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Exact Bianchi type-(I, V) solutions of the Einstein equations with scalar and spinor fields
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Exact solutions to the Einstein —Dirac —Klein-Gordon equations are found in Bianchi type-I and

type-V spacetimes. When the spinor field is massive, the Bianchi type-I universe has singularities of
the Zel dovich type, and it may begin anisotropically at a singularity, leading to a dust-filled Fried-
mann stage at late times. For "ghost neutrinos" we get an axisymmetric Zel'dovich universe. These
solutions have particle horizons. For the Bianchi type-V model there exist solutions which begin at
a singularity, tending to flat spacetime at late times. In this case the neutrinos are not "ghost" ones.

I. INTRODUCTION

There is good observational evidence that at our
cosmological epoch the Universe is fairly homogeneous
on large scales and has been highly isotropic since the
epoch in which it became definitely transparent to radia-
tion. ' It follows, that on a large scale, the Universe may
be approximately described by one of the Robertson-
Walker models. Such a model is in accord with observa-
tion of the present state of our Universe but does not ex-
plain the isotropy. Moreover, since homogeneous isotro-
pic cosmological models are unstable against perturba-
tions near the singularity, they are not likely to describe
the early Universe suitably. Therefore, it is interesting to
study more appropriate cosmological models in which
anisotropies, and possibly inhomogeneities, existing at
the beginning of the expansion, are damped out in the
course of evolution. Because of their relative simplicity,
homogeneous anisotropic models are frequently investi-
gated in current literature. These are the so-called Bian-
chi models.

The Bianchi types-I and -V universes are of particular
interest because these cosmological models contain iso-
tropic special cases and therefore allow arbitrarily small
anisotropy levels at any instant of cosmic time. This
property makes them suitable as models for our Universe.

In previous papers exact solutions of the Einstein-
Dirac equations have been given for a c-number spinor
field in a spatially flat Robertson-Walker spacetime, in
Bianchi type-I metrics and in cylindrical and plane-
symmetric spacetimes. Ray' has presented exact solu-
tions of these equations for neutrinos when the spacetime
is represented by a plane-symmetric Bianchi type-V
metric. Exact solutions for coupled Einstein, Dirac,
Maxwell, and zero-mass scalar fields" ' have been
found for static cylindrical and plane-symmetric metrics.
Some of these solutions allow only "ghost neutrinos"
(vanishing energy-momentum tensor).

In a wide class of cosmological models the initial stage
is typically similar to that of the vacuum Bianchi type-I
model first considered by Kasner. Investigations of Bian-
chi type-I models with this behavior were carried out by
Heckmann and Schiicking' and Jacobs. ' However,

later on Belinskii and Khalatnikov' and Barrow'
showed that the evolutions of the Bianchi type-I models
with stiff fluid (p =p) are significantly different from
those of the models with dust or radiation and the initial
vacuum assumption can be violated. Belinskii and
Khalatnikov further showed that stiff irrotational fluid
can be identified with a massless scalar field coupled
minimally to the gravitational field.

Weinberg' and Wilczek' have suggested that there
should exist a pseudoscalar boson, the so-called axion, of
negligible mass, arising from the spontaneous breaking of
the Peccei-Quinn symmetry which was introduced in
order to solve the strong CP problem. Because the axion
is coupled to quarks, and therefore to matter, it would be
copiously produced in stars and so it could contribute
significantly to the energy density of the Universe as cold
dark matter.

Viewed in the above perspective, the Einstein zero-
mass scalar theory acquires some relevance. Therefore, it
may be of some interest to find exact solutions of the
Einstein —Dirac —Klein-Gordon field equations for Bian-
chi type-I and type-V spacetimes, and particularly those
which allow nonghost neutrinos.

The aim of this work is to study the anisotropy damp-
ing of the Universe through unquantized scalar (minimal-
ly coupled to gravity) and spinor fields. We derive the
general solution to the Einstein —Dirac —Klein-Gordon
field equations for unquantized and homogeneous scalar
and spinor fields in the Bianchi type-I case, and in the
case in which the c-number spinor field represents neutri-
nos propagating along the symmetry axis in a plane-
symmetric Bianchi type-V metric. The paper is organ-
ized as follows. In Sec. II we present the corresponding
field equations. In Sec. III we find the exact Bianchi
type-I solutions for the case of either massive spinor fields
or neutrinos. In Sec. IV we find the exact Bianchi type-V
solutions for the neutrino case. In Sec. V we discuss the
results.

II. FIELD EQUATIONS

We shall consider the Einstein field equations, with
vanishing cosmological constant, coupled to a source
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represented by a massless free scalar field minimally cou-
pled to gravity and a free spinor field. This system is de-
scribed by the Lagrangian density ' (units have been
chosen such that c =A'= 1)

X=(detV) + [g—y V "V t( —V "(7 6)y 1(']
R(V) 1

16~|.- 2

P.„"=-0,

I "V'„P—m6=0,

R„,, = —8~G( T„,, ——,'g„,, T~ )

with T„,, = T„,, + T„,, where

T„',, =a„ya,4 —
—,'g„,, a~pa, {b,

(2.7a)

(2.7b)

(2.7c)

(2.8a)
m—yq+,'(q I'v.&a„yv, 'a, ,y) (2.1) T„„=—,

' [QI,„V', 1(
—(P,j)i.„q] (2.8b)

where V "is the vierbein field, satisfying

V „(x)V~,,(x)rl,p=g„„(x),

V „(x)V&~(x) = tl &=diag(1, —1, —1, —1) .
(2.2) PP —P /ly Q

are the generalized Dirac matrices.

(2.9)

are the energy-momentum tensors for scalar and Dirac
fields, and

v„q=(a„+~„)y,
where O.„is the spinorial affine connection

~„=—
—,'[)' 1']V. 'Vf3.,„

(2.3)

(2.4)

and the semicolon denotes ordinary covariant derivative.
The representation of the Dirac matrices I y I we have

chosen is

1 0 0 0
0 1 0 0»=~='0 0 —1 0
0 0 0 —1

g„, is the metric tensor of the spacetime (throughout this

paper greek indices run as 0, 1,2,3 and latin ones as 1,2,3),
1( is the spinor field, m its mass, g= i g y—o, and g is the
massless scalar field. R ( V) is the Ricci scalar curvature.

The covariant derivative of the spinor field f is given

by
22

III. BIANCHI TYPE-I SOLUTIONS

V 0=1, V";,=a;(t) (3.2)

and the other elements equal to zero, we obtain that gen-
eralized Dirac matrices (2.9), and the spinorial affine con-
nections (2.4} take the form

In this section we shall deal with a Bianchi type-I
homogeneous universe, and we shall seek solutions of the
field equations (2.7a) —(2.7c) which are consistent with
this model. The Bianchi type-I universe is characterized
by the spacetime interval

ds =dr a, (—t}(dx') —a2(t)(dx )
—a3(t)(dx ) (3.1)

which describes a spatially Oat anisotropic geometry with
three preferred directions. In (3.1) a;(t) denotes the evo-

lution function associated with the ith principal direc-
tion.

Choosing the vierbein given by

"=E

0 0 0 1

0 0 1 0

0 —1 0 0
—1 0 0 0

0 0 0 1

0 0 —1 0
0 —1 0 0
1 0 0 0

(2.5)

I 0=@„, I, =a, y, , (3.3a)

(3.3b)

A. m&0case

where the dot means differentiation with respect to prop-
er time r [summation convention is suspended for brack-
eted indices (ii}]. In order to maintain the Bianchi type-I
form of the metric, we take homogeneous fields, that is,
with no dependence on the spatial coordinates.

0 0 1 0
0 0 0 —1

—1 0 0 0
0 1 0 0

which satisfies the usual anticomrnutation relations

[r. l'g] = 2n.pI . — (2.6)

[(—g)'"0] =o
~

y~ —my=0,

(3.4a)

(3.4b)

where g =detg „, and the spinor field P was conveniently
redefined by

Under our assumption and using (3.3a) and (3.3b), Eqs.
(2.7a) and (2.7b) become

Variation of the Lagrangian density (2.1) with respect
to P, P, and V " yields the Klein-Gordon, Dirac, and
Einstein field equations, respectively:

x=~ —g)'"0
so that p satisfies the free-field Dirac equation.

Integrating Eqs. (3.4a) and (3.4b) we get

(3.S)
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g )
—1 /2

—imt
1e

(3.6a) ( g—)'/'==, 'Kt (t +t, ),
where

(3.12)

b
—tmt

2e

de tmt1e
iml

2e

(3.6b)

and

3 3
' 1/2

t, = —g P, +48irGa
2

3IKI

where e is an arbitrary real constant and b1, b2, d1, 12
are complex constants.

The energy-momentum tensors (2.8a) and (2.8b) for the
scalar and Dirac fields (3.6a) and (3.6b) are

P, =2 A, ,
——g I,,3

so that

'2
Ts

2 2( —g)
'

0! aTs
2 ' 2( —g)

(3.7a)

(3.7b)

3

g P, =O.
i =1

The solutions to Eqs. (3.11) are

1/3+ y,. 1/3 —
y,a;(t)=ao;It 'lt+t,

(3.13)

(3.14)

„,(Ib I'+Ib I' —Id I' —ld I'),00
(

)i/i i

( lb i
I' —I bi I'+

I
d I' —

I
d I')

a3

(3.7c) h

3 '
2y;=p; —g p, +48mGa

2

' —1/2

(3.15)

and the integration constants ao; satisfy
(3.7d)

d, /a, —a3/a3
Ti3 =t (b;b2 bibi+d—id2 d2d i

)—,
4a2

(3.7e)

dz/az —d 3/a3
T23 = (b*, b2+bib, +d, di +d2d; )

a,

(3.7f)

and all other components vanish identically.
Since the Ricci tensor R„, is diagonal for the metric

(3.1), the total energy-momentum tensor must be diago-
nal too. This imposes the following restrictions on the
spinor field components:

3

g ao, =—Ksgn[t(t+t, )] .

Then, (3.5), (3.6a) and (3.6b) lead to

2aP(t)=P +
I I

1

—imt
, e

b
—imt

2e
g(t)=[ ', Kt(t+t, )-]

d1e

d 4elmt2e

where $0 is an arbitrary real constant.

(3.16)

(3.17a)

(3.17b)

b162+d, d2 =0,
b I' —b I'+ d I' —ld I'=0

(3.8a)

(3.8b)

Thus, substituting (3.1) and (3.7a) —(3.7c) into the Einstein
field equations (2.7c) we get

(H;+H, )=
i=1

[( g)' H, ] =K—

K
( g) i /2

(3.9a)

(3.9b)

with H, =a, /a; the directional Hubble factors, and

K =4~G~(lb I'+ Ib I' —ld, I' —fd I') .

Equation (3.9b) gives

Kt +A, ;
1/2

(
—g)

(3.10)

(3.11)

where A, , are integration constants. Then inserting (3.11)
in (3.9a) we obtain, after a suitable choice of the origin of
the t coordinate,

B. Analysis of the solutions

The evolution functions (3.14) present some interesting
features to be considered. This model has two singulari-
ties, one at t = —t, and another at t=O. When K )0 we
have a contracting universe for —oo & t & —t, which is
isotropic in the remote past and collapses at t = —t, with
a highly anisotropic behavior. For 0& t &+ ao we have
an expanding universe, beginning at a singularity at t=0.
Its expansion is highly anisotropic in the early stages
(t 5 t, ); however, because of the presence of the massive
spinor field, the universe tends to isotropization at late
times (t » t, ) for any initial condition (a, -t / ), and it
approaches a dust-filled Robertson-Walker universe.

When K&0, the universe begins at a singularity at
t = —t, and collapses at t=O. During this time interval
the cosmological evolution is completely anisotropic.

For both signs of K and any initial condition, this
cosmological model near the singularities behaves like the
Zel'dovich universe"' ' because the scalar field dom-
inates
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0
(3.18) a2/a~ —a3/a3

ZQ1
(3.23c)

with q; =
—,'+y;, so that

3 3

g q, =l, g q,'&1 (3.19)

and it will be of Kasner type if there were no scalar field

source. Furthermore, it can be seen that these solutions
have particle horizons; that is, at a fixed epoch t0 & 0, no
causal interactions subsequent to the singularity t=0
have occurred between regions of coordinate separation: 0

( )
1/4

q
—b ( g) 1/4

0 (3.24)

However, since R,2 =R,3 =R23 =0, these components
must vanish. For Q1&Q2&Q3 we find that this metric
does not allow neutrino solutions because b, =b2=0.
Setting Q, =Q2&Q3 causes T,2 to vanish, whereas the
vanishing of T» and T23 forces the neutrino field to have
the form

1 —
q,.

1 to

(1—
q ) 2/3 —

P,
S

(3.20)
Thus, this metric allows only ghost neutrinos (the neutri-
no energy-momentum tensor vanishes, whereas the neu-
trino field P and current density S"do not) and since the
gravitational field equations correspond to those which
have only the scalar field as source, the solution is a spe-
cial case of the Zel'dovich universe (axisymmetric):

(3.25)

where the parameter p lies in the range 0 &p & —', and Q0,

b0 are arbitrary real constants.
The scalar field then becomes

' 1/2

P(t) =P„+ ln~t~
4mG

(3.26)

with Po an arbitrary real constant. This universe etnerges
from an initial singularity at t=0, which can be of the
"cigar" ( —,

' &p & —'-, ), "point" (0&p & —,'), or "barrel"

(p =
—,
'

) type, and the expansion rate is always highly an-

isotropic, even as t ~~. The time reversal of this case is
another possible evolution. When p =

—,
' the model is

completely isotropic for all times.
C. m=Ocase

The solution to the neutrino equations

along the x' direction, for t0 « t, .
Near the singularities, where the scalar field dominates,

the trace of the energy-momentum tensor T„„behaves as
a g ', i.e., as t, and this proves that the singularities
are true physical ones. These may be classified as (i) cigar
type (two evolutions tend to zero and the other to
infinite), at t=0 when y, & —

—,', ~y2~ & —,', y3 & —
—,', and at

t = t, whe—n y& & —,', ~y2~ & —,', y3 & —,', (ii) barrel type (two
evolutions tend to zero and the other to a constant), at
t=O when y, & —

—,', ~y2~ & —,', y3= —
—,', and at t = t, —

when y, & —,', ~yz~ & —,', y3= —,', and (iii) point type (all evo-
lutions tend to zero), at t=O when y, & —

—,', ~yz~ & —,',
~ y3~ & —,', and at t = t, when —y, & —,',

~ y2~ & —,
'

I y31 & —,
'

This cosmological model does not have pancake-type
singularities, which exist when there is only a spinor field.
For P;=0 Vi, this model is completely isotropic (k=0
Robertson-Walker cosmology) ' and there are no re-
strictions on the spinor field components [see
(3.7d) —(3.7fl].

is

I "V„Q=O, (I—y~)/=0 (3.21)

(3.22)

IV. BIANCHI TYPE-V SOLUTIONS

We shall study now the problem in a Bianchi type-V
spacetime, which has the metric

ds =a (rt)[dg (dx') ] b—(ri)e " [(—dx ) +(dx ) ] .

(4. 1)

b2

in the representation of (2.5), where y, =i yoy, y2y3
The nonzero components of the energy-momentum

tensor of the neutrino field are
1

V =V' =Q V =V =be0 1 ~ 2 3 (4.2)

This model is an anisotropic generalization of the open
Robertson-Walker model. Choosing the vierbein given
by

12
Q3

(3.23a)

and the other elements equal to zero, the generalized
Dirac matrices (2.9) and the spinorial affine connections
(2.4) take the form

Q, /Q1 —Q3/Q3

Q2
(3.23b)

r0=QyO I ]=Qy1,
x' x'I 2=be" y2, I 3=be y3, (4.3a)
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H,
~0=P ~1=

2 ~0r1

x'
e b

2a
Hbr03 2 r ll 2)

x'
e b

2a
(Hbf 03 3 r1V3)

(4.3b)

ab)
—

1

T,2= — e "[(H, H—b)(F„G„+F;G;)

+F„G„'+F;G G—„F„' G—;F ],
—

1

T,3= e ' [(H, H—b)(F;G„F„—G;)

+G,F„'+F,G„' G„—F,' F„—G ],

H,
2

+Hb r'0+r'0'+r'0=0 (4.4)

where the first and third components of 1)/ are equal and
the same occurs between the second and fourth ones; the
prime indicates partial differentiation with respect to x '.

In terms of the components of X, defined by

y( r,ix')= a' /be" P(r), x'), (4.5)

where H, =a /a, H& =b /b, and the dot denotes
differentiation with respect to g.

Assuming a massless spinor field which depends on
both g and x', and using (4.3a) and (4.3b), the neutrino
field equations (3.21) become

e 2xS'= — (F„+F; G„—G; ),—
(ab)

3x

S = (F„G; F; G„)—,
ab

3x

(4.10)

S =—3 (F„G„+F;G;).
ab

where the prime now denotes differentiation with respect
to the argument of the function, and the neutrino current
density is

2x l

S = (F+F +6+6 )
(ab)

the Dirac equation (4.4) yields

X1 X2 P X2 X1

whose solutions are

(4.6)
TD TD TD TD p12 13 02 03 (4. 1 1)

Since R12, R13 R02 and R03 vanish, the Einstein field
equations yield

y((2), x ') =
—,'[F(x '+2))+G (x' —2))],

g2(2), x ') =
—,'[F(x '+ri) —6 (x ' —ri)],

(4.7)

where F =F„+iF, and G =G„+iG, are arbitrary com-
plex functions.

On the other hand, Eq. (2.7a) in the metric (4.1) for
homogeneous scalar fields has the solution

P=ab (4.8)

where 0, is an arbitrary real constant. Therefore, the
nonzero components of the energy-momentum tensors
(2.8a) and (2.8b) are

Furthermore, demanding that the neutrino current prop-
agates along the symmetry axis leads to two mutually ex-
clusive cases: ' (a) F„=F;=0, 6„, 6; arbitrary; (b)
G„=G; =0, F„,F; arbitrary. Cases (a) and (b) correspond
to neutrinos traveling in the +x ' and —x ' directions, re-
spectively. We shall discuss first case (a).

For the metric (4.1), Eqs. (2.7c) become

H, +2Hb+2Hb(Hb H,)—
6,=8~6 e Gb —ab6 l

2 6, '2
22(Hb H, }=—8mGe—"

G, b
2b

—4
TS TS —Y'

00 11

a b i aTs Ts — e2x j2 (ab)
—2e2x

'3 2 2

Ha +2 —2H, Hb 8m'Ge

e "a b ( H„—2H +2)=—0

6„ 62b 2

6 l

(4.12)

T =b e (FF„' FF +G G —G—G„'},

T(), =b e " (F,F„' F„F,'+6;G,' —G„—G ),
—1

T02= e "(F„G,+F;6;+G,F„'+6;F
(4.13a)

b(ri)=b0e "~e "—1~' (4.13b)

which, together with (4.4) and (4.8), have the following
solutions.

(1)

a (g) =a0e'ie "—1
~

+F„G„'+F,G,'),
ab)

T()3 = e (F„G; F, G„+G, F„'—G„F,—'
(4.9)

1((( 2),x '
) =

—] /2b —
1

ie
—4g 1

~

—(c+4)/8 —[(3/2)q+x ]
2

+F„G F; G„'), —

T„=b e " (F,F„' F„F,'+G, G,
' 6,6„'—), . — .

X [6„(x' ri)+iG, (x ' —g—)] (4.13c)
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G, 2 —C
G = b e '" "sgn(e "—1),

G, 4aG
1/2

1 C+1 e"—1
P(q) =go+ — ln

(4. 13(l)

(4.13e)

(4)

a (r)) =aoexp ri ——e
C 4

b(ri)=boe",

(4.16a)

(4.16b)

where ao, bo, and Po are arbitrary real constants and C is

a real constant such that C ~ —1.
(2)

1()(g,x ') =
—1/2b —

1

ap n e
—4g

exp ——'g+ —x
2 g

a (g) =aoe "(e "+1)c/4,

b (rt) =boe "(e "+1)'/
(4.14a)

(4. 14b) X [G„(x ' —g)+iG; (x ' —g)] (4.16c)

g
—1/2b —1

f( x )
) (e

—4g+ 1)
—(c+4)/se —[(3/2)g+x']

2 G '
Cb

6 2 " — 2(x —
Yf)e

6, 4~6 (4.16d)

X [G„(x' —q)+iG; (x ' —g)] (4.14c)
1/2

0(ri) =No+
1 C
2 srG

e 2 7I) (4.16e)

6„
G;

0(ri) =4o+
1

2

with C ~ —1.
(3)

2 —C b2 2(' ")
4 6 P

1/2
C+1

arctan e

(4. 14d)

(4.14e)

with C a real constant such that C ~0. In order to deter-
mine the neutrino field exactly, we may choose 6; and
solve (4.13d), (4. 14d), (4.15d), or (4.16d) for G„.

Case (b) is the time reversal of case (a). Therefore,
making the transformation t ~ —t, a ~a, b ~b,
p~iy, 73$' (Ref. 25), p~p on all of the solutions of
case (a), we obtain the solutions corresponding to neutri-

nos traveling in the —x ' direction.

P(g, x ') =
—1/2z. —

1

ap bp

a(g)=aoe ),
b(rt) =boe

exp. — x + ——1
k
2

(4.15a)

(4.15b)

A. Analysis of the solutions

For the solutions (4.13a) and (4.13b), the universe be-
gins at a singularity at g=0 with an axisymmetric
Zel'dovich-type local behavior, since at early times, in
terms of the proper time t= f a( r)id r,tthe evolution

functions are

a(t)- t~' ')', b(t)-~t~ (4.17)

X [G„(x ' ri)+iG—; (x ' —g)]

62 G„

G;

1+k b2 2(

4mG

4(n) =No

where k is an arbitrary real constant.

(4.15c)

(4.15d)

(4.15e)

with p=—2(C+4) 'E(0, —', ) [cf. (3.25)]. If there were no

scalar field source (C = —1), then near the singularity the
universe would have locally a Kasner-type behavior. At
late times, the source generated by the propagating neu-
trino field becomes comparable to that of the scalar field,
and the universe tends to fiat spacetime (Milne universe).
When C E [ —1, 1), the coordinate system has a singulari-
ty at g= —Oc. However, we still do not know whether
the actual spacetime is singular. The invariant quantity

R„, R""~ = IH, +2[(Hb+Hb H, Hb) +(1 H,—Hb) —2(Hb —H, i ]+(1 Hb) —I—
—12'

[(C+1)(C—2)e "+C +3C+5] (4.18)

diverges when g~ —~ if CE( —1,0). Hence, for this
case, the spacetime cannot be extended beyond g = —~,
and the model is singular. Therefore, it is possible that
the anisotropic universe can be singular or not in the past
(g~ —~ ) where the neutrino field dominates, and then

I

it collapses at a singularity with an axisymmetric
Zel'dovich-type behavior. If there were no neutrino field
source (C=2), then the model would be isotropic for all
times.

The solutions (4.14a) and (4.14b) tend, in the remote fu-
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ture, to flat spacetime. When C & —1, this spacetime has
a singularity at g= —~ where the neutrino field dom-
inates. For this model an isotropic universe for all times
is impossible. Moreover, if the source provided by the
scalar field vanishes, then we obtain the solutions (4.15a)
and (4.15b) found by Ray, ' which describe nonisotropiz-
ing universes; the k = —1 case corresponds to the Milne
universe.

For the solutions (4.16a) and (4.16b) the universe tends
to fiat spacetime at late times (the C=O case corresponds
to fiat spacetime). As one goes back towards the singu-
larity at ri= —ee (C)0), one would see a highly con-
tracted universe as compared to the solutions (4.14a) and
(4.14b). In this case, the sources generated by the neutri-
no and scalar fields are comparable during all the evolu-
tion. For solutions (4.13a), (4.13b), (4.14a), (4.14b),
(4.16a), and (4.16b), there exist timelike curves which
reach the spacetime singularity at g = —~ at finite prop-
er time.

V. CONCLUSIONS

We have found the general solution to the
Einstein —Dirac —Klein-Gordon field equations in the case
of unquantized and homogeneous scalar (minimally cou-
pled to gravity) and spinor fields in a Bianchi type-I
spacetime, and in the case that the spinor field represents
neutrinos propagating along the symmetry axis in a
plane-symmetric Bianchi type-V metric. In the first case,
when the spinor field is massive, the main result is that
there exists a solution describing a universe which starts
from a singularity with a Zel dovich-type behavior (or
Kasner type if the scalar source vanishes). Then, when
the energy of the spinor field becomes important, the
universe turns into an isotropic dust-filled Friedmann

stage. The isotropization time t, will depend on the ini-
tial energy density as well as the initial anisotropy. The
remaining solutions do not have a final Friedmann stage.
For massless spinor fields we get an axisym metric
Zel'dovich universe, and only ghost neutrinos with van-
ishing energy-momentum tensor are allowed. All these
Bianchi type-I solutions have particle horizons.

In the second case we have shown that it is possible
that the Bianchi type-V universe has begun at a singulari-
ty, which can be of Zel'dovich type, and at late times it
tends to flat spacetime. The remaining solutions are ei-
ther always anisotropic or do not tend asymptotically to
flat spacetime.

For all these Bianchi type-V models the propagating
neutrinos are not ghost ones. Thus, one may think that
this solution may represent physical neutrinos.

Finally, when neither of the two sources of gravity van-
ishes, it is impossible to obtain an isotropic universe for
all times as a limiting case of the Bianchi type-V metric.
On the other hand, in the Bianchi type-I model, when the
spinor field is massive, there is only one initial condition
which gives an isotropic evolution for all times. Thus
there is an a priori vanishing probability that the
Universe has started with an isotropic initial expansion.
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