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Long-range efFects in K -K mixing calculated in the potential model
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We calculate the long-range effects in K -K mixing in terms of the potential model. In contrast
with the conventional methods for evaluating these effects, in the nonrelativistic approximation all
possible one-pseudoscalar-meson intermediate states with light-quark quantum numbers are taken
into account altogether. The numerical result shows that the iong-range effects may be 53% to 62%%uo

of the total Re(M]2).

I. INTRODUCTION

The EL Es mass -difference (b, :mt ——m, ) has been a
long-standing and challenging problem for several de-
cades. ' It is believed that solving this problem can pro-
vide us a good test for the standard model and enrich our
knowledge on many aspects of particle physics. The pa-
per by Gaillard and Lee on E -E mixing led to a
correct prediction of the c-quark mass. In some follow-
ing works, the box diagrams were calculated in detail.
However, the matrix-element calculations are related to
hadronization, about which we still lack enough
knowledge; therefore mostly vacuum saturation is ap-
plied to this estimation, ' ' as well as to some decay
matrix-element calculations. ' In addition the MIT bag
model and QCD sum rules are employed to include soft
QCD, i.e., some nonperturbative effects in hadronization.
Meanwhile there are many other models to approach the
problem of the EL-Kz mass difference, such as the non-
minirnal left-right-symmetric model, Higgs-boson-
exchange box diagrams, ' and technicolor" to test how
the mechanisms beyond the standard model can contrib-
ute to K -E mixing. Each of them comes in from a
different angle, and most of them are based on short-
range behavior, i.e., box diagrams. Instead, this paper
wi11 concentrate on the long-range effects in K -K mix-
ing which are calculated in the potential model.

Wolfenstein' pointed out that there are not only
short-distance effects described by box diagrams, but also
long-distance effects in K -K mixing which cannot be
ignored. The expression can be written as

bm =5m ~b,„+Dbm,
where D =1—BA.. Parameter D denotes the contribution
from low-mass intermediate states. B is the famous pa-

rameter depending on the models for calculating matrix
elements and A, corresponds to replacing m„ in the box
diagrams by a characteristic hadronic mass, as Wolfen-
stein proposed; currently we know that almost all box
contributions are from heavier c and t quarks in E -K
or B -B mixing.

Many authors have estimated long-distance efFects. ' '
The significance of these effects is emphasized from both
numerical results and physics intuition.

In this work, we introduce a new method which was
developed in the double-P-decay calculations by Ho and
Ching to estimate long-distance effects in E -E . This
is based on the idea that there are not only degrees of
freedom of real physical particles at long distances, but
also free quark degrees of freedom at short distances.
Therefore their contributions must be counted together.
There may be a problem of overcounting because it is
hard to draw a line separating long- and short-distance
effects. Cea et al. suggested a cutoff of 0.5 —1 GeV
which is about from the mass of the E meson to the
chiral-symmetry-breaking scale A. In our mechanism
overcounting is avoided when we count only the inter-
mediate states with light-quark Savors.

The short-distance effects are obtained from the box di-
agrams depicted in Fig. 1. Looking at the two diagrams
in Fig. 1, one can be convinced that only Fig. 1(a) can
correspond to long-distance effects, while the intermedi-
ate states are not free-quark states, but physical particle
states at long distances, propagating as uu pairs. This is
because the 8' boson is very heavy in this energy scale.
Furthermore, despite cu, uc and cc might be D, D
and higher-excited states as intermediate states; however,
since m, is heavy, we can a priori ignore their contribu-
tions to long-distance effects. ' Therefore, for evaluating
long-distance effects in K -K mixing, only those states
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FIG. 1. The box diagrams for K -K

0

where x, =m, 2/M~~.

These are the short-distance effects from the box dia-
grams. It is easy to see that since m„ is very small, it
gives no substantial contribution to the box diagrams cal-
culated in the quark picture. On the contrary, the
physical-particle states with uu flavor dominate the long-
distance effects, as discussed above; therefore, overcount-
ing is minimized in our calculations.

In the next section, we introduce the Ho-Ching method
and apply it to our calculations. Then we give numerical
results and a discussion.

with quantum numbers of uu are taken into account.
Generally speaking, as intermediate states there are not
only one-particle contributions, but also two-, three-, and
multiparticle contributions. In this paper, we only con-
sider the one-particle contribution, because as is usually
accepted, the multiparticle intermediate states are
neglected, adopting the argument suggested by Regge
phenomenology, ' and we will give some further explana-
tions by means of our numerical results later in this pa-
per. It seems to contrast with the statement of
Donoghue, Golowich, and Holstein that there were no
overall contributions from the single-octet particle states
due to the Gell-Mann-Okubo formula; however, as a
matter of fact, here our sum involves all possible excited
states with the same uu flavors, and there is no strange-
quark contribution, so it does not upset the Gell-
Mann —Okubo formula.

In the standard Kobayashi-Maskawa (KM) frame-
work, ' the short-distance box diagrams are calculated,
and the results are'

G2
M, 2

=
q Fxm~BM~[A, ,r)(S(x, )+A, 7)2S(x, ),

6m.

+2k,,A, ,g3S(x„x,)], (2)

where k; = V,-d V,, with V~ being the entries in the KM
matrix and B takes various values for different mod-
els, " and, for 8 = 1, the vacuum saturation is
recovered. r), , g2, and g3 are the QCD corrections' with

q, =0.85, q2-—0.6, and g3=0.4. The functions S(x, ) and
S(x;,x ) are given by

II. OUR MODEL

Generally, the mixing matrix elements can be ex-
pressed as'

(5)

and

where p& is the density of the A, state. Without H~z, 2

from the standard model, M, 2 only obtains a contribu-
tion from the last term of Eq. (5). At short distances, the
intermediate states ~A. &'s of a complete set are free-quark
states such as uu, uc, cu, . . . , tt, etc. , and calculated by
the regular Feynman rules. The results are given in Eq.
(2) by a calculation in the box diagrams. When we turn
to the lang-distance effects, there ~A, &'s are physical-
particle states and include many one-particle states, both
ground and excited, and multiparticle states as well. Our
task is to find all their contributions and sum them with
the correct relative phases. The strategy is to avoid cal-
culating individual contributions and obtain an overall
result instead, as Ho and Ching did for double-P decays. "

The long-distance effect is related to the physical-
particle intermediate states, so
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we obtain

(H —Ef ) l &p & =H li & (12)

=X'(f H««)&«IH(«li&,
and

—MI;=(Ic'lH lq&, (13)

where lf & =lE &, li & =lE &, and EI=E; =mr, . Hw is
the effective b,s=l weak Hamiltonian and ln &'s are
states which are not lK & and lK &. H, is the strong-
interaction Hamiltonian and

l
n & s are eigenstates of H, .

Principally, ln & includes any number of physical parti-
cles, so

—MI;= g' f Hw
&, &

l, l (l, llHwli&

+X,'(f H«(, (
2, &)&2,&AH«li(&

+ ~ ~ ~ (8)

hlf xf H«((( 'i i)& i ilH« liHs" —E

where the superscripts denote the number of intermediate
particles,

(9)

where Hs &' and Hsz are the Hamiltonians of the single
mesons 1 and 2, respectively, and Hs &'2 is the interaction
between them and usually can be ignored at this energy
scale. If we assume the real part of the matrix elements
of two particles is suppressed, only the first term in (8)
remains. For Hs& ', all

l 1,1 & constitute a complete set, so
Eq. (8) converges into

where

6
»n()ccosec[sy„( I —y5)u )[u y"(I —ys)d )

2

and

Hs =Ho+ ~ (14)

2 p2
Ho= g rn;+

2mi

and 8c is the Cabibbo angle. li &
= lK & is understood.

So we convert the problem of summing over all inter-
mediate states in Eq. (8) to solving Eq. (12). Equation
(12) is not an eigenequation, because EI=mz is fixed.
From Hw, it is easy to see l&p& has a uu flavor as we ex-
pect.

To solve this equation, we need a concrete form for
Hs. Hs is the strong-interaction operator and has a set
of eigenvalues EI. The main purpose of this paper is to
demonstrate the usage of this method, so that we employ
a simple potential model. Fortunately, many studies of
potential models have been done for not only finding
the spectra, but also the dynamical quantities; for in-
stance, Cea, Colangelo, Cosmai, and Nardulli and
Krasmann calculated the decay constants of heavy and
light mesons in a potential model. ' As Godfrey and
Isgur claimed, mesons from ~ to Y can be described by a
unified quark model with QCD. Here we would take
the potential and parameters given in Ref. 23:

~

~

1f Hw
&&

HwHs" —E
(10) conf+ H hyp+ H so+ HIj 1J IJ ij

(15)

where

a, (r)
V" = — —c+—br-eonf

4 4
(F; Ff)

includes the spin-independent linear confinement and
Coulomb-type interactions. The H,"" and H -' are the
color-hyperfine and spin-orbit interactions, respectively,
and Hz is the annihilation interaction. Generally speak-
ing, the relativistic corrections are not very small; howev-
er, for simplicity we first seek for the solution lip& only
from Ho+ H '", while other terms from relativistic
effects would be treated as perturbations which modify
our resultant

l ip & in a reasonable scale.
For a bound state,

lM, P, &=dt (o)lo& (17)

For a one-particle intermediate state which has uu
flavor, there is no particle with a mass equal to mz, so
that there is no singularity. By the way, in the case of
multiparticles, E„can be equal to mz and then give an
absorptive part which corresponds to EI . In nuclear
physics, the conventional treatment in Eq. (8) is to set
(E„EI)as an avera—ge value and pull it out from the
sum; then by completeness, g„ ln &(n l converges to uni-

ty. Ho and Ching suggested the insertion of I!(E„EI)—
into the brackets and turning E„ into the Hamiltonian
operator of the strong-interaction Hs. Since the states

l n, 1 & are eigenstates of Hz (Hz =Hs& "+Hz' '+ .
Hz') with eigenvalu. es E„'s the substitution is obvi-

ous. For one-particle H"', gil 1,1 &( l, ll =1 can be

dropped out because other parts in the formulation do
not dependent on I at all.

Defining
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and, in the nonrelativistic approximation,

dM(0)= g fd'p 4(p)y(r, s)d ( —p, s)b (p, r ),
P', S

(18)

where d~t is the creation operator of the meson and 4(p)
is the momentum distribution function; p(r, s) is the spin
function relating the spin indices r and s, and b, d are
creation operators of quark and antiquark, respectively.
With normalization fd p ~4(p) ~

= 1, for the K meson,

d~t(0)= f 4(p)d p —,'[bd(p, T)dt( —p, J, )

Q2
X m+ + c+br-

2m;

4a,
3r

—ms F(r)

F(r)=f(r)/&2sin8ccos8cp(0) .

Therefore, it is easy to associate [I/(2p)]F(r) with an
effective three-dimensional two-point Green s function in

under an effective potential, or a sort of propagator in
a stationary state. First, let us neglect the relativistic
correction; Eq. (25) reads

bd(—p, l)d, ( —p, 1)] .

Then one can easily derive

(19) Q2 4a,
M — + c+br-

2p 3r

=5 (r),

—
mar F(r)

(26)

Ha, ~K ) =(2n. ) —sin8ccos8C f4(p)d p
2

d 3p d p m, mdm„m

(2n. ) (2m ) E,EqE„E„

X&2[d„-(p„-t)b„(p„,l)
—d„-(p„-, L)b. (p. , t)]l0) (20)

since we take the nonrelativistic approximation, and
there do not exist vector mesons, so there exist only pseu-
doscalars with flavor uu. Therefore we can determine the
form of the ~qr ) wave function.

We write ~y) in the form

3 --.. 2
CT

(27)

where the color factor (F; F.) is averaged in the meson
as ( —~4) and M is the total mass (m i+mz), p is the re-
duced mass as m, mz/(m i +mz), and in our case m, and

mz are the constituent masses of the u quark which is
about 220 MeV. In the center-of-mass frame of E, we
can drop the c.m. momentum ~P . F(r) is the two-point
correlation function, while r is the relative coordinate be-
tween the quark and antiquark.

This question can be numerically so1ved by using the
smearing technique with a smearing function

~y) =(2n') ff(p)d p

X[d„-(—p, 1)b„(p, g)

—d„( —p, l )b„(p, t ) ]10), (21)

where

4m;m
0;~ =00 +

2 2 (m+m)
2m, m

+s
m, +m.

2

(28)

Corning to the coordinate configuration, it becomes

(Hs mz )f(r—) =&2GFsin8ccos8cp(0)5(r) . (23)

It is noted that in our derivations we omit some (2m) in
front of 5 (p) and 5 (r); careful calculations show that
(2a) finally is canceled and a form of Eq. (23) is given.
After some simple manipulations, a compact result is
reached

M,"=4GFsin 8ccos 8c ~ $(0) ~ f(0) . (24)

III. ABOUT F(r ) AND THE NUMERICAL RESULTS

where the Van Royen-Weisskopf convention is employed.
Expanding the wave function and comparing

coeScients of the corresponding creation operator on
both sides of Eq. (12), we derive

(Hs mir)f(—p)=&2GFsin8ccos8c f P(p)d p . (22)

with o.o=1.8 GeV, s =1.55, and rn, =m =rn„.
Numerically, we obtain

F(0)=1.1X10 GeV (29)

—r/R
F(r)- "'

4~r
(30)

where R is an effective radius of the spherical cavity; usu-
ally for K it is about 1/mz GeV

To compare this F(0) with that from solving Eq. (26),
we also apply the smearing function p; to F(r) and ob-
tain the expression

Because [1/(2p)]F(r) can be interpreted as a Green's
function in the E meson, one can estimate this value in a
way in which the physics picture is clear. We attribute
all potentials and mass terms to a boundary condition
which confines the propagating within a spherical cavity.
A free Green's function is given by Lee. In our case, we
modify it due to an effective mass and have a Yukawa-
type propagator in the stationary state:

From Eq. (23), one can see

(Hs —mz)F(r)=5 (r), (25)

2p 0 tj 1 —1/(2R'a' )F(0)= ——e "erfc
4~ ~1/z R 20. RIJ

(31)
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where erfc is the complementary error function. The nu-
merical result is

F(0)=c,F"'(0)+c F' '(0)+ . +c F'"'(0)+. . .

=c,F'"(0)+cz[F'"(0)]
F(0)= l. 33 X 10 GeV (32) + . . +c [F"'(0)]"+ (38}

mE K
P(0)=

2
(33)

where there is no color factor &3 due to the conventional
adopted in our calculations; then the expressions of Ref.
23 would read

It is noted that the calculated result is not sensitive to the
parameter E., i.e., the radius of the cavity of confinement.

This number is very close to that directly obtained
from numerically solving Eq. (26) with the parameters
given in Ref. 23.

The Van Royen-Weisskopf equation gives

By a dimension analysis, c2 —I/mx. , c„-(I/mx. )"
etc. From our value, F(0)/mx-0. 053, and it means
that the series (39) converges fast enough, and the contri-
bution from the two-particle intermediate state is only
6% of that of one particle. In our future paper, we will

give the estimation in more detail.
From field theory there is

f= —,c =52 MeV' (34)

Then we have ~P(0)~ =0.48 (fm ) from (32). Substitut-
ing all information back to a modified expression of Eq.
(24), we have

=P

Re(Mf;)=46Fsin Occos 6)c~p(0)~ F(0);
numerically,

(35)

X&AiHgra —iaaf & (39)

Re(Mf; ) =(0.092 —0. 11)X 10 ' GeV . (36)

That is about 53%—62'% of the total Re(M, 2) [mL —ms
=2 Re(M, z)]. From the Particle Data Group
table, ReM &2

=0. 175 X 10 GeV.

IV. DISCUSSION AND CONCLUSION

From the above calculations, we obtain long-distance
effects in E -E mixing about 53'%//—62% of the total
Re(M, z). Donoghue, Golowich, and Holstein obtained
the long-distance effect parameter D as

+0.64(+0. 17) if B)0,
1.33(+0.17) if B (0, (37}

compared with our result of about 53%—62%, reason-
ably consistent with their value.

In this work, we only consider one-particle interrnedi-
ate states as the source of long-range effects; however,
multiparticle-intermediate states also contribute through
loops. We can give a rough estimation of the infinite
series. If H'"'=g",H"'+g &&H &+ (three-body
interactions), we can omit the interaction between two
and three mesons in the intermediate states; thenH'"'=g",H'"' and we can expect that a reasonable
factorization can give F'"'(0) ~ [F'"(0)]". Then the
series becomes

The second term represents resonances with the effective
mass m&=mz. For one-particle intermediate states,
there is no such physical resonance on the particle table,
so that to the imaginary part, i.e., I, , at least two-
particle intermediate states are necessary. This is easily
obtained from the expressions given in Ref. 27 by calcu-
lating the absorptive part of X(s).

Even though we apply the relativistic correction, in the
main calculation process we employ the nonrelativistic
approximation, which may introduce some errors, and
furthermore there are some potential model parameters
obtained from fitting the data so that the accuracy of the
calculations may be influenced. Numerically, the D pa-
rameter takes a value of about 53%—62%, which is
reasonably consistent with data. The advantage of this
method is that one can evade the troublesome summing
over all individual intermediate states and give results
directly. This method can be generalized to other areas
where an infinite series is involved.

Our conclusion is that this method is applicable in K-
K mixing long-distance-effects evaluation and the resul-
tant D value taken 53%—62%, which coincides with data
reasonably.
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