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New approach to find exact solutions for cosmological models with a scalar field
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We study the cosmological models whose ordinary differential equations can be given a Lagrang-
ian description on a two-dimensional "configuration space. " By requiring the existence of a Nother
symmetry for such a Lagrangian, we are able to show that the potential must have an exponential
form. With the help of the constants of motion we can get from that Lagrangian, we integrate the
models and analyze the behavior for all the possible varying free parameters and plot some of the
solutions. We also compare our results with others available in the literature.

I. INTRODUCTION

The inflationary paradigm is currently seen as a solu-
tion to the problems arising in standard cosmology, such
as flatness and horizon. ' The correct-time behavior in
the scale factor is usually obtained by introducing a sca-
lar field whose dominant energy density drives the
dynamical evolution in the primitive stages of the
Universe. This paradigm is not yet satisfactorily estab-
lished with regard to the connection with a theory of ele-
mentary particles, so that the choice of the potential
V(P} for the scalar field P is still an object of investiga-
tion. Potentials of polynoinial type, such as I P and
XP, have been studied. ' Potentials of exponential type
have been proposed also in connection with the four-
dimensional reduction of Kaluza-Klein theories, with
the so-called power-law inflation, and by means of argu-
ments of phenomenological type.

In the present paper, we also deal with the problem of
determining the form of the potential but from a point of
view that seems to us quite difF'erent. We may summarize
our arguments in the following points.

(i) We try to find exact solutions for the field equations
in the homogeneous and isotropic case. The first two are

1 aa= ——
a

1 a + V( ),
4 M' 2M'

(1.1a)

(1.1b)

where P is the scalar field, a is the scale factor, and
M =(g~rG)

The third equation is
2
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thought of as a vector field on TR, the tangent bundle of
R, with natural coordinates (a, P, a, P ). I may be de-
rived by the point Lagrangian

1 3
'

2 aX=3aa — a P + V(P)
2M M

(1.4)

while Eq. (1.2) is considered as a constraint and is
equivalent to the vanishing of the "energy function" asso-
ciated with X (Ref. 9)

C =a'P . (1.6)

When this is not the case, it is possible to generalize by
looking for a vector field X such that

a
E& =3ad — a P

— V(P) .
2M 2 M2

Thus, once we get general solutions of Eqs. (l. la) and
(1.1b) we have to specialize them with a suitable choice of
the initial conditions, in order to have E& =0.

It is interesting to note that the Lagrangian (1.2) can be
obtained by putting the Robertson-Walker metric into
the Einstein action. This gives a second-order point La-
grangian, which can be easily reduced to (1.4).

(ii) When V(P) =A (the cosmological constant), we are
in the de Sitter case and X does not depend on P. This
means that, in the Lagrangian (1.4), P is a cyclic coordi-
nate and the vector field 8/BP is a Nother symmetry for
X, associated with the constant of the motion

These equations can be derived by substitution of the
Friedmann metric into the Einstein action, with goo left
free to be varied, instead of being fixed to unity.

Our approach consists in considering the first two as a
second-order dynamical system associated with the vec-
tor field

where I.z stands for Lie derivative with respect to L. We
shall prove that this is possible only for a suitable class of
potentials, and we shall find new variables which allow an
explicit solution of (1.1a}and (1.1b).

The paper is organized as follows. In Sec. II we find
the vector field X and the class of potentials. In Sec. III
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we perform the change of variables and get the solutions.
In Sec. IV we discuss the solutions in connection with
their physical meaning, showing that some of them give
quite interesting models of the Universe, in which we find
an exponential or power-law inflation. In Sec. V we deal
with conclusions.

o (P)p= —&6M
a&a

if and only if

(2.7)

(2.8)

II. THE CLASS OF POTENTIALS

As sketched in the Introduction, we are looking for
symmetries of the Lagrangian (1.4). Although it would
be interesting to solve the problem in full generality, we
shall limit ourselves to the so-called point sym-
metries. " These are transformations on the tangent
space, derived by transformations on the base space in
such a way as to preserve the second-order character of
the dynamical field. ' '" The generic infinitesimal genera-
tor of a point transformation is given by

X =a(a, P) +P(a, g) + +8 8 da 8 dP 8
Ba

'
8 dt Qa dt

(2.1)

where a, p are generic functions of a, p and da/dt,
d p/dt are their time derivatives along the dynamical vec-
tor field (l. lc). We have to determine a, p such that the
Lie derivative of X along X is zero

L~X =0 . (2.2)

a+2a =0, (2.3a)

[Strictly speaking, it would be sufficient to have
LzX =df (a, P) /dt, with f any function, but it is easy to
see that, because X does not have terms linear in the "ve-
locities, " this is possible only for f =const. ] The mean-
ing of this equation is that X is constant along the flow
(possibly a local flow), generated by X, i.e., Eq. (2.2) is
identically verified all over TQ. Its explicit evaluation
gives an expression of second degree in a, (t, whose
coefficients are functions of a, P only. Therefore, they
have to be zero separately. This gives

so that the existence of the required symmetry gives a
condition on V. From (2.8) we get

V=V o =V (A e ~+B e ~ —2AB) . (2.9)

From now on we shall stick to this form for the potential,
with the only freedom left by the arbitrary constants Vo,
A, B.

From (2.3) we see that, if we perform the transforma-
tion a ~a' =k a and p~ p' =kp, the equations remain
the same. This implies that only two of these constants
are really necessary, i.e., Vo and A /B or B/A. The form
we have chosen allows us to consider A and B on the
same footing.

At this point, the existence of the symmetry X gives us
a constant of the motion, via the Nother theorem. A pos-
sible way to find it is to compute the Cartan one-form as-
sociated with X:

8&= da+ . dg=6aa da — Pdt))
BX BX . a'
r)a BP M

(2.10)

which, when contracted with X, gives the required con-
stant of the motion F (Refs. 9 and 10)

F =i+8& =6o &a a+ cr a
&6
M

(2.11)

In the next section we shall see that F, together with the
"energy function" (1.5) associated with X, provides the
possibility of achieving complete integration of Eqs.
(l. la) and (l.lb).

Remarks: (1) The potential (2.9), in the case when
A =0, coincides with one of the class found by Ratra and
Peebles. They consider the functions

3o +2a =0,
C}

(2.3b)
P =

—,'P —V(P),

p= —,'P'+ V($)

(2.12a)

(2.12b)

6aa
ay

3a V(P)+Pa V'(tt ) =0 .

(2.3c)

(2.3d)

(which are the pressure and density associated with the
scalar field '

) and require that the solutions should satis-
fy the state equation

When V=A we get a=0, p=const, so that the 3/Bp
symmetry is unique; we will not consider it any longer.
Let us set

P= — p.q
—3

3

It turns out that this is possible iff

(2.13)

o.+= Ae @+Be ~, A, 8E1R,
' 1/2

1 3

2M 2

(2.4)

(2.5)

o+(P)
&a

(2.6)

It is easy to prove now that Eqs. (2.3a)—(2.3d) have the
general solution

v=v p
v'

M
(2.14)

Thus we see that our potential coincides with (2.14) when
A =0 and q =

—,'.
One may wonder why the potential happens to select

just this particular value. The reason is that we are solv-
ing Eqs. (1.1) in the full tangent space. In the usual ap-
proach the tangent space is restricted by Eq. (1.2) and, in
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a
2 [—,'p + V(p)]=0, (2.15)

this case, by Eq. (2.13). Let us rewrite these equations as
2

III. THE SOLUTIONS

To find explicit solutions for Euler-Lagrange equations,
we shall try to associate with X a cyclic coordinate for X.
Let us look for a nondegenerate point transformation

T=P —@V=0,

the second being obtained by (2.12) and (2.13), with

q2

6—
q

(2. 16)

(2.17)

z =z(a, P), w =w(a, P),
such that

ix(dz) =const, i~(dw) =0 .

(3.1)

(3 2)

The solutions must thus lie on the surface eV=O, 7 =0.
This is possible only if the dynamical vector field I is
tangent to them. This is indeed the case if V has the form
(2.14). The same argument applies to X, which can be a
symmetry for the constrained system only if it is tangent
to the surfaces and this is possible only for V of the form
(2.14) and p= ,', wh—ich gives q

=
—,'.

This comparison seems to suggest that one may try to
use both procedures, namely, one can impose some "in-
variant relation" such as (2.13) and look for symmetries
along this relation, using the same machinery that works
for the Dirac-Bergmann theory of constraints. ' We re-
call that f(a, g, d, g)=0 defines an invariant relation if
the dynamical evolution preserves the value off only for
a selected submanifold of the initial conditions; in our
case the submanifold is defined by E& =0.

(2) It may be useful to give the Hamiltonian formula-
tion of the above results. The Legendre transformation,
applied to the Lagrangian (1.4), gives the Hamiltonian

A. A, BXO

Let us set

z =a'"o-+,

w =a'"o-
(3.3a)

(3.3b)

which satisfies (3.2) and, provided that a, A, B@0,can be
inverted to

/=&2/3M ln
A z —w

' 1/3
z w

4AB

(3.4a)

(3.4b)

In these new coordinates the Lagrangian will be cyclic in
z. From now on, it is convenient to distinguish the case
A, BPO from the case A or B =0.

2
Pa

12a
M 2 a V(p)
2a3P4 M2

(2.18)

with p, =6aa and p&
= —a P/M .

The constant of the motion (2.11) and the symmetry X
transform into

Under these transformations we get
2

V=4ABVo
z w

3ABVoX=z' —w'+ w'
M

(3.5)

(3.6a)

0+ v'6McrF= i—pa —py ~v'a Qa,
(2.19)

X =a +P +6a (Lt a) — (LrP), (2.20)
a a a u' a

aQ a ap, M ap&

with the same a and p as before, of course.
The dynamical vector field is easily derived from the

Hamilton equations

a ap a pa aI =6aa
aa M2 ap 6a ap,

M
(2.21)

a Bp~

It is easy to check that the Poisson brackets IH, FI is
zero and L r H =0, iff Vis of the form (2.9). Unfortunate-
ly, also in this formulation, the physical meaning of F is
not very clear.

(3) A paper by Kuchar"' shows that there are no sym-
metries for general relativity. One may thus wonder how
is it that we find one in this case. The point is that, in his

paper, Kuchar" considers a general metric without scalar
geld In our case,. we have a specific metric with scalar
geld. If we eliminate P, it is easy to see that, with Eqs.
(1.1) and (1.2), there is no metric at all. Thus we think it
is not possible to compare these results.

F=z,
3ABVo

E =z2 —w2- w
M2

(3.6b)

(3.6c)

3ABVo

M

we get the equations of motion

Z=O,

W —
CtP W

(3.7)

(3.8a)

(3.8b)

which are trivially integrated to

z =U;, t+zo,
w =wosin(&cot+w, ) if co) 0,
w = wosinh( V cut + w, ) if co—& 0 .

(3.9a)

(3.9b)

(3.9c)

In the case co &0, the expression (3.9c) does not take
into account the particular solution

(Here and below, with slight abuse of notation, we shall
omit unimportant constant factors. )

Setting
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w =woexp(+ v' —cot) (3 10) have

which is treated separately.
We have now to impose E& =0. Let us first consider

solution (3.9). We get for both cases

Ec =vo+ woes exp(+2& cut—)

—w 0 co exp(+2v' —cvt )

v, =+v'/cv/w, . (3.1 1) =vo . (3.12)

The case F =0 is thus excluded, since this gives no dy-
namics at all.

If cv &0, there is also the solution (3.10) for which we
I

Thus E~ =0 vp =0 and hence F =z =0.
In conclusion we have the following situation: for

cv) 0, FAO,

z —+wo+cdt +zo

w = wosin(&cot + w, ),
(3.13a)

(3.13b)

1/3
Z N

4AB

(+wo&cot +zo) —wosin (&cot+ w, )
2 2 2

— 1/3

4AB
(3.13c)

B z+w + cvwot +zo+ wosin( cvt +w
~

)
2/3M ln — = 2/3M ln

A z —w & +v'cvwot +zo —wosin(v'cot +w, )

for co &0, FWO,

z =+wo& cot +zo-,
w =wosinh(v' cvt + w~ )—,

(3.13cl)

(3.14a)

(3.14b)

1/3
Z W (+wov' cot +—zo) —wosinh'(& cot +w —

&
)

4AB
(3.14c)

Q
=v'2/3M ln

A z —w

+& cvwot +—zo+ wosinh(& —cot + w, )=v'2/3M ln
& +& cvwot +—zo —wosinh( v' cot + w, )— (3.14d)

for co &O,F =0,

Z —Z p

w = woexp(+& cot), —
(3.15)

(3.16a)

1/3

P=V2/3M ln(B zw) .

(3.18a)

(3.18b)

z 0
—w 0exp(+2v' cot)—2 2

(3.16b)

(3.16c)

Once Vp, A, B are fixed, the integration constants Np,
zo, w, must be chosen in such a way as to get a & 0 and P
well defined. This will be done is Sec. IV.

B zo+ woexp(+v' cot)—
p=v'2/3M ln

& zo+ woexp(+& cot)—
%e have then

ZW

W

3Vp

4M w

N

3Vp
Eg =Fz+

4M

(3.19a)

(3.19b)

(3.19c)

B. 3 =0 (or B =0)

Let us noN set A =0, so that o+ = —o. =Be
V = VpB e ~. In this case the transformation (3.3} is
degenerate, thus we shall use, instead,

3/2

Z= 3Vp

2M2 w

with equations of motion

2NN— (3.20a)

(3.20b)

a
—3/2

(3.17a)

(3.17b)

The case F =E& =0 entails Vp =0, which has been ex-
cluded from the beginning. For FWO, E& =0, we may in-

tegrate directly Eqs. (3.19b) and (3.19c)

which again satisfies (3.2) and can be inverted to
1

Ft +c) (3.21a)
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V F Vc, Vpc)
t + t + t+c2

4M 4M 4FM

The expressions for a, P are

VpF 3 Vpc& 3 Vpc]
a = (Ft+c,),t'+, t'+, t+c,

4M 4M 4FM

(3.21b)

1/3

The only relevant parameters left are thus h, e, o., Vp.
Case 1A.1: h =0. It is easy to see that a )0 iff o. (0

(with co&0, this implies Vp &0). We have also a(0)=0,
a'(r) & 0 for w) 0; moreover,

a (r) cc r for r « 1,
a(r) ~e' ' for r&)1 .

(3.22a)

VpF 3 Vpci 3 Vpc i2t+ 2
t+ 2t+C2

/3M 1 8 2 4M 4M 4FM
Ft +c)

IV. DISCUSSION OF RESULTS

We are now going to study the solutions in order to an-
alyze the values of the parameters Vp, A, B and of the in-
tegration constants in such a way as to satisfy the follow-
ing conditions: (i) a )0, (ii) P is well defined, i.e., the ar-
gument of the logarithm in (3.13d), (3.14d), (3.16c), and
(3.22b) has to be positive, and (iii) a is not monotonically
decreasing.

From Eqs. (3.4) and (3.18) we see that conditions (i)
and (ii) are always satisfied together, so that it is sufficient
to study the function a (t) in various cases in order to
make a selection.

Case 1: AAO, BAO, FAO [solution(3. 9)]

Case 1A: cp & 0. Let us set e=+1, cr =sgn( A 8) and
define the new time

1 + Nt +tp) (4.1)

This means that we are fixing an arbitrary origin for time.
We also see that cu determines the time scale and can be
chosen arbitrarily by means of Vp.

Let us rewrite solutions (3.14c) and (3.14d) in the form

2
wp

41 ABI

1/3

cr [(sinhr) —(ex+ h ) ]' (4.2a)

(3.22b)

The case 8 =0, AAO is treated exactly in the same
way and the results are the same, except for the sign of P
and substitution of A for 8 in Eq. (3.22b).

We see that this solution may represent a very early
Universe, with a(~) exponentially increasing and P(r)
starting with a singularity and very rapidly decreasing to
a constant.

Case 1A.2: h%0. In this case we have to compare the
function f(r)=(sinhr) with g(r)=(e~+h) . It is not
difficult to see that there are always two values rp 1 ] (with
~p&0&r, ) such that

f (7) &g(1 ) for 7&'rp or 7 ) 7r~

f(r) &g(r) for ~p&r&r, .

The case r & rp is unphysical, as we have either a (r) &0
or a (r) & 0, but decreasing. We have, therefore, two sub-
cases.

Case 1A.2a: cT &0 (i e , Vp.&.0). This is quite similar to
Case 1A.1, but of course the physical origin is now ~&.

The asymptotical behavior of a (~) is the same as before.
The only difference occurs when ~((1, but this does not
seem to be very relevant. Also P(i) is very similar as be-
fore. The value of e seems not to play a crucial role.

Case 1A.2b: cr)0 (i e , V.p&. 0). This is a more in-

teresting case. There is clearly a physical origin at T 7 p

and a physical end at ~=~, . A typical situation is shown
in Fig. 1, for e= 1 and h =100 (here and in the figures
below, the scales of a and r are arbitrary). There is a very
rapid growth of a(r) for r& rp, followed by a very slow
growth in the central part and finally a very rapid fall to
zero. Different from the cases discussed above, we now
have to choose co so that the time scale is suitably large.
An estimation of the second derivative near the point
~=rp gives a(r) &0, so that there is no inflation. The
shape of P is shown in Fig. 2. There are, of course, two
singularities (at rp and r, ) and it is also P(0) =const.

Case 1B: co) 0. Following the same scheme as in Case
A, we have to study the functions

p =v'2/3M ln cr +&2/3M lne.+ h —sinh~

(4.2b)

a(r)

where h =zp/wp cw&.
We see that wp determines only the scale of a and al-

lows us to fix it arbitrarily. The module of the parame-
ters A and 8 influence only the additive constant in P, so
that

lim /=&2/3M ln
B

'p —+ oo A
0

and, by choosing
l
A l

= l8 l

= 1, this can be made zero. FIG. 1. a(r) in Case 1A.2b; co(0, h =100, o.= 1, @=1.
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FIG. 2. P1 ri in Case 1A.2b; co & 0, h = 100, o = 1, e= 1.

FIG. 4. P(7 ) in Case 1B.1; co & 0, h =0, cr = 1, e= 1.

' 1/3
Np

o[(sinr) —(er+h) ]' (4.3a)

/2/3M 1
er+h +sinr
@~+h —sin~

(4.3b}

g(r}&f(r) for r&r, or r&rp,

g(r)&f(r) for rp&r&r, .

We only have to remember that with co) 0, cr~~0 implies
Vp+(0.

Case 18.1: h =nn; n EZ. We have a(rp)=0 for
'Tp = E'n n.. Without loss of generality, we may choose
h =0, i.e., rp=0 so that this is the physical origin of time.

Comparing f (r) =sin r with g (r) =2, we see that it is
always g (r}&f (r) so that we have to choose o & 0 (i.e.,
Vp & 0). We have thus

a(r) ~r'~' for r&&1,

a(r) ~r' ' for r&&1,

a (r) is shown in Fig. 3. The behavior of P(r) is rather
peculiar, as it goes asymptotically to a constant with os-
cillations, as shown in Fig. 4. We see that this model
shows a power-law inflation, with a behavior for large
times like that of the matter-dominated Einstein —de Sitter
universe.

Case 18.2: h P n n; n EZ. The comparison of
f (r)=sin r with g(r)=(er+h) shows that there are al-
ways two roots rp 1, for a (r) =0 (0 & 'rp & r, ). We have
also

a(t)=— Np

4 ~8~
cr exp(+2v' cot —h )—, (4.4a)

~( ) ~2/3M 1
8 h+exp(+ cot)—
& h —exp(+v' —~t)

+v'2/3M ln
8

(4.4b)

with h =zp/wp. Thus, we must choose tr &0 (i.e.,
Vp&0) and the plus sign in (4.4a). In particular, for
h =0, we have a model of the Universe without singulari-
ties, steadily increasing exponentially, with constant P
(which may be taken to be zero), that is a de Sitter
universe. In this case the state equation is

(4.5)

which is typical of exponential inflation.
Case 3: A =0, FAO [solutions (3.22a) and (3.22b)]

Discarding ~ & ~p, we have two subcases.
Case 18.2a: tJ &0 (i e , Vp. &. 0). The physical origin is

now ~, and all is quite similar to Case 1B.1, with an im-
portant difference. Examining Fig. 5 [which shows a (r)
very near to r„ for a particular choice of the parameters]
we can see that the concavity is initially downwards, then
there is a fiexus, with concavity upwards, and finally the

behavior.
Case 18.2b: cr &0 (i e , V. p.&0). Now a(r)&0 for

~p & v & v
&

and all is very similar to Case 1A.2b.
Case 2: tp & 0, A %0, 8%0, F =0 [solution (3.16)]

We have
' 1/3

FIG. 3. a (r) in Case 1B.1; co )0, h =0, o.= 1, e = 1. FIG. 5. a ( ~) in Case 1B.2a; m )0, h = 10, o. = 1, e= 1.
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The case 8 =0, as already observed, is practically iden-
tical with this one and therefore will not be treated. In
the solutions (3.22a) and (3.22b) we may set c, =0, which
again corresponds to an arbitrary origin of time and con-
siderably simplifies the computations. We assume F &0,
which only fixes the time direction. We also set

4cMF
h=, r=Ft, o =sgn( Vp), (4.6)

so that

a(r)= [or(r +h)]'~
4M 2F2

(4.7a)

P(r) =&2/3M ln o
+h 8 iVp+&2/3M ln

7 4M 2F2

(4.7b)

We see that this situation is rather different from Cases
1 and 2. Here the scale of a(r) is determined by

~ Vp~,
while F gives the time scale; the sign of Vo is again cru-
cial. The additive constant for t))(r) may be chosen to be
zero by a suitable value for B.

Case 3A: h=0. We must set 0. &0, v&0, so that
' 1/3

Vp I

4M2F2
4/3a(r)= (4.8a)

a'I V, I

P(r)=2&2/3M lnr+&2/3M ln . (4.8b)
4M F

V. CONCLUSIONS

As discussed above, this solution corresponds to the one
found by Ratra and Peebles, and it is easy to reobtain the
equation of state (2.13) from (4.8b).

Case 38: hAO. Essentially we are in the same situa-
tion of Case 3A or 1B.2b.

tron, and possibly full integration, of the system, whenev-
er a Nother constant of the motion is found.

In this paper we have found that it is possible to obtain
a Nother constant by imposing, in addition to the spatial
symmetry, a particular symmetry in the "configuration
space" (a, P, a, P). We showed that the existence of this
symmetry is possible iff the potential V( P) has the form
(2.9).

Clearly, there is no immediate physical justification for
this choice for V(P), but we did not have, until now, phe-
nomenological evidence of the law governing scalar fields.
The study of universes with scalar fields has been stimu-
lated when it has been realized that a scalar field might be
responsible for inAation. But there is still no convincing
way to realize this scenario. ' Thus there is a lack of
theoretical information about the form of V(P).

The main consequence of all this is that we have select-
ed the class of potentials (2.9) and indicated the most
reasonable, specific ones directly from the physical inter-
pretation of the explicit solutions. Contact with other
approaches is assured by the fact that exponential poten-
tials have been well studied in the literature. ' We thus
have classified all the possible models varying the free pa-
rameters of the theory, and we have plotted the time be-
havior of the scale function and the field for the more in-
teresting ones.

It must be noted that our results include some already
known models. In particular, setting the parameter
A =0, we obtained the solution of Ratra and Peebles in
their case q =—', . Solutions (4.4a), and (4.4b) give us the
the typical situation of the de Sitter universe or of ex-
ponential inflation.

Of particular interest are solutions (4.3a) and (4.3b),
which give us a smooth transition from a power-law
inflationary universe (with expansion law a ) to a
matterlike universe (with expansion law a ). We think
that it is necessary to give a more detailed analysis of the
viability of the model of a universe with this kind of po-
tential, but this work will be done in the near future.

The aim of the approach pursued in this paper consists
in using the full machinery of classical Lagrangian dy-
namics in order to study the properties of the system of
equations associated with a homogeneous isotropic
universe filled with a scalar field P and a generic potential
V((()). From this method it is possible to obtain a reduc-
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