —(rt+ 24ri')P']P cos2$

—
—,'(2+25' —16' )[(a —3P )a sin4$ —(3a —P )Pcos4$]

+ —,', g[(477+161')a +6(57+61rt)a P —5(27 —41 )P'] '
P

—
—,', g 153—117))aP(a +P }cos$+—,'„g[(73+53')a —6(53+17rI}aP +(33—19 P']sin3

3p t)[ 7( 9+ 5 t) )a —
( 43 —

t) )P ]aP cos3

—
—,",,g(1 —3g)[(a —6a P +P')sinSQ —4(a' —P )aPcos5$]]

—
—,', g(m/p) ~ I192cosg+304a+320(acos2$+Psin2$)+(538a +230P )cosP+308aPsin

2 2+182(a —P )cos3$+364aPsin3$+121a(a +P )+10(23a +13P )Psin2$

+20(9a +4P )acos2$+35(a —3P )a cos4$+35(3 —P )Psin4$

+6(5a +8a P +3@'}cosP+12(a +P )aPsing+18(a —P'}cos3$+36(a +P )aPsin3~~]

(A3a)
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dP/dP=(m /p) I
—(3—g)cosP+ 3a —(5 —4g)(a cos2$+P sin2$)

+ —,'[(8+21')a —(56—47il)p ]cos$+ —,'(32 —13')apsinp+ —3g(a —p2)cos3$+ ,'qa—psin3$I

+(m /p) I —,'(36+73' —8'g )cosp+(7+5q —7il )a+(11+31g—3i} )(a cos2$+psin2$)

+ —,', [(84+79'}—224'} )a +(92+ 18lg —32' )p ]cosp —
—,'(4+51 rl+96 i7 )apsjnp

+ —,', (60+245'}—64' )[(a —P )cos3$+2aPsin3$] —
—,'(2 —2lrI+48g2)a(a2+132)

—,[(3—10'&+14'g )a —(3—llew} —10' )p ]psin2$ —4[(g+24il )a —(12—43rl —16')p2]acos2$

+ —,'(2+25' —16' )[(a —3f3 )a cos4$+ (3ai —P~)P sin4$]

+ —,', g[5(27 —41'})a —6(57+61il )a p —(4'77+ 161')g']cosp+ —,', il(153 —1 1 i})ap(a2+ p2)sing

+—|I8rl[(33—19')a —6(53+17')a }33 +(73+53il)f} ]cos3~I}

+ —,', il[(43 —i})a —7(9+5'})p ]apsin3$

++'il(1 —3g)[(a —6a p +p')cos5$+4(a —
13 )apsin5$]I

—
—,', il(m /p) [192sing+ 304p+ 320(a sin2$ —p cos2$)

+ (230a + 538P }sing+ 308aP cosP+ 182(a —
/3 )sin3$ —364aP cos3$

+121P(a +P }+10(13a+23P )asin2$

—20(4a +9P )P cos2$+ 35(a —3P )a sin4$ —35(3a P)P cos4—$

+6(3a +Sa P +5@')sing+12(a +P )aPcosg+18(a —P')sin3$ 36(a—+P )aPcos3$1,

(A3b)

d (p /m ) /d P =4( 2 —il ) (a sing —P cosP )

+(m /p) I
—2(2+13g+2il )(a sing —icos/)+ —,'(4+ lid)[(f3 —a )sin2$+2aPcos2$]

+ —,'rl(33 —2g)(a +p )(a sing —pcosp)+ —,'il(3+2')[(a —3p )a sin3$ —(3a p)pc—os3$]]

——', il(mlp)' [8+18(acosp+psinp)+7(a~+p )

+5[(a —P )cos2$+2agsin2$]+2(a +P )(acosP+Psing)I . (A3c)

Our goal is to obtain approximate, asymptotic solutions of these equations in the regimes e))u, and e=u.
Throughout, we assume that u ((1,and we define the small parameter e= u. We then expand a, P, and u in powers of
e, according to

a=ao+ecz, +

P =I3o+ F13, +

Q 6'Q +6 Q +0 1

(A4a)

(A4b)

(A4c)

These quantities are expected to vary over both an orbital time scale described by P, and over a gravitational-radiation-
reaction time scale, which is a factor e longer. To take these two effects into account, we use a two-scale ap-
proach: we define a variable O=e P, and we assume that a, P, and u depend on both 0 and P, now viewed as in-

dependent variables. %ith this assumption, we write

d /d y =a/ay+ ~'"a/ae .

We now substitute Eqs. (A4) and (A5) into (A3), and collect terms of common powers of e To lowest orde. r, we find

(A5)

Bao/BQ=0, ao=ao(0),

aP, /ay=0, P,=P,(e),
Buo/BQ=0, uo =uo(8) .

To the next order in e, we find

(A68)

(A6b)

(A6c)
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Ba, /BP = u 0 I ( 3 —
g )sing —3PO+ ( 5 —4g )( aosin2$ —

Pocos2$ ) + —,
' aoP0[3g cos3$ —

( 32 —13r/)cosP]+ —', g(PO —uo)sin 3$

+ —,
'

( 56—47' )aosing —
—,
' {8 +217/)Posing I, (A7)

with similar equations for p, and u, . Holding the "independent" variable 0 fixed, we can integrate these equations to
obtain

a =ao(0 ) +eu 0 I
—( 3 —

q )c os/ —
3PDP

—
—,
'

( 5 4—7/)(a Ocos2$ +Posin2$ )

+ —,
'
acPO[g sin3$ —( 32 —13' )sing] —

—,
'
g(PO

—ao }cos3$——,
'

( 56 —47' )aocosg+ —,
'

( 8+21' )Pocosg ) .

(A8)

These solutions could be carried to higher order in e if
necessary. However, on the left-hand side of Eq. (A3a),
there will occur a term of the form e'i Bao/B0, which is

purely a function of 6. Matching this with the corre-
sponding purely 0 dependent, e term on the right-hand
side, and doing the same for p and u, we obtain the equa-
tions

where a(8) and p(8) are functions of integration. By
comparing these solutions for a and p at order e with
Eqs. (A8) in the regime where ao= pa= a, we find that the
solutions match, provided that we identify ex=up and
p=po. Continuing to integrate the equations through
O(e ), we obtain

a =e[ —u 0( 3 —r/)cosP+ ao(8) ]
Bao/B0= —(q/15)u Oi ao[304+ 121(a02+Po)],
BP /B8= —(g/15)u P [304+121(a +P )],
Bu /B0=(8g/5)u [8+7(a +Pa)] .

From the ratio of Eqs. (A9a) and (A9b), we find

ao/po =const—:cotcoo,

where we now define

ap —=epcosup,

po=~ostmoo .

(A9a)

(A9b}

(A9c)

(A 10)

(Al la)

(Al lb)

+e [uo(15+ —,'g+2g )cosP —3uoPO(0)$

——„(5—4g)uo[ao(8)cos2$+Po(8)sin2$] I

e —, gu 'sin $,
P =@[—uo(3 —g)sinP+Po(8)]

+e I uj(15+ i,'r}+2r/ )sinP+3uoao(8)P

—
—,
' (5 —4g)uo[ao(8)sin2$ —Po(8)cos2$] I

+6' —'" gu 0 cosp,
u =duo(8)+O(e ) .

(A15a)

(A15b)

(A15c)

A ECXi+E 652+6' CX5/p+

p=ep, +e p2+e'i'p, i~+

u=eu +au +.
p 1

(A13a)

(A13b)

(A13c)

Substituting these approximations and Eq. (A5) into Eqs.
(A3), and collecting powers of e, we obtain, to the lowest
order,

Buo/Op=0, uo=uo(0); (A14a}

Ba, /BP=(3 —g)uosing,

a, = —
( 3 —r/) u 0cosf +a( 0);

aP, /ay = —(3—q)u, cosy,

Pi = —(3—q)uosing+P(8),

(A14b)

(A14c)

Taking the ratio of Eqs. (A9a) and (A9c) and integrating,
we find

u ' =Ca' ' (304+ 121a sec co ) (A12)

where C is an arbitrary constant. With the substitution
of Eqs. (Al 1), we obtain Eq. (3.2). The evolution of these
quantities with 0 can then be found by completing the in-
tegration of Eqs. (A9).

Equations (A12) and (A9c) show that eo decreases with
0 while up increases with 8, so that eventually ep up.
At this stage, we use a different approximation series,
given by

——"
, gu 0 sing,

P= —[(3—r/)uo —(15+ ", vy+2vy )u —]0si Pn

+ gu 0 co—sf

(A16a)

(A16b)

From e =—a +p and tanto=—p/a, we obtain the quasi-
circular solution of Eqs. (Al). In the intermediate re-
gime, where (u;/uo)' i' =uo, we obtain

a=ao —(3 —g)uocosg+O(u0 ),
P=PO —(3—ri)uosing+O(u 0),

(A17a)

(A17b)

with the result

e =eo+(3—q) uo —2(3—g)uoeocos(P —coo), (A 1 ga)

—(3—
q )u oeosin((P —coo)

co =coo+arctan, (A18b}
e 0

—(3—g) u oeocos(P —coo)

where eo=e, (u, /uo)' ' . Averaging Eq. (Alga) over
/=2~ gives Eq. (3.14). Figure 6 then illustrates the ini-
tial conditions under which the quasicircular orbit of
Eqs. (Al) can be reached before the post-Newtonian ap-
proximation up (& 1 breaks down.

When {u;/uo)' ' «uo «1, so that ao«uo and

po « uo, we have (dropping the e)

a = —[(3—q) uo —(15+—", r/+2g )u 0]cosg
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APPENDIX B: TIDAL DISSIPATION
FOR BLACK HOLES

Here we estimate the "effective" mean coefficient of
viscosity (g), used in Eq. (2.21) for tidal dissipation, for
the case of black holes. For a slowly rotating black hole
in the perturbing gravitational field of a distant, station-
ary body located on the black hole's equatorial plane,
Hartle found that the rate of decrease in angular
momentum J of the hole due to tidal dissipation was
given by

dJ /d t = ——', Jm fm 2 /p (B1)

where m, and m2 are the mass of the body and of the
hole, respectively, and p)&m2 is the separation. We
compare this with the general formula for the rate of
change of angular momentum of a body due to tidal dissi-
pation: for two bodies in a circular orbit, with the per-
turbing body having negligible internal angular momen-
tum, so that the total angular momentum J+J«», is
conserved, we have

dJ/dt = dJ„b;, /—dt = ,'p(m—p)—' p/p

672m Pmm
&

R 2
(B3)

where n =2~/P F.or n &&Q2, the distant body can be re-
garded as almost stationary, so that

Q2 —n =Q z =J /4m 2, (B4)

where we have assumed a slowly rotating black hole
(J/m~ &&1). Also, for a slowly rotating hole, R2=m2
(using harmonic coordinates), so that Eq. (B3) becomes

dJ/dt = —(168tr/75) Jm im 2 ( ri) /p (B5)

Comparing this with Eq. (Bl), we obtain

where p and n are the reduced and total masses, respec-
tively, and where we have used the fact that
J„b;,=)M(mp)', (P/2') =a /m, and p =a for a circu-
lar orbit (using Newtonian orbit approximations). Substi-
tuting Eq. (2.21) for P/P, we obtain

,'p(mp)—'~ —P/P, (B2) (B6)
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