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Self-similar solutions are commonly used to describe Newtonian gravitational collapse. We ex-
amine, here, the structure of general-relativistic spherical collapse solutions for a perfect fluid with a
barotropic equation of state. We find that these solutions are quite different from the homogeneous
Oppenheimer-Snyder dust collapse solution on which our intuition is so heavily based. The most
amazing feature that we find is the generic appearance of naked singularities in these solutions.

I. INTRODUCTION

One of the main difficulties in the study of gravitational
collapse is that only a few exact solutions to Einstein
equations are known which are relevant to gravitational
collapse with reasonable matter. New collapse solutions
are therefore very useful, even if they are simplified ones.
Today, 50 years after Oppenheimer and Synder! pro-
posed the spherical homogeneous dust collapse model,
most of our knowledge and intuition about gravitational
collapse is still based on that model. Obviously, this
model is oversimplified, because we believe that gravita-
tional collapse begins from a very inhomogeneous initial
state, with a strong centrally peaked density profile. Nev-
ertheless, despite its simplicity it describes well the for-
mation of the horizon, and the evolution of the central,
spacelike singularity. In a sense, this simplified model, in
which the singularity is formed inside a black hole, gave
the basic motivation to the concept of cosmic censorship.
According to the cosmic censorship conjecture,’ the
singularities that appear in a gravitational collapse (in an
asymptotically flat universe) are always surrounded by an
event horizon. Moreover, according to the strong ver-
sion of cosmic censorship, such singularities are not even
locally naked (that is, no timelike or null curves can
emerge from these singularities).

A significant improvement to the model of Oppenhei-
mer and Snyder is obtained by the application of the
Tolman-Bondi solution for inhomogeneous spherical dust
collapse (see, e.g., Ref. 3). This model can exhibit two
kinds of naked singularities: a shell-crossing singularity*
and a shell-focusing singularity.’~’ These kinds of naked
singularity are generic for spherical dust collapse, and
with proper choice of initial data they are globally naked.

The main deficiency of the Tolman-Bondi model is that
it neglects the pressure, which is likely to diverge at these
singularities (where the density diverges). One can expect
that for a reasonable equation of state the pressure gra-
dients will prevent the formation of shell-crossing singu-
larities. However, the situation is not so clear concerning
the shell-focusing singularities. Unfortunately, there are
only a few known collapse solutions with an equation of
state that is reasonable and well determined (there are
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several solutions with “formal” equations of state, that is,
one postulates the metric coefficient and then calculates
both the pressure and density via Einstein equations).
This lack of collapse solutions makes it difficult to test
the cosmic censorship hypothesis, as well as other ideas
concerning gravitational collapse.

It is well known that the Einstein equations admit self-
similar solutions. Self-similar space-times are defined by
the existence of a homothetic Killing vector. Along each
integral curve of that vector field all the points are similar
to each other, apart from a scale factor that evolves
linearly with the proper length along the integral curve in
question. Self-similar space-times were studied by several
authors.®’”!' So far, they have been used mainly in the
cosmological context.”!®1271% Tt is the purpose of this
paper to use self-similarity to model spherical-symmetric
gravitational collapse of compact objects with reasonable
equation of state.!>!® This attempt is not trivial, because
the definition of self-similarity is kinematic (the existence
of a homothetic Killing field), while the natural formula-
tion of a collapse problem is an an initial-value problem
(with an equation of state defined a priori). It was shown,
however,”!? that a p =kp equation of state is compatible
with self-similarity (where p is the pressure, p is the densi-
ty, and k is a constant). For this equation of state, if the
initial profiles of density, velocity, and gravitational po-
tential satisfy some ordinary differential equations (the
equations of self-similarity, to be described in Sec. II), the
system will evolve in a self-similar manner. p =kp is the
only barotropic equation of state compatible with self-
similarity. This equation of state, even if simplified, is
nevertheless physically consistent in the whole range
0=k =1. In the case kK =1 it is just the equation of state
of “radiation.” The special case k =0 coincides with the
dust case. In Sec. IT A we will further discuss the physi-
cal interpretation of that equation of state for arbitrary &
values.

The main difficulty that appears when one tries to em-
ploy self-similarity to describe gravitational collapse is
the asymptotic behavior at infinity. In the context of
gravitational collapse of compact objects we would gen-
erally like the space-time to be asymptotically flat. On
the contrary, self-similar solutions are not asymptotically
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flat. For instance, in a fully self-similar solution the mass
of the collapsing “object” is infinite. In order to model
the collapse of a finite-mass object, it is necessary there-
fore to match a self-similar interior to a Schwarzschild
exterior. In Sec. VI we perform such a matching via an
intermediate region. We show that if the matching
(which can be done as smoothly as desired) is sufficiently
far from the center, the central region will not be affected
by this matching, and it will evolve in a self-similar
manner, until a sufficiently late stage of the collapse.

With self-similarity, Einstein equations are reduced to
a set of ordinary differential equations. This enables one
to solve them numerically in a simple and reliable
manner. It is also relatively easy to study the asymptotic
behavior of these equations near the critical points that
exist in the various solutions. Because of its simplicity,
one can use self-similar collapse models to test various
ideas in the theory of gravitational collapse. Our main
attention in this paper is devoted to the cosmic censor-
ship hypothesis. In a spherical self-similar space-time it
is easy to solve the equation of motion for radial null geo-
desics, and this enables us to study the causal structure of
the space-time. In Sec. V we show that in a significant
part of the space of self-similar solutions there is a global-
ly naked central singularity from which null geodesics
emerge to infinity. To our best knowledge this is the only
known counterexample to cosmic censorship for a perfect
fluid with pressure. In this respect, this is probably the
strongest known counterexample to cosmic censorship.

We point out that this counterexample is not regarded
as a total contradiction to cosmic censorship. The for-
mulation of Penrose? to this conjecture deals with stable
space-times with naked singularities, and it is not yet
known whether the self-similar solutions discussed in this
paper are stable. It is well known that in several exam-
ples of space-time with naked singularities [the maximum
extensions of Reissner-Nordstrom, Kerr and Kerr-
Newman, Taub-Newman-Unti-Tamburino (NUT), etc.,
space-times] the Cauchy horizon is unstable to the forma-
tion of a “blue sheet”—a null hypersurface on which the
blueshift diverges (see Ref. 17 and references there). It is
therefore important to note that in the naked-singular
self-similar solutions that we discuss in this paper the
Cauchy horizon is not subject to a blue-sheet instability.'®
It is still possible, however, that other modes of instabili-
ty exist in these solutions. In addition to the Cauchy hor-
izon, there exists in the self-similar solutions another
characteristic hypersurface (the ‘“‘sonic point”; see Sec.
VII), associated with sound waves. One might expect
that like the blue-sheet instability, some sort of hydro-
dynamic instability will be associated with this hypersur-
face. Recently we have studied the stability of the
equivalent Newtonian self-similar collapse solutions. We
have found!® that most of these solutions are subject to
such an instability (the “kink instability”; see Sec. III A).
There exists, however, a discrete set of self-similar solu-
tions which are stable to this mode. We expect, but have
not verified, that the same situation occurs in the relativ-
istic self-similar solutions.

Newman?® proposed an alternative formulation to the
cosmic censorship hypothesis, in which the requirement
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for stability is replaced by the requirement that the naked
singularity is strong (in the sense defined by Tipler
et al.'7). He has shown that both the shell-focusing dust
naked singularities and the shell-crossing dust naked
singularities* that was found by Eardley and Smarr’® and
by Christodoulou’ are not strong. On the other hand, in
some of the Vaidya solutions®! there are null geodesics
that emerge out of a strong naked singularity to infinity.
But ingoing null geodesics that reach this singularity do
not end in a strong singularity. He suggests, therefore,
that nature avoids naked singularities in which both in-
coming and outgoing null geodesics end in a strong singu-
larity. This has motivated us to study the strength of the
singularity in the naked-singular self-similar solutions. In
Sec. V we show that for both incoming and outgoing null
geodesics the naked singularity is strong. This contra-
dicts Newman’s formulation for the cosmic censorship
hypothesis. Lake?? and Lake and Waugh'® have shown,
independently, that the Cauchy horizon in our self-
similar naked-singular solutions emerges from a strong
singularity. The analysis here is more general and in-
cludes both outgoing and ingoing null geodesics.

Self-similar models are widely used to describe
Newtonian collapse, of matter with either iso-
thermal®* =28 or polytropic® equations of state. From the
point of view of local physics, the equation of state
p =kp can be associated with both types of equations of
state (see Sec. I A). However, mathematically the rela-
tivistic self-similar model is related to the isothermal
model. The latter is, in fact, a limiting case of the relativ-
istic self-similar solution. We discuss the isothermal
Newtonian self-similar model and its connection to the
relativistic model in Sec. III.

In Sec. II we present the basic equations and the basic
formal structure of the self-similar solutions in both
Schwarzschild and comoving coordinates. Other coordi-
nates (such as double-null coordinates) are also useful,
but we will not use them here. Section III describes
briefly the equivalent Newtonian model and its connec-
tion to the relativistic model. In Sec. IV we discuss the
overall physical structure of relativistic self-similar
solutions—the occurrence of singularities, the existence
of regular center, sonic point, apparent horizons, etc.,
and the asymptotic behavior at infinity.

Section V is devoted to analysis of null geodesics and
causal structures. We first show the existence of a few
especially simple null geodesics (ingoing and/or outgo-
ing), which play a central role in the analysis of null geo-
desics. We then explore the causal structure of the self-
similar solutions, and find out that there are two kinds of
solutions: with and without naked singularity. For
naked-singular solutions we show the existence of one
nonradial simple null geodesic that spiral out infinite
times on its way from the naked singularity to null
infinity. We calculate the time dependence of the redshift
of light emitted from a source located at the center, and
find out that this redshift diverges at the moment that the
naked singularity appears. We study the strength of the
naked singularity for four simple null geodesics: one in-
going (the ‘“anti-Cauchy” horizon) and three outgoing:
the event and Cauchy horizons, and the simple spiral
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geodesic. We find out that this singularity is strong for
all of these null geodesics.

In Sec. VI we discuss the matching of self-similar inte-
rior to an asymptotically flat exterior by means of a
cutoff. In Sec. VII we discuss the properties of the *“‘sonic
point,” a critical point that exists in all the self-similar
solutions, and its implication on the structure of space of
solutions. In Sec. VIII we briefly discuss the special case
k =0, the self-similar dust solutions.

II. BASIC EQUATIONS
A. Spherical self-similar space-times

Self-similarity is defined invariantly by the existence of
a homothetic Killing vector field.””!! In specific coordi-
nate systems, self-similarity is manifested by a simple
scaling relation for the metric functions. For instance, a
spherical space-time is self-similar if there exist a radial
area coordinate r and an orthogonal time coordinate ¢ for
which the metric functions satisfy

gu(ct,er)=g,(t,r),
(2.1
g, (ct,cr)=g,.(t,r),

for every ¢ >0 (see Sec. Il B). A similar relation exists for
comoving coordinates (see Sec. IIC) as well as other
coordinate systems.

If the matter field is a perfect fluid one can verify that
the only barotropic equation of state which is consistent
with Eq. (2.1) is of the form

p=kp, 2.2)

where p is the total energy density, p is the pressure, and
k a constant.

Equation (2.2) can be viewed as either (1) an equation
of state of isothermal gas (when adiabatic heating or cool-
ing is neglected, and when the internal energy is negligi-
ble compared with the rest mass) or (2) an extreme rela-

|

TS: 2D (uu'—ku,u”)=(1—e ") +xe *\',
TY: 2D (uu"—kuu')=(1—e *)—xe *v',

T9: 2(k +1)Du'u,=x% *\",

r

u"|D’ —xu'D’

uaTaB;B: —k "'%

where a prime means a derivative with respect to x.

The line element [Eq. (2.5)] is invariant under a trans-
formation of the form t —7(t), v—%. However, Eq. (2.7)
and the field equations (2.9a)-(2.9d) are not invariant un-
der this transformation. These equations and the subse-
quent discussion are invariant to a transformation of the
form t —7=at. Clearly this transformation amounts just
to a linear rescaling of x.

We shall call the particular coordinates, for which Egs.
(2.5), (2.7), and (2.9a)-(2.9d) are valid ‘self-similar

+(k +1 )e—(}»+v)/2[(De[v+)x)/2u r)l_x (De()\+v)/2ul):]___0 ,

AMOS ORI AND TSVI PIRAN 42

tivistic limit of an adiabatic equation of state

p=aN*+! 2.3)

When the rest mass of the particles is negligible relative
to the internal energy we obtain

—a a1tk
p kN , (2.4

which leads to Eq. (2.2).

In the context of gravitational collapse and singularity
formation, which we are interested in, it is natural to
adopt the second interpretation.

B. Representation in Schwarzschild coordinates
We define “Schwarzschild-like”” coordinates (r,¢) as
ds’=—e"dt*+e*dr’+r?dQ? (2.5)

where dQ?=d6*+sin’0d?¢. There are four hydro-
dynamic variables p,p and u’,u” the components of the
four-velocity. p and p are related by Eq. (2.2) while u'
and u” by
—e'u?+etu?=—1 (2.6)
with four independent functions v, A, p, and u". In a
self-similar solution we can express these functions as

Eﬂx—z), )\.:)\.(X) R
4mr
v=v(x), 2.7
u'=u(x), u'=u'lx),
where
x=TL (2.8)
t

is the self-similarity variable. The Einstein spherical
self-similar equations in these coordinates become

(2.9a)
(2.9b)
(2.9¢)

(2.9d)

Schwarzschild (SSS) coordinates.” One may also use the
“ordinary Schwarzschild coordinates,” for which the
metric is given by Eq. (2.5) and lim v=lim,_, , A=0.
A full self-similar space-time is not asymptotically flat
hence these coordinates are irrelevant for it. However,
we introduce later a cutoff which enables us to have
asymptotically flat solutions and the ordinary
Schwarzschild coordinates are applicable in describing
these solutions.

The mass m(r,t) is defined by e *=1—2m/r. We

r— o
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define M as
M= =Lt (2.10)
r 2
We can rewrite now (2.9a)—(2.9¢) as
=D[1—(k +Du,u"]—M , (2.9a")
—ixv'e *=D[1—(k + Duu'l—M, (2.9v")
[ — D }\. r ’
xM'=(k +1)7e u'u, (2.9¢")

Equations (2.9a’) and (2.9¢’) yield an algebraic expres-
sion for u "

D[1—(k+Du,u"l—M

U, =x =X .
! (k +1)De’u"? Q

Using Egs. (2.6) and (2.11) we find

(2.11)

v— Q2 2
eV=—=—- (2.12)
retur?”
and
. 1+eru?
= " 2.1
u Ox (2.13)

and we are left only with three independent functions: D,
u’,and M.

In Appendix A we show that we can get rid of x from
this system of equations and reduce the number of in-
dependent functions to two. We can use one of the in-
dependent functions, say A, as an independent variable
and express u” and D as function of A. A given point
(A,D,u") can be assigned to an arbitrary value of x. This
freedom corresponds to the transformation t—7=at
which leads to x—X=x/a. Such a transformation
leaves u’, D, and A unchanged.

In solutions describing spherical collapse we require,
that at least initially, the solution is regular at the origin.
(We will see later that a singularity forms at the origin at
t =0.) We call the regular world line (¢ <0, r =0) the
“regular center” and we denote it by 0. With a regular
center we impose two boundary conditions at the origin:

u"0)=0, u'(0)=1 (2.14)

The first condition corresponds to the requirement that
the matter flow is regular at the center. The second con-
dition is just a convenient scaling of the time coordinate
which is set to be equal to the proper time of a particle at
rest at the regular center. This condition fixes ¢ and x
and with it we can no longer transform t -7 =at.

We expand Egs. (2.9a2)-(2.9¢) to second order in x near
0~. We find that the behavior near the origin is charac-
terized by Dy =limDx ~

L 2 3k +1 2 ,
X D=DotDo 30y T 13+ ||
+0(x*%, (2.15a)
W= —2 x+0(xY) (2.15b)
3(k+1) ’ )

=1+ — 2+0(x* 2.
u k1) ; x“+0(x"), (2.15¢)
A=1Dyx?+0(x?), (2.15d)
v=Dy(k +)x*+0(x*) . (2.15€)

We see that for a given k the solutions with a regular
center form a one-parameter family of solutions. In Sec.
VIII we show that the solution must have a critical point
and beyond it the family of regular solutions is two di-
mensional.

C. Comoving coordinates

We define comoving coordinates (7,R) by requiring
that in these coordinates

urt=uTsH (2.16)
The comoving line element is

ds’=—evdT?+e dR*+r’dQ? . (2.17)
The normalization condition u #u“= — 1 yields, therefore,

ul=e V72, (2.18)

We define a comoving similarity variable y =R /T and
write the hydrodynamic and metric functions as

D(y)

mr

p(R,T)= , W(R,T)=W¥(y),

(2.19)

AR, T)=A(y), r(R,T)=7F(y)T .

As in the Schwarzschild coordinates, the comoving
condition [Eqgs. (2.16) and (2.18)] and the form of the line
element [Eq. (2.17) )] are invariant under a transformation
of the form: T—T(T), R—R(R). However, the self-
similar structure [Eq. (2.19)] is not invariant under this
transformation unless they are linear, i.e., T=aT and
R=bR.

We will call comoving coordinates for which (2.19)
holds “self-similar comoving (SSC) coordinates.”

Substitution of the self-similarity condition [Eq. (2.19)]
in the comoving spherical Einstein equations yields

TY: — 27" —W'(F—yF')+yA'F' =0, (2.20a)
TY: 1+e Y(F—yF' NF—yF' —yFA")
—eM2FF+FI—FF'A)=0, (2.20b)

2k D'

®o. =% =

TH,: ¥ PR (2.20c)
2 D' 2 7 1

TE : —A=—"— =+ | +4 | ——— .

b il e (2.20d)

where we have defined D=D /72=41rpT2, and a prime
now means a derivative with respect to Egs. (2.20c) and
(2.20d) can be integrated immediately to yield

2k

L~

InD +ay , (2.21a)

A=—

(InD +2Iny)—4(InF—Iny)+a, , (2.21b)

k+1
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a, and ay are arbitrary constants which corresponds to
the freedom to perform the linear coordinate transforma-
tions T—aT, R —bR. A coordinate choice e¥=1 at the
regular center will fix ay. With this choice T =t at the
regular center. Another arbitrary coordinate choice will
fix a5, and the scaling of R.

Substitution of Eqgs. (2.21a) and (2.21b) in (2.20a) and
(2.20b) yields a closed system of two ordinary differential
equations for D and 7. The system is of first order for D
and of second order for 7. As in the SSS case there are, in
fact, only 2 physical degrees of freedom in the solution.

D. Transformation from SSC to SSS coordinates

Self-similarity is an intrinsic geometrical property of
the space-time. Hence if we can express a solution in SSC
coordinates there exist corresponding SSS coordinates.
We show here that a coordinate transformation between
these two systems exists. The diagonal form of Eq. (2.5)
yields

tr— ,—A

Ozg =¢ it_ v

oR

or
oR

B
oT

ar
oT

. (2.22)

We define =t /T and look for a solution of Eq. (2.22) of
the form

(R, T)=1(y) . (2.23)
We obtain a first-order differential equation
e M —e YT —yf " )N(F—yF')=0 (2.24)

that defines 7(y) up to an integration constant. The latter
is fixed by the requirement that at the regular center
T =t, hence 7(0)=1. We define now the SSS similarity
variable

x=r/t=°F/f=x(y).

The world lines x =const, which correspond to
y =const’, are the invariant curves of the homothetic
Killing vector that exists in the space-time. Generally
the inverse function, y =y (x) exists, and we can transfer
all functions of y to functions of x. The rest of the metric
functions are

(2.25)

—A—

e r=e A2 Y (F—yF )2 (2.26a)
and

e V=e MT—yr' )Y —e A2 (2.26b)
The velocities are

u'=e VAr—yr'), (2.27a)

ul=e VUAT—yi) . (2.27b)

D is the same in both coordinate systems. The right-hand
side (RHS) of Eqgs. (2.26a) and (2.26b) and Egs. (2.27a)
and (2.27b) is a function of y only. Using Eq. (2.25), one
finds that the metric functions, the velocities, and D are
functions of x.

The regular center is located, in the SSC coordinates,
in R, =0. This is the only choice which is consistent

with self-similarity. (7 must vanish at the center hence
this must be a self-similar world line and the only con-
sistent choice y . =0 leads to R, =0.)

For a given finite y value, R, r, and ¢ are proportional
to T and all three vanish when T =0. Hence
(R,T)=(0,0) corresponds to (r,t)=(0,0). We will
denote this point as the origin or simply by (0,0).

E. The singularities

The point (0,0) is singular in every self-similar solution.
To see this we consider the density at the regular center:

3 (2.28)

and the density diverges at T =0. The density diverges
also when we approach the origin (0,0) along any self-
similarity line of the form y =y,:

(Tyo)= 220 (2.29)
Py '
The density at T =0 for R0 is finite since
D,
lim p(T,R7#0)= lim ———, (2.30)
T-0 70 47r(R,T)*

where D, =lim, . D (Ref. 30).

The singularity at the origin follows directly from the
self-similar structure of the solution [Egs. (2.7) and (2.19)]
and it does not reflect any singularity of the solutions of
Egs (2.9a) and (2.9d) or (2.20a) and (2.20d). This singular-
ity is the one that can be seen from infinity in some solu-
tions. The divergence of the density in this singularity re-
sults also in a divergence of the curvature scalars there.
In general in a perfect fluid the divergence of the density
leads, necessarily, to divergence of the scalar RﬁR‘é
which satisfies Rng; =p’+3p% The Ricci scalar

@ =p—3p divergences also if k7 1.

In the solutions that we discuss in this paper, ‘“black-
hole-type” solutions, there is a Cauchy horizon emerging
from the singularity at (0,0) (see Sec. V) when this singu-
larity is naked. In these cases we continue the solution
analytically across the Cauchy horizon. The following
discussion of the structure of the space-time beyond the
Cauchy horizon depends on this continuation. When the
singularity is not naked the evolution that follows the for-
mation of the singularity at the origin follows directly
from the initial data. In both cases the singularity that
forms at (0,0) acquires mass at a rate proportional to T
(see Fig. 8 and the discussion in Sec. IVD). At T >0
there is a massive singularity at the center (r =0). But
the center does not remain at R =0. The singularity is at
R=yn,T.

Another family of solutions, which we call “asymptoti-
cally Friedmann solutions” exists. In these solutions the
whole T =0 spacelike surface is singular. This singulari-
ty resembles the collapse to r =0 of a closed Friedmann
solution. We will not consider these solutions in this pa-
per.
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F. Exact solutions

We consider now a few exact solutions to the self-
similar equations.

(1) Dust. Our perfect fluid becomes dust when k =0.
The self-similar dust solution is a special case of the
Tolman-Bondi solution. We will discuss this solution in
Sec. VIII.

(2) A static singular solution. In this solution u"=0. It
follows from Eq. (2.9¢) that A is a constant (A=A4,), and
it follows from Eq. (2.9a) that D is also a constant, with

D=L1-e ™)=D,, (2.31)
M=My=1—c "°=2D, . (2.32)
The only metric function that depends on x is v:
ev=x%, (2.33a)
with
a=(k +1)Dse‘°=m (2.33b)
1—2D;

(we have chosen here an arbitrary integration constant).
For a given k there is only one possible D, value. This
cannot be observed in Egs. (2.9a)—(2.9d) since Eq. (2.9d)
becomes trivial when #"=0. We use, instead, the self-
similar radial Euler equation (with u"=0)

4k
= 34
xv'=2" (2.34)
to obtain [using also Egs. (2.33a) and (2.33b)]
2K 2.35)

S (k+12+4k

The static solution [Egs. (2.31), (2.32), (2.33a), (2.33b),
and (2.35)] is of the same form for both the SSS and the
SSC coordinates.

In this form of the solution it seems to be dependent.
To discover the static nature of the solution we transform
to7=1t'"% and we find that
e’=(1—a) %%, u'=(1—a)y °. (2.36)
It is clear that the static solution does not have a regular
center. Therefore, it does not belong to the general group
of solutions that we are interested in. However, this solu-
tion is a limit of a series of solutions with a regular
center. We will discuss this in Sec. IV B.

(3) The Friedmann solution. The spatially flat cosmo-
logical Friedmann solution is also a self-similar solution.
In this solution all the space becomes singular at T =0.
It is a typical member of what we call an “asymptotically
Friedmann solution.” In SSC coordinates it looks like

2
2 B

v __ A 4/(3k +3)

1, er=l1——2 _ ,
¢ ¢ kx| Y

(2.37)

~ 2 _
D.—_ s r:_‘y|(3k+l)/(3k+3)‘

III. NEWTONIAN SELF-SIMILAR SOLUTIONS
A. An overview

We review in this section the Newtonian isothermal
self-similar collapse model, which is the Newtonian
analogue of the relativistic solutions that we are consider-
ing. This model was proposed by several authors?®* % as
an astrophysical model for collapse of interstellar clouds
and formation of protostars. Here we are interested in it
because it contains many features of the relativistic solu-
tion within a much simpler formalism, and without the
relativistic coordinate singularities. We show latter that
in the limit (k —»O,D0=limx_’07 Dx ~2>const) the rela-
tivistic solutions are approximately Newtonian: A <<1,
u"<<1. Hence, we can predict many features of the rela-
tivistic solutions from consideration of their Newtonian
analogue.

The Newtonian spherical motion of self-gravitating
perfect fluid is described by three partial differential
equations for the mass m (r,t), the density p(r,¢), and the
radial velocity v (r,¢z). The Newtonian equations can be
obtained directly or as a limit of Einstein’s equations with
A<<1, v<<l1, |u'| << 1. In this limit 4" is identified with
v.

Self-similarity is obtained from the condition

vint)=v(x),

D (x)=4mr’p(r,t),

where x =r/t. The self-similar equations are ordinary
differential equations:

(v —x)D'+Dv'=0, (3.2a)

(v —x)'+ kD' | M=2k _, , (3.2b)
D x

M+xM=D , (3.2¢)

where a prime denotes, here, a derivative with respect to
x. In self-similarity mass conservation leads to

v
1 _

M=D (3.3)

Hence there are only two independent variables D and v.
We will consider solutions of Egs. (3.2a)-(3.2¢) with a
regular center (x =07 ) for ¢z <0. Regularity at x =0"
requires v(x =07 )=0. The regular solutions are fixed,
therefore, by one parameter: D,,.

Newtonian solutions with different & and the same D,
are related by a rescaling transformation. To see this
consider the rescaled variables:

x=x/Vk ,
v=v/Vk, D=D/k (3.4)
M=M/k .

With these variables k disappears from the rescaled equa-
tions
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(t—x)D'+D7'=0, (3.5)
G-z A2 M2 (3.6)
D %
m=b|1-Z|, (3.7)
X

where a prime denotes, for a rescaled variable, a deriva-
tive with respect to X. A solution of (3.5), (3.6), and (3.7)
(with a regular center), a “‘general solution,” is character-
ized by D. It represents a one-parameter family of phys-
ically different solutions (with different k values). There
is no such relation between different self-similar relativis-
tic solutions.

Just as in the relativistic case the density diverges at
the center like |¢| 72 and the center becomes singular at
t =0. We will focus our discussion on solutions in which
at ¢t >0 fluid shells collapse into the central singularity.
The mass of this singularity grows linearly with z. These
solutions are the Newtonian analogues of the relativistic
“black-hole solutions.”

Figures 1(a) and 1(b) describe a typical solution of this
type. Figure 1(a) describes the precollapse part (¢ <0)
while Fig. 1(b) describes the postcollapse part. One can
see in Fig. 1(b) the divergence of M, 7, and 4mpt =D X ~2
at x =07. Figure 2 describes the same Newtonian solu-
tion as function of 1/x. In this representation the con-
tinuous transition of the solution from ¢ <0 to ¢ >0 is
manifest. /M and |U| increase monotonically. The densi-
ty increases initially due to the collapse. Once the mas-
sive singularity is formed at the center, its strong gravita-
tional field attracts the fluid in its neighborhood and the
density for a given r decreases. This behavior is manifest
in the graph of D(1/%).

The Newtonian gravitational potential, ¢, is given by

W _m_Mm

ar 2 p (3.8)
which leads to

o _ M (3.8)

dx X

We choose ¢(x =07 )=0 so that
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FIG. 1. The Newtonian Penston-Larson solution. The short
dashed line is —7, the long dashed line is D, the short dashed
dotted line is M, and the long dashed dotted line is 4mpt2. (a)
describes the solution at z <0 and (b) for ¢ > 0.
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FIG. 2. The Penston-Larson solution as a function of 1/X.
The short dashed line is —b, the long dashed line is D, and the
short dashed-dotted line is M /10.

¢=¢(x)=f*——mi"’dx

0

(3.9a)

We define a rescaled gravitational potential =1 /k, and
we obtain

Px)= f;——mw) dx .

(3.9b)

The Newtonian limit (k—0, e¥=~1) of Eq. (2.9b") yields
v'=2M/x =2¢'. Since v(0)=y(0)=0, we find that in
this limit, v=24.

At t =0 all these solutions have a particularly simple
form,

v(r,0)=Vk T, ,
(r,0)= kD (3.10)
P 4mr?’ ’

m(r,0)=kM _r=kD _r ,

which resembles the form of a static Newtonian solution
(this would have been the case if v, =0). An asymptotic
expansion to first order in 1/X near 1/x =0 depends on

two parameters, D, and U :

(3.11)

and

v=D _Inx+y,—D 0,.x '+O0(X?) (3.12)
(with v, =2D ). ¢ is, clearly, just a constant of in-
tegration. The divergence of ¢ at t =0 suggests that v
will diverge at ¢ =0 in the relativistic solution and that
the line + =0 will be singular. This is indeed the case but
this singularity is just a coordinate singularity of the SSS
coordinates.
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All the solutions of Egs. (3.5) and (3.6) pass through a
“sonic point” xg,, defined by v —x==x1. The system of
equations is degenerate at this point. Some solutions are
not extendible beyond x,. Other solutions can be ex-
tended in a smooth but not analytic manner. (All the
derivatives of 7 and D higher than some order diverge at
X.,-) There is only a discrete set of solutions that pass
through the sonic point analytically. Ori and Piran'
have shown that all the nonanalytic solutions are unsta-
ble to a development of a kink (a discontinuity in the ve-
locity and density gradients) at x, (Ref. 31). Among the
discrete set of analytic solutions at x, there are only two
for which v =0 everywhere. One is the homogeneous
solution (the Newtonian analogue of the time-reversal
Friedmann solution). The homogeneous solution is also
unstable to a development of a kink at xg,. The other is
the ‘“black-hole-type” Penston-Larson solution which
was described in Figs. 1 and 2.

B. The relations between Newtonian and relativistic solutions

Generally when a Newtonian solution satisfies

Ml <<1, |yl <<1, |vl<<1, (3.13)

one can expect that it will be a good approximation to
corresponding relativistic solution. The approximation
improves when the last inequality becomes stronger.

For any x#0 and x#c, lim;_(X(x)==%co.
Hence, lim;_qv(x)=lim; ,(Vk 7,), lim; oD (x)
=lim, (kD). It follows that when D, and ¥, are
finite we can choose small enough & such that ¥(x), v (x),
M(x), and D(x) will be arbitrarily small for any given
x7#0%. The condition that D and 7, are finite holds
for ‘black-hole-type” solutions but is not valid for
“asymptotically Friedmann” solutions. For ‘black-hole-
type” solutions we find that, for a fixed x,

lim M= lim v= lim ¥=0 . (3.14)
k—0 k—0 k—0

Thus, in the limit kK —0 a given relativistic solutions is

well approximated by some Newtonian solution (see Fig.

18). Similarly, in this limit, the relativistic solutions are

related by a rescaling transformation equivalent to Eq.

(3.4).

When we take the limit [Eq. (3.14)] we hold D and o
constant. When we perform the corresponding limit for
the relativistic solutions we let D/k and u"/V'k ap-
proach a finite function (of X) (in particular D, ap-
proaches also a constant value). One can use another
limiting process, in which D and u" approach a constant
function (of x). In this limit we obtain the relativistic
dust solutions (see Sec. VIII).

Every Newtonian solution (of a “black-hole type’’) con-
tains, however, a strong field region near the massive
singularity at x =0%, where #, v, D, and M diverge [see
Fig. 1(b)]. Near ¢t =0 there is a region where ¥ diverges
but v, D, and m are finite and small. This reflects the
divergence of v and the breakdown of the SSS coordi-
nates at t =0. As k decreases both regions become nar-
rower (both in terms of x and of X). In particular the line
x =1 (r=t) is located in a weak-field region for small
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enough k. In the limit kK —0 the weak-field region be-
comes flat and » =¢ is null. In Sec. V we use this limiting
procedure to demonstrate the appearance of naked singu-
larities in relativistic solutions with small enough &
values.

IV. A GENERAL DESCRIPTION
OF RELATIVISTIC SOLUTIONS

A. The numerical solution

To obtain a general relativistic solution we solve nu-
merically Eqgs. (2.9a)-(2.9d) (for SSS) and (2.20a)—(2.20d)
(for SSC). These are ordinary nonlinear differential equa-
tions that we solve using standard numerical techniques.
To check the accuracy of our solutions we have per-
formed the following tests: (1) comparison of the solution
with different grid sizes; (2) comparison of the solutions
in the two different coordinate systems; (3) comparison
with analytic solutions like Friedmann or dust; (4) com-
parison with the Newtonian limit (when it is valid); (5)
comparison with the analytic asymptotic expansions.

The results that we present here are significant to at
least four digits. There is no numerical problem in im-
proving this accuracy. However, none of the properties
of the solution that we describe depend critically on the
accuracy of the solution.

The set of Egs. (2.9a)—(2.9d) and (2.20a)—(2.20d) contain
some singular points (e.g., the sonic point, the regular
center, the massive singularity, and coordinate singulari-
ties) which we discuss. In these points we always expand
the solution analytically [see, e.g., Eqgs. (2.15a)-(2.15e)].
We use these expansions both to overcome the numerical
problems at these points and to study analytically the be-
havior of the solutions there. In fact the numerical solu-
tion is needed mostly to bridge between these asymptotic
expansions.

B. The sonic point and the space of relativistic solutions

We have seen earlier that for a given k a self-similar
solution is characterized, locally, by two parameters [D,
and #'(0)]. In the regular solutions (before 7"=0) that
we consider, the velocity u” vanishes at the center, and
such solutions are characterized near the origin by D,,.
However, D, characterizes the solution only up to the
“sonic point” which we denote x =x,(y =y,,). At this
point the fluid moves at the speed of sound relative to the
self-similarity line x =xg,. The self-similar equations
[Egs. (2.9a)—(2.9d), (2.20a)-(2.20d)] are degenerate at
x =xg,. The behavior of the solutions at the sonic point
resembles the behavior of the Newtonian solutions.?®~28
We discuss the behavior of the solutions at the sonic
point in Sec. VII. In this section we consider briefly the
implication of the existence of the sonic point on the
space of solutions.

In some solutions D’ and u” diverge at the sonic point
and the solution cannot be extended beyond it. We will
consider, in the sequel, only solutions for which all (first-
order) derivatives are finite at x; and the solution can be
continued beyond it (without a shock wave) in a self-



1076 AMOS ORI AND TSVI PIRAN 42

similar manner. This requirement forms a ‘“band struc-
ture” in the space of solutions. The D, line is divided
into an infinite set of “permitted” segments (for which
the solutions can be continued) and “forbidden” segments
(for which the solutions necessarily terminate at the sonic
point). In every “permitted” band, only few solutions are
analytic at Xgp- All the other solutions are smooth, but
not analytic there.

The sonic point is, generally, a branching point in the
solution. Therefore, an additional parameter is required
to specify the solution beyond x, and the space of solu-
tions is a two parameter set for |x| > |xspl. On the other
hand, if one focuses on solutions which are analytic at
Xops the space of solutions is reduced to a discrete set
(there is a discrete set of D, values for which x, is ap-
proached analytically, and for every such solution there
is only one analytic continuation beyond x,). (See Sec.
VIL.)

A similar structure of infinite bands exist also in the
Newtonian model. Whitworth and Summers®® have
shown that every band has its own typical velocity
profile. In the first band 4" <0, corresponding to a “‘pure
collapse” solution that collapses everywhere. In the
second band u " <0 near the origin and it changes sign at
least once but not more than twice. This solution col-
lapses at the origin but has an expanding region (which
may or may not reach infinity). The nth band has a col-
lapsing region near the origin and » —1 expanding re-
gions separated by collapsing regions. The limits between
the collapsing and expanding regions are self-similarity
lines which move relative to the matter and reach the ori-
gin at t =0.

After checking (numerically) a range of the parameter
space (0<k =1) we have foand that a similar behavior
appears in the relativistic model, at least for the first two
bands. This typical behavior is shown in Figs. 3(a) and
3(b).
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FIG. 3. Three self-similar solutions for k =0.05. (a) displays
4mpt* and (b) displays —10" 'u”. The short dashed line
denotes the solution with Dy=0.85, the long dashed line—
Dy, =600, and the short dashed-dotted line—D,=800000. The
variance in the density profile of the Dy, =0.85 solution (from
0.85 at x =0 to 0.79 at x,) is not apparent because of the large
logarithmic scale used in (a). One can see that when n increases
(here from 1 to 3) the density profile approaches a straight line
(in log-log coordinates). This straight line corresponds to
D < x %, which is the density profile of the static solution (see
Sec. ILE). In (b) the extension factor of 10" ! expresses the fact
that as n — o0, u"—0.

When we increase n the number of nodes in the veloci-
ty profile increases and the absolute value of the velocity
decreases. Thus, at the limit n — o, u"—0, and the solu-
tion approaches the static solution (see Sec. I F). This
behavior, which was discussed in Ref. 11, is demonstrat-
ed in Figs. 3(a) and 3(b) (in which the vertical scale of the
nth order solution is extended by a factor of 10" 1),

There are only two analytic (at x,) “pure collapse”
families of solutions: the Friedmann solutions [with
Dy,=2/3(k +1)*] and the general-relativistic generaliza-
tion of the Newtonian Penston-Larson (GRPL) solutions
(which exist for 0 <k <k,~0.036+0.002).

C. Classification of the relativistic solutions

We divide the solutions to three different classes ac-
cording to the behavior at T =0. For this purpose it is
useful to define the quantities

D=D;, M=My, u"=ury, 4.1)
on the self-similar line 7 =0.

(1) Black-hole solutions. In these solutions a massive
singularity forms at the center at T =0. The mass of the
singularity grows linearly with 7.

(2) Asymptotically Friedmann solutions. In these solu-
tions ur, Dy, and M diverge at T =0. The situation
resembles the “big crunch” when all the universe col-
lapses to one point.

(3) Repulsive solutions. In repulsive solutions the cen-
tral singularity, that forms at 7 =0 disappears instan-
taneously and the fluid expands regularly afterward. A
particular case of these solutions is the time symmetric
case in which the expansion is a time reversal of the col-
lapse. In the time-symmetric solutions u=0.

An interesting subclass of these solutions are the explo-
sion solutions. These are solutions with a large positive
ur. They contain a central collapsing core surrounded
by an expanding envelope before T'=0. The density of
the central core grows (like T %) but its mass decreases
(like |T]). At T=0 all the fluid shells move outward
with u7>0. For T >0 these shells are accelerated out-
ward with velocities approaching the speed of light. A
vacuum region forms at the center, whose boundary is
the light cone emerging from the singularity at (0,0) (see
Fig. 4). These solutions do not have a Newtonian analo-
gue. We will discuss these solutions in a separate publi-
cation.

In the “black-hole” and repulsive solutions Ur, D,
and M are finite. When u <<0 we have a ‘“‘black-hole”
solution, when u;>>0 we have an exploding solution.
When |u}| is relatively small the solution has a second
sonic point at 7 >0. Some solutions terminate at this
sonic point. Those that can be continued are either a
“black-hole”-type or repulsive solutions.

D. “Black-hole”-type solutions

From now on we will discuss only “black-hole”-type
solutions. The asymptotically Friedmann solutions have
been considered by Carr and Yahil'* (asymptotically
Friedmann solutions without a regular center have been
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FIG. 4. A schematic space-time diagram for an “explosion
solution” in r —¢ coordinates. Each fluid shell initially collapses
and then (when it intersects the dotted line) it expands ap-
proaching asymptotically the speed of light. The line n denotes
the light cone of the (0,0) density singularity. n is also the
boundary between the fluid exterior and the expanding vacuum
interior.

considered by Carr and Hawking!?> and Bicknell and
Henriksen'?). We will discuss the explosive solutions
elsewhere.

Figure 5 is a schematic space-time diagram of a
“black-hole” solution in SSC coordinates. Figures 6 and
7 describe a kK =0.01 GRPL solution in SSC coordinates
[Figs. 6(a) and 6(b) for T' <0 and Figs. 7(a) and 7(b) for
T >0]. Figures 7(a) and 7(b) display a singularity at
Y =Yms Where D, u’, and M diverge and 7=0. The
matter shells collapse into the central singularity along
Y =y (see Fig. 5). The asymptotic behavior near y, is
given by

7
|
71
7
.- : }
o
S
7o | 1
4 |
A L B7 )
SO
- 1
T e
et N TR I
OO I T T |
S I R T | R
o T |
s I | | I
[ R I N |
O R T |
(I 1 1 i
[ I R |
(Y| 1 I 1
[ T N B |
O I
sp

FIG. 5. A schematic space-time diagram of a ‘‘black-hole-
type” solution in comoving coordinates. ah is the apparent hor-
izon and sp is the sonic point. The dashed lines denote the
world lines of the fluid shells.
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FIG. 6. A typical “black-hole” solution—the k =0.01
GRPL solution in comoving coordinates at T <0. (a) The short
dashed line is —u’, the long dashed line is 4mpt?, and the short
dashed-dotted line is m /r. (b) The short dashed line is 7, the
long dashed line is —ggz, and the short dashed-dotted line is
8rr-

DszSSyIB-k, Fz7m88y2/3 ,

MM, Sy 2,

ewméka’ eAOCSy—Z/z' ,

u'~u,dy '3, 4.2)

where 8y =(y —y,.)"”""¥. One can show that this
asymptotic behavior is characterized by two free parame-
ters. It follows directly from the form of the metric func-
tions that the singularity at y_ is spacelike. The diver-
gence of WM at the singularity is related to the fact that
the singularity is massive. The mass of the singularity
grows linearly with T:

m singularity __

lim MF=M

T y —bym>

r. . =const . (4.3)

ms’ ms

The divergence of M also indicates that there are
trapped surfaces near the massive singularity. Hence
there is a black hole in these solutions.?

We will return to the description of the asymptotic be-
havior near the massive singularity at Sec. VI where we
will be using SSS coordinates.

The SSC coordinates become singular at two other
self-similar lines.

(1) T =0 where g7, diverges:*

Ak +1)
gy Ik 4.4)
(2) R =0 (the regular center) where gz diverges:
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FIG. 7. The T >0 part of the kK =0.01 GRPL solution. The
notations are the same as in Fig. 6 (correspondingly). The y ¢
singularity is located at y =0.47.
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—4/[3(k +1)]
8RR .

<y 4.5)

These are only coordinate singularities which can be
bypassed by using SSS coordinates or other comoving
coordinates which are not SSC.

A different set of coordinates that are particularly use-
ful for a global description of the space-time are (7,r)
coordinates where r is an area coordinate and 7 is the
proper time measured by an observer comoving with the
matter. To define 7 uniquely we fix 7=0 along T =0.
One can easily verify that all the self-similarity lines are
of the form r /r=const. Figure 8 describes the schematic
form of the “black-hole” solutions in these coordinates.

2
all the positive solutions of Eq. (5.3) with
yi,>y3 > - >yr>yp ..y~ is the solution describing

a simple ingoing geodesic.
If R (T) is a solution of Eq. (5.2) then, for every a >0,

R, (T)=aR (T /a) , (5.4)
is also a solution. A simple RNG is invariant under the
transformation (5.4), but the curved RNG’s are not.
Hence, using Eq. (5.4) we can generate a one-parameter
family of curved RNG’s from any given curved RNG.
Since radial null geodesics (RNG) are a one-parameter

The massive singularity is located at » =0" and it grows

linearly with 7.

V. NULL GEODESICS

A. General structure

The radial null geodesic (RNG) equation in a spheri-
cally symmetric space-time with a diagonal metric is
172
4R _

—8rr
daT

(5.1
8RR

where the plus corresponds to an outgoing geodesic and

the minus to an ingoing one. In a self-similar space-time
Eq. (5.1) is of the form

4R _

aT (R/T) .

(5.2)

An important group of solutions of Eq. (5.2) are solutions
of the form R =y,T, where y, is a constant. We call
these solutions ‘“simple RNG’s.” The other geodesics

will be called “curved RNG.” The negative (positive)
solutions of the algebraic equation

_ Yerr ) _
grr(y) ’

F(y)

(5.3)

describe ingoing (outgoing) simple RNG’s that reach
(leave) the singularity at (0,0). We denote by y{,...,y}

AAAAAAAAAAA
/

o

FIG. 8. A schematic space-time diagram of a ‘“‘black-hole-

type” solution in (r,7) coordinates. The notation is the same as
in Fig. 5.

family of solutions all the RNG’s are divided into a small
number of equivalent classes. In every such equivalent
class all the RNG’s are related by the transformation
(5.4).

The simple RNG’s play a central role in the causal
structure. To show that we first write Eq. (5.1) as

1/2

where / =InT and the plus-minus sign correspond to out-
going and ingoing geodesics. The simple RNG’s satisfy
g ¥(y)=0. Consider now, for example, the RNG’s in the
range y; <y <y;. Outgoing RNG’s cannot cross each
other (apart from in a singular point). Hence these geo-
desics do not cross y| or y3. g has a constant sign in
this range since it does not vanish there. According to
Eq. (5.5) an RNG, y(/), in this range will be a monoto-
nous function. Defining y, . =lim; ,, . y (/). We obtain
¥y <y.. <p7. g" must vanish for both y, _ andy_ _;
hence, they must coincide with y,, and y,,. Suppose
that g ¥ >0 then y_ =y} and y__ =p7. Such RNG
spans the whole range (y3 ,p7 ). It is tangent to y; at
(0,0) (which corresponds to / = — ) and it is tangent to
yi at T—ow. The role of y| and yj is reversed if
g <0. In every point (R,T) in the range y; <y <y}
one can find an outgoing RNG which is equivalent to
y(I) [by means of Eq. (5.4)]. This new geodesic is ob-
tained from the original one by the simple transformation
I —1+1, (with some constant /;). Since only one outgo-
ing RNG passes through any point (R, T), all the outgo-
ing RNG’s in the range y3 <y <y7 belong to the same
equivalence class. Figure 9 describes, schematically, this
structure. Similar behavior appears between any pair of

y+ :
r 2z /7,
; // //// / +
/7 //// .y7

// ///
/ ///

Iy

/177

17,7

1/,

R
FIG. 9. A schematic description of outgoing RNG’s (dashed

lines) between two simple outgoing RNG’s, y{ and y7.
going
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simple RNG’s.

The situation is different in the two extreme ranges
VYms <y <y and 1/y <1/y}. The curved RNG’s do not
span the whole range — o« </ < o0, but terminate at the
regular center (or y_) in a finite / value, i.e., a nonzero
finite T value (see Fig. 10). For y_ this is evident from
Eq. (4.2), which reads g *(y ;)= —p . >0. For the regu-
lar center, this behavior is clear when one uses SSS coor-
dinates (see Sec. VF) in which g *(07)==%1. Conse-
quently, if n =0 (i.e., there are no simple outgoing
RNG?s), all the outgoing RNG’s leave R =07 in finite
T <0 values and reach y_ in finite 7 >0 values.

The divergence of [ on the line T'=0 does not indicate
any special feature of this line, and the RNG’s cross it (in
finite R values) from the y <0 to y >0 without any prob-
lems (this is also evident when one uses SSS coordinates,
in which the line T =0 has no special rule).

This analysis can be repeated for ingoing RNG’s. We
conclude therefore that if there are n simple outgoing (in-
going) RNG’s, they divide the curved outgoing (ingoing)
RNG’s into n + 1 equivalence classes, and corresponding-
ly divide the R — T plan into n + 1 ranges, with a one-to-
one correspondence.

In the next two sections we apply that analysis to re-
cover the structure of ingoing and outgoing RNG’s.

B. Ingoing geodesics

Figure 11 describes F for y <0. One can verify from
Egs. (5.3), (4.4), and (4.5) that lim, , F(y)=o and
F(07)=0. Hence, there exists at least one point y ~ for
which F(y 7 )=1. In all the “black-hole-type” solutions
that we have studied there is only one such point (in oth-
er types of solutions there might be more then one such
point) and there is only one ingoing simple RNG. Figure
12 describes schematically the ingoing geodesics in a
“black-hole-type” solution.

C. Outgoing geodesics

We divide the “‘black-hole-type” solutions to solutions
containing a naked singularity and solutions that do not
contain one. Figure 13 describes the functions Fand g+
in the range T >0, for a few solutions. limF =+ « for
both y >y, [Eq. 4.2)] and y — « [Eq. (4.4)]. F has a
minimal value F_;, between this two values. When

-l
~ -
§§—---——-

0|

FIG. 10. A schematic description of outgoing RNG’s be-
tween y., and the last simple outgoing RNG y, .
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FIG. 11. F as a function of —y (for T <0) for the kK =0.01
GRPL solution.

F_,,>1 there are no simple outgoing RNG and the
singularity at (0,0) is not naked (see Fig. 14). In these
solutions all the outgoing geodesics terminate at the mas-
sive singularity. When F_, <1 there are two values y|
and yj for which F=1. In this case the singularity at
(0,0) is naked. The outgoing simple RNG’s at y| and y;
and all the curved RNG’s between them reach infinity
(see Fig. 15). y| is a Cauchy horizon and y; is the event
horizon. All the outgoing geodesics that leave (0,0) in the
range y, <y <y are initially tangent to y;. In these
geodesics r increases initially (with 7') until the apparent
horizon y,;, is reached. r decreases later and the massive
singularity at y . is reached within a finite 7 value.

D. Naked singularity solutions

A numerical study reveals that for every k in the range
that we have studied (0<k <0.4) there are solutions
with naked singularities. The existence of these solutions
is evident from the following arguments.

In Sec. IIT we have discussed the Newtonian limit at
k—0. We take a series of “black-hole-type” solutions
with k values approaching zero, such that both D /k and
u’/V'k approach limiting functions of X =x /V'k. These
functions correspond to a Newtonian solution of Egs.
(3.5)-(3.7). Consider now the line X =1. On this line we
have, for k —0, v=¢y=k{(X=1), and M=kM(X=1).

ims

FIG. 12. A schematic description of incoming RNG’s in a
“black-hole-type” solution.
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FIG. 13. Fand g* at T >0 for two “black-hole-type” solu-
tions. One (the dashed lines) is the k =0.005 GRPL solution,
which contains a naked singularity. The other (the dashed-
dotted lines) is the kK =0.015 GRPL solution, in which there is
no naked singularity. The short dashed and dashed-dotted lines

denote F, and the long dashed and dashed-dotted lines denote
+

g .

Hence —g,,x2/g, ~x*=k. Since k <1 this line is time-
like and future directed. Therefore, for small enough &
the singularity at (0,0) is naked.

In Sec. IV we have mentioned that the space of solu-
tion is divided into a set of bands. For a given k, we take
a series of solutions with each member in a higher n
band. This series will approach the static singular solu-
tion (provided that one chooses the appropriate continua-
tion at xg,). Since the latter is naked (with F; =0) all
the solutions in that series with sufficiently high n have
F_;, <1, and their singularity at (0,0) is naked.

According to these two arguments solutions with small
k or with n > 1 (i.e., solutions with oscillations in the ve-
locity field) are expected to contain naked singularities.
The numerical studies suggest that these are the only
self-similar solutions with naked singularities. For exam-

~<.

FIG. 14. A schematic description of outgoing RNG’s
(dashed lines) in r,7 coordinates for “black-hole-type” solutions
without a naked singularity.
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FIG. 15. A schematic description of outgoing RNG’s
(dashed lines) in 7,7 coordinates for “black-hole-type” solutions
with a naked singularity.

ple, all the GRPL solutions with k <k.=~1.0105 are
naked, but those with k > k. are not. It seems that all
the “pure collapse” solutions with k > k_ are not naked.
On the other hand, in the second band there are naked
singular solution for every k.

It is clear that the subset of naked singular solution is
of nonzero measure in the three-dimensional space of
self-similar spherical solutions.

E. Penrose diagrams

Figures 16 and 17 describe the Penrose diagrams of
both types of solutions. In the naked singularity solu-
tions different RNG’s emerge from the singularity at
(0,0), hence the singularity at (0,0) is not a point but an
ingoing null line. In solutions without a naked singulari-
ty all null or timelike curves terminate at the massive
singularity. In consequence, there is no future null
boundary in Fig. 17.

This causal structure corresponds to the structure of

FIG. 16. Penrose diagram for ‘“‘black-hole-type” solutions
with a naked singularity.
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FIG. 17. Penrose diagram for “black-hole-type” solutions
without a naked singularity.

complete self-similar solutions, which are not asymptoti-
cally flat. To obtain an asymptotically flat solution we in-
troduce a cutoff (see Sec. VI) and match the solution to a
non-self-similar region. If the cutoff is done far enough it
does not change the nature of the overall causal structure
of the solution with a naked singularity. For solutions
without a naked singularity the cutoff changes the overall
structure as a future null infinity and an event horizon
appear.

F. RNG'’s in SSS coordinates

Some features of the solution are easier to grasp in SSS
coordinates. The analysis of null geodesics in SSS coordi-
nates is completely analogous to the one in SSC coordi-
nates. The RNG equation in SSS coordinates is
172

dr 8u
ar | =2 5.6
dt 8 o
In terms of x and o =Int Eq. (5.6) becomes
172
ax _ |8 =gt (5.7)
do &

The simple outgoing (ingoing) RNG’s of the form r =x;"t
satisfy g T(x;7)=0[g ~(x 7)=0], where x ,x7 ,x7, etc.,

correspond to y ~,y1,y7, etc., x ", x7,x7,... are also
the roots of the algebraic equation
2
_ x°g, (x)
Flx)=——"—=1. (5.8)
8u

F vanishes at x =0 [see Eq. (2.15)] and diverges at limits
x—o (t— o) and x -0 [see Eqgs. (6.11)]. There is a
minimal value F,;,. F has a naked singularity if F,;, <1.

In all the naked singularity solutions we need four SSS
coordinate patches to cover the whole space-time. x ~ is
located in the first patch t <0. x| and x; are at the
second patch (0 <t); hence, all the outgoing RNG’s that
reach infinity remain in the first two SSS patches. These
are the two patches that admit a Newtonian weak field
approximation. One can use the Newtonian approxima-
tion to study the simple RNG’s x ~ and x| (but not x5 ).
In this limit e"e*—1, and F-—>x2  Hence,
lim;, ,ox ~=—1and lim;, ox{ =-+1 (x; does not exist

in this approximation it is located in the narrow strong
field region near x =0"). Figure 18 describes F and the
Newtonian approximation to F for a few GRPL solu-
tions.

G. The redshift
We turn now to the redshift
dt, 172

dt

s

8ulro/ty)
8.(07)

z= (5.9)

along a geodesic x (¢) that emerges from a source at the
center at ¢, and reaches an observer at r =rj=const at
to. We calculate z at the limit ¢, —0 and we find the red-
shift along the geodesic x| that leave the singularity at
(0,0) when it is naked (see Fig. 19).

We denote

+

Ox (£)=x(t)—x] (5.10)

lim,saox(t)=x1+; hence, lim, ,8x =0. 8x(t) satisfies
the same differential equation as x (z), Eq. (5.7). It fol-
lows from the self-similar structure of the solution [or
from a direct solution of Eq. (5.7)] that the dependence of
Ox of the parameter ¢, is of the form

Ox =b6x(t/t) . (5.11)

On the other hand we can, in the limit that we consider,
expand g © to first order in 8x to obtain, from Eq. (5.7),

ddx dg * -

Lor 1% = 5.12

do dx x=xTax Gdx ( )
and

8x ~ae% =at© R (5.13)

where a determines the geodesic and it is fixed by ¢,.
Comparison of Egs. (5.11) and (5.13) yields
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FIG. 18. F(x) for GRPL solutions. The short dashed line—
for kK =0.001, the long dashed line for k =0.005, the short
dashed-dotted line for kK =0.01, the long dashed-dotted line for
k =0.011. The dotted line denotes the Newtonian limit k —0,
for which f(x)=x2. All these solutions contain a naked singu-
larity except that with k =0.011.
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FIG. 19. A schematic space-time diagram for the redshift
calculations. r, is the world line of the observer, while r =0
(t <0) is that of the source.

sx(n=d ||, (5.14)
where A4 does not depend on ¢,. As ¢, approaches 0,
8x (o)~ A | — ’ (5.15)
x (ty)= .
0 x 1t
We define
7o 1 1
St=ty———=r —-—— (5.16)
0 x7 %1 x(t9) x7
Since 6x —0,
1 6x
St __r08 ; rO Tz (5.17)
Using Egs. (5.15) and (5.17) we obtain
G
o o
St = — A (5.18)
(x7)? | x] 1t
and
dStZGA ro ot (5.19)
dts XT XT 1ts| .
Substitution of (5.19) in (5.9) yields
— G+1
AG r
2= SV g, (x) | — (5.20)
1 X ]t: [

Finally we use the definition of G [Eq. (5.12)] and Eq.
(5.7) to obtain

G+1=

——e

dx

d (v—A)/2 ]

d(v—A)

dx (5.21)

1
2

which, using Egs. (2.9a) and (2.9b) becomes

(5.22)

In the Newtonian limit k—0 we have G+1=kD_. In
all the cases that we have examined numerically
0<G+1<1. Hence the redshift diverges like a power of
t,. Ori and Piran'® have shown that the redshift diverges
like a power law; however, the expression for the redshift
given in Ref. 15 is wrong.

For asymptotically flat solutions with a cutoff (see Sec.
V1) the redshift measured by an observer at infinity is ob-
tained from Eq. (5.20), if one replaces r, by r.(x] ) and
multiplies the RHS by the factor [1—2m, /r.(x] )] /2
Here, r.(t) [or r.(x)] is the world line of the cutoff, and
m,, is the total mass of the collapsing object.

G+1=e’[2m —(1—k)D] .

H. Nonradial simple null geodesics

In addition to the two simple RNG’s x| and x there
is a nonradial simple null geodesics from the singularity
at (0,0) to infinity. Since our space is spherical we can
consider such a geodesic in the equatorial plane (6=1m/2)
without any loss of generality.

There are three nontrivial geodesic equations:

iiﬁ"—=0 (5.23a)
dA
which yields k,=const= —L,
dk, 1 9, 1 98,
i ~5Tk’2~3?k’2=0 , (5.23b)
and
g, k" g,k +g,k?=0, (5.23¢)

where k“=dx?/d)A and A is an affine parameter. The
condition that the geodesic is simple: » =x;t yields

2 2
k’z(xfg,,ﬂ;r,,)z—L—2=—L—2i2 . (5.24)
r x1 t
We define
h(x)=g, (x)+g,(x)/x? (5.25)
and obtain, from Eq. (5.24),
kr=-—L__ 1 (5.26)
xih(x;) t*
If h (x;) <0, Eq. (5.26) has a solution
xPV —h(x))
A=Y T 5.27
5L ( )

where we have chosen an integration constant such that
A=0 at (0,0). We can rescale A to obtain

A=1t? (5.27)
in which case
2
X
=—2’—\/—h(x,) (5.28)

Substitution of Egs. (5.27) and (5.26) in (5.23b) yields
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xt

2

which is equivalent to h'(x;)=0. We have found that a
simple nonradial null geodesic of the form

t=VA, r=xt, $=¢o+v —h(x,)nt ,

(g, T8 /x{) =8y (5.29)

(5.30)

exists if A'(x;)=0, h(x;)<0. This geodesic spirals out-
ward, with r increasing by a factor of
exp[27 /1 —h (x;)] every rotation in ¢.

g, /x* vanishes for both x =c and x =0". Hence
h =g, >0 at these points. It follows from Eq. (5.25) that
h vanishes only at the simple RNG’s. Therefore, if there
are no simple outgoing RNG’s £ >0 for ¢ >0 and there is
no simple outgoing spiral null geodesic. If the (0,0) singu-
larity is naked, 4 vanishes and changes its sign at both x|
and x3. h has a minimal value at x,(x] <x,<x7).
Clearly 4 (x;)<0 and h'(x;)=0 and there is a simple out-
going spiral null geodesic at x;.

As the radial simple null geodesics, the spiral simple
null geodesic is tangent to a homothetic Killing vector.
This vector field is a linear combination of the radial
homothetic Killing field and the azimuthal Killing field
dé.

I. The strength of the singularity

An interesting feature is the strength of the singularity
at (0,0). Lake?? and Waugh and Lake'® have shown that
the null geodesics x| emerges from a strong singularity.
We extend here, his arguments to all simple null geo-
desics that either emerge from or terminate at the singu-
larity at (0,0).

Clarke and Krolak** have shown that a sufficient con-
dition for strong singularity as defined by Tipler'’ is that
at least one null geodesics, with an affine parameter A,
ends at the singularity at A; with

lim A’R gk kP50 . (5.31)
A—h
Equation (5.31) means that the limit exists and that it
does not vanish. For a perfect fluid,

R sk “kP=8n[(p +p)u uglkkP . (5.32)

We consider now a simple null geodesics at R =y, T (cor-
responding to r =x,t). In SSC coordinates the RHS of
Eq. (5.32) becomes

R gk “kP=8m(k +1)pg kT

2D (yo)grr(yo)

72(p,)

1
TZ

daT

=(k+1) dn

(5.33)

The term [D(y,)gsr(yo)7 2(yo)] is constant along y,.
Using Eq. (5.33) we find that the condition for a strong
singularity becomes
2

4T | 4o,

A2
lim — an

5 (5.34)
r—0 T

where we have chosen A, =0. We transform now to SSS
coordinates and use the relations r =x,t =F(y,)T to
rewrite Eq. (5.34) as

)‘.2

Iim —
A0 t2

dr |

an #0 .

(5.35)

We have seen earlier [Eq. (5.30)] that the spiraling sim-
ple null geodesic at x; satisfies t =A!”2. The equation of
motion of the radial simple geodesics,

dk, 198, ,, 1098

1 9%, 2= 5.36
dr 2 ot 2 ot k ’ (5.36)
yields
A’ L X0 a1 | 2—o (5.37
8u FTE D) (X068, T 81 clan | TV .37)
Hence t = A€ where
e= 8u . (5.38)

X0
gu+‘2—(x<2>gr'r+g,'r)

Using the function 4, that we have defined in Eq. (5.25)
we rewrite € as

X2

67]=2+ xOhl(xO) (5.39)

2g,,(xq)
xh'>0 for x ~ and x|, xh'=0 for x;, and xh’ <0 for x7 .
Hence, €>§ for x *, x| ,e=1 for x;, and €< for x3.
In all cases lim, (A*/t*)dt/dA=€*#0. Clearly the
singularity is strong.

VI. MATCHING TO AN ASYMPTOTICALLY
FLAT REGION

A. The cutoff

The self-similar solutions that we have described so far
are not asymptotically flat. It follows directly from the
self-similar structure that lim, ,  m/r=M _+#0. Con-
sequently, the total mass diverges and lim,  _ g,,1 and
lim,_ . g,7 —1. To obtain an asymptotically flat space-
time we must limit the self-similar solution to a finite in-
terior and match it to an asymptotically flat solution. We
have seen earlier that some self-similar solutions contain
naked singularities. We show in this section that we can
introduce a cutoff in such a way that the local solution
near the singularity remains unchanged and the singulari-
ty remains naked.

We introduce the cutoff to the initial values (on some
spacelike hypersurface) in such a way that the density is
the self-similar density for 0<r <r2. The density de-
creases smoothly to zero in the range r’<r=<r? and it
vanishes identically for r >r€0 (see Fig. 20). Clearly the
total mass with this profile is finite.

The cutoff perturbs the self-similar solution. The inter-
nal front of the perturbation moves inward along a world
line r;(t). The solution is not self-similar for r >r;(z).
The external perturbation front moves along another
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FIG. 20. An initial self-similar density profile with a cutoff at
r =r?. The density vanishes for r > r?.

world line r,(¢) and the space-time is empty for r > r,(2).

The internal perturbation front propagates inward as a
rarefaction wave at the speed of sound. It is difficult to
study analytically features of the expanding solution
within the rarefaction wave region. But it is straightfor-
ward to study the motion of the rarefraction wave front
r;(t). An incoming radial curve that moves at the speed
of sound a satisfies

172
dR _

a —&rr
dT s

(6.1)

8RR

This equation resembles Eq. (5.1) and the space of solu-
tions is also quite similar. There is one simple solution,
satisfying R =Y, T, at the sonic point. In addition there
are two equivalence classes of curved solutions. Solutions
interior to Y, reach the origin at T <0. The solutions
exterior to Y, reach the origin at T >0. Let rg, be the
location of the sonic point on the initial slice. If the ini-
tial cutoff point satisfies r? > rsp» then r;(z) will reach the
origin only after the singularity forms at the origin. In
such a case the cutoff will not influence the structure of
the singularity and its nearby region.

Common hydrodynamic considerations suggest that
the rarefaction wave moves inward at the speed of sound.
Even if the perturbation is supersonic, its speed is bound-
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FIG. 21. The influence of a cutoff on the causal structure of a
solution with a naked singularity. h is the absolute horizon (in
the vacuum region), and eh is the event horizon (in the self-
similar region).
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FIG. 22. Penrose diagram of the naked-singularity solution
with a cutoff. This diagram ignores the mass of the shell at
r.(t). The effect of this massive shell is to introduce a discon-
tinuity in the apparent horizon (at its intersection with the
cutoff line).

ed by the speed of light. If we choose r’>r~ =x "t, the
ingoing null rays that leave r? will reach r =0 at T >0,
and the region near the singularity will not be influenced
by the cutoff.

B. Global structure in a space-time with a cutoff

From the discussion in the previous section it is clear
that (for a proper choice of initial cutoff) the local proper-
ties of the (0,0) singularity are unchanged by the cutoff.
It is still possible, however, that the global structure is
changed. It is, therefore, important to study the behavior
of null geodesics in the matched space-time.

In order to visualize the behavior of geodesics in the
whole space-time we introduce here the “sharp cutoff ap-
proximation” according to which the intermediate region
“shrinks” to the “effective cutoff” curve r=r(z). For
r <r.(t) the solution is self-similar, and for r >r.(¢) it is
Schwarzschild. This matching requires a thin massive

ABADALLA

FIG. 23. Schematic description of outgoing RNG’s in a solu-
tion without a naked singularity and with a cutoff. The dotted
lines denote the shape of the RNG’s in a solution without a
cutoff. For more details see the caption of Fig. 21.
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FIG. 24. Penrose diagram of solutions without a naked
singularity and with a cutoff (see Fig. 22).

shell at r.(z), whose mass and tension depend on r.(f)
(Ref. 35). This approximation is only for visualization
purposes and the global causal structure does not depend
on it. We choose the location of the cutoff in such a way
that the singular center (0,0) is not in the causal feature of

r0. We distinguish between space-time with and without

a naked singularity.

Naked singularity case. The overall behavior of the in-
coming RNG’s is not influenced by the cutoff. Figure 21
describes the influence of the cutoff on the outgoing
RNG’s. All the outgoing RNG’s that emerge before y;
reach the cutoff line and continue from there to null
infinity as regular radial geodesics in the Schwarzschild
metric (at » >2m). y| remains the Cauchy horizon of
the space-time. In the complete self-similar space-time
all the geodesics that emerge after y3 fall back into the
massive singularity. With the cutoff some of those
RNG’s escape to null infinity. Hence, with the cutoff, y 5
is no longer the event horizon. The event horizon is the
RNG that meets the apparent horizon at r.(¢) (see Fig.
21). Figure 22 displays the Penrose diagram for these
solutions (see Fig. 16 for comparison with the Penrose di-
agram of the fully self-similar solution).

This causal structure does not depend crucially on the
sharp cutoff approximation. One can always choose the
initial slice in such a way that, independently of the as-
sumptions about the evolution of the *tail,” the (0,0)
singularity is globally naked. We demonstrate that in
Appendix B.

Solutions without a naked singularity. Figure 23 de-
scribes the outgoing RNG’s in these solutions. The out-
going RNG’s that reach r,(¢) before ah escapes to null
infinity. All the others are trapped and fall back into the
singularity. Figure 24 displays the Penrose diagram for
these solutions. Here, due to the cutoff, some outgoing
RNG’s reach future null infinity. This future null infinity
did not exist in the complete self-similar solution (see Fig.
17).

1085

VII. THE SONIC POINT
A. Local behavior

The sonic point x, is the point where the magnitude of
the fluid velocity V' relative to the similarity lines,

u’ rr i
;T_ - g g 172
Vi : _ZRR (7.1)
u’ &rr 8rr
1—x= [—=%
u 8u

is equal to the speed of sound a,=V'k. ¥V vanishes at
the regular center and diverges at T'=0 (y = « ) [see Egs.
(4.4) and (4.5)]; hence, there must be at least one sonic
point in the solution.

The world line r =x, ¢ is both a characteristic line
and a similarity line. Hence, the solution in the domain

|x| < |x,| does not determine the solution in the domain
|x] > Ixsp]. Equations (2.9a)-(2.9d) can be expressed for-
mally as
A% +B=0, (7.2a)
dx
where
D
p=|u’ (7.2b)
M

is a three-dimensional vector, A is a 3 X3 matrix, and B
is a three-dimensional vector. |A| vanishes when
Ve==a,. Hence, at x =x, the derivatives dp, /dx ei-
ther diverge or are undetermined. In the first case, it is
impossible to extend the self-similar solution beyond
x =xg, continuously. We will consider here only the
latter case where x, is a critical point.

Bogoyavlensky'! and Bicknell and Henriksen'® have
studied the local behavior of the solutions near x,,. We
show, here, how the sonic point influences the structure
of the space of solutions. (Bicknell and Henriksen'* have
investigated the space of cosmological solutions which
are asymptotically Friedmann without a regular center.
We focus here on collapse solutions, with a regular
center.) We first describe the basic features of the local
behavior near xg,. In this discussion we follow Bicknell
and Henriksen. !’ R

Consider the 3 X4 matrix A, defined by

A=Ay, Ag=B;, (7.3)
where i,j =1, 3 throughout this section. In order that Xep
will be a critical point [i.e, in order that Eq. (7.2) will
have a finite solution] the rows of A must be linearly
dependent. One can show that this requirement is
satisfied if

g=(k+Y)?—k(1—Y)*+2kY(2Y —1/D)=0 .

The equation |A|=0 (or Vy=a,) defines a two-
dimensional surface in the three-dimensional space of
physical variables (D,u ",/ ). This surface S, is the locus

(7.4)
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of all possible sonic points. The additional requirement
g =0 define a one-dimensional curve C, on S,. All the
(acceptable) solutions must cross S, at C,. We need a
single parameter to specify the points of C,. A con-
venient choice is Y =M /D.

We define the four-dimensional vector

|

p= 5 (7.5)
Equation (7.2) now becomes

A dp=0 . (7.6)

Generally (for x#xg,) this equation has a one-
dimensional space of solutions, equivalent to well-defined
dp; /dx values. On C, the linear dependence of the rows
of A, results in a two-dimensional space of solutions of
Eq. (7.6) (corresponding to a one-parameter family of
dp; /dx values).

To study the local behavior of solutions near a critical
point p,, one can expand Eq. (7.2) [or Eq. (7.6)] to first
order in 8p =p —p,. The general solution of the linear-
ized equations can be expressed in the parametric form

~ A ~ R

p=a,Vin'+a,V,m?, (7.7
where 7 is an arbitrary parameter, a; and a, are arbi-
trary constants, and A, A, are two (generally nonzero) ei-
genvalues of a 4 X4 matrix, constructed from the various
derivatives of elements of A at Do- Vl and Vz are the
two correspondmg eigenvectors of that matrix. A, A,,
Vl, and V2 (but not a;,a,) are determined by p,. It is
possible to rescale the parameter 1 and with this to
change the values of @, and a, without changing the
solution. Hence, Eq. (7.7) describes only a one-parameter
family of solutions.

The critical points are divided into two principle types.

(1) A saddle point: A,/A,<0. Two distinct solutions
cross each such critical point, in the “directions” ¥, and
V, correspondingly. Both solutions are analytic at x,

(2) A nodal point: A;/A,>0. As before, there are two
analytic solutions that cross at x,, in the directions V
and V,. In addition, there is a one-parameter set of solu-
tions in the range x <x,, that terminate at x,, and an
equivalent one-parameter set in the range x > Xp- At X
both one-parameter sets are nonanalytic and tangent to
V). By combining a solution in x <x,, with one in
x >x,, one finds that a two-parameter set of (nonanalyt-
ic) solutions pass x, in the direction V. V, is called,
therefore, the “principle direction” and ¥, is the secon-
dary one. In this sense, a nodal point is “attractive.”

Most of the self-similar solutions (except of a set of
“measure zero”) pass a nodal critical point, as primary-
direction solutions, in a nonanalytic manner. All the
GRPL solutions pass a nodal point (analytically) in the
secondary direction. The homogeneous solutions also
pass a nodal point analytically, in the primary direction
for k <1 and in a secondary direction for k > 1.

The critical point is a node for € >0 and a saddle for
€ <0, where
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e=ltktVe (7.8)
1+k—Ve
and ¢ =(4+12k)Y>+
cases c is positive.

There are sections of C, where c is negative. In this
case € is complex and xg, is a “focal point,” with the
mathematical solution spiral around xg,. However, such
a spiraling solution is physically meaningless, and physi-
cal solutions cannot reach a focal point. In the limiting
case ¢ =0 (e=1) x, is called “‘a degenerate node.” The
behavior is quite similar to a nodal point, except that now
V, coincides with V, (see, e.g., Ref. 16).

We note that the discussion here refers only to the lo-
cal behavior near x,,. Additional requirements (such as
the existence of regular center) will further reduce the
space of solutions.

(1+6k —3k?)(1—4Y). In both

B. Implication to the space of solutions

We now turn to study the way the critical point
influences the space of self-similar solutions. An accept-
able solution is one which is regular both at the center
and at the sonic point. In Sec. II we have shown that (for
a given k) there is a one-parameter family of solutions
with a regular center (parametrized by D). A numerical
study shows that the space of solutions has a band struc-
ture (see Fig. 25): The D, axis is divided into ‘“‘allowed”
ranges and ‘‘forbidden” ranges (for which the solution
terminates at the sonic point). In every band, most of the
solutions approach a nodal critical point, as nonanalytic
primary-direction solutions. This behavior is due to the
“attractive” nature of the nodal critical points. In every
band the parameter D, determines the solution up to xg,
However, since an infinite number of solutions in the
range |x|>|x | terminate at every nodal point an addi-
tional parameter is required to determine the solution

beyond x.,. Every band is therefore a one-parameter

100 ET T TT | T \l I\I l T T TT 3
30 - \‘\\\ -
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FIG. 25. The first two bands in the Dy-k plane. The first
band lies below the dotted—long-dashed lines. The second band
is located between the two dashed-dotted lines. The short-
dashed line is the homogeneous solution, and the dotted line is
the GRPL solution.
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family at |x|< |xsp|, and a two-parameter family at
x| >x,|. Since the space of self-similar solutions is two
dimensional (for a given k), we conclude that beyond Xgp
the subset of centrally regular solutions is “of nonzero
measure” in the global space of self-similar solutions.

The requirement of analyticity at the sonic point
reduces drastically the space of solutions. In every band
there are only a few (generally one or two) D, values for
which the solution approaches x, analytically. Once the
critical point is approached analytically, there is only one
analytic way to continue the solution beyond it. Hence,
those special solutions span only a discrete set (for a
given k).

Figure 25 presents the first two bands in the Dy-k
plane. The first band is below the line which consists of
the GRPL line (for k£ <0.036) and the short-dashed line
(for k >0.036). This short-dashed line represents a solu-
tion with a “‘degenerate node.” For k > 1 (not shown in
Fig. 25) the upper boundary is the homogeneous solution.
The GRPL solutions and the homogeneous solutions are
the only analytic (at x,) solutions in this band.

The upper boundary of the second band has a similar
structure to the upper boundary of the first band (for
k <1): degenerate node solutions for k >0.11 and
secondary direction nodal-point solutions (such as the
GRPL solutions) for k <0.11 (not shown in Fig. 25).
The lower boundary contains solutions with a saddle
point. These are ‘“bouncing solutions” (see Sec. IV), and
those with k >0.25 are “exploding solutions.”

It is likely that the structure of the higher bands is
similar to the structure of the second one (apart from the
number of “wiggles”). Saddle-point, bouncing (and ex-
ploding), solutions are the lower boundary. The upper
boundary contains either secondary-direction nodal-point
solutions, or degenerate-node solutions. All the solutions
in the interior of these bands pass through a nodal point
in the primary direction.

C. The kink instability

The existence of a sonic point in the solutions raise the
question of stability to appearance of a shock there. Ori
and Piran'® have studied, analytically, the dynamics of a
discontinuity in the first derivatives of the velocity and
the density at the sonic point, in the framework of the
Newtonian model. They have shown that all secondary
direction solutions are stable to this perturbation, but the
primary directions are not. This instability results in ei-
ther a development of a different stable profile or in a
divergence of V' and D’ (which probably indicates an ap-
pearance of a shock wave). It implies that all the nonana-
lytic solutions (which are all primary direction) and the
homogeneous collapse solution are unstable in this sense.

One can show that the kink instability exists also in the
relativistic model. In Sec. III we have shown that all the
relativistic solutions become approximately Newtonian at
the limit kK —0. Therefore, we expect that at least for
small enough k values, only secondary direction solutions
can be stable.
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D. The sonic point and the initial-value problem

As was stated earlier, the sonic point introduces an am-
biguity in the self-similarity equations. Some solutions
terminate there, that is, there is no smooth self-similar
continuation beyond the sonic point. For other solutions
there are many such continuations. It is therefore impor-
tant to note that no such ambiguity exists in the field
equations themselves. For, if a self-similar solution ter-
minates at x,, one cannot build from it a self-similar ini-
tial slice. Or, if there are many possible continuations
beyond x,, then a given self-similar initial slice will con-
form with one of them. Indeed, this specific continuation
will govern the evolution of the system in the future.

On the other hand, in some of the solutions there is a
second sonic point at 7" >0. Although the mathematical
behavior of the self-similar equations there is similar to
the T <0 sonic point, there is a fundamental difference
from the causal point of view. Here, the initial slice (at
T <0) does not contain the information about the con-
tinuation. In consequence the ambiguity in the continua-
tion of the self-similar solution represents a true ambigui-
ty in the evolution. However, this ambiguity is not
surprising, because the 7 > 0 sonic point is always locat-
ed to the future of the Cauchy horizon.

VIII. SELF-SIMILAR DUST SOLUTIONS

The self-similar dust (k =0) case is a special case of the
well-known Tolman-Bondi solution. To compare it with
our formalism we use comoving coordinates (R,T). We
scale the time coordinate such that T is the proper time
(g7r=1) and we scale R so that R =m (both scalings are
possible only in the dust case). The Tolman-Bondi solu-
tion is given by

1)

F(R)’ 8rr > P

8RR~

3T (8.1)
8mrer’
where a prime denotes a derivative with respect to R, Fis
an arbitary function of R, and r the area coordinate is
given, in the F =0 case, by

r=R)3[To(R)—TP" (8.2)
and in the F0 case, by the parametric form

r=%(coshn—l) .

R (8.3a)
To(R)—T= 72 (sinhn—mn) for F >0,
r——F(l—cosn) R

R (8.3b)

TO(R)~T=W(17—sinn) for F <0 .

Here T((R) is a second arbitrary function of R. T is the
time when the shell R crunches into the r =0 singularity.
This solution is valid in the range T' < T((R).

In order to construct the self-similar solutions for Egs.
(8.1)—(8.3) we use the fact that in self-similar solutions
every dimensionless quantity is a function of y =R /T
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only. On the other hand, the dimensionless quantities F
and T,/R depend on R alone. Hence, we have in the
self-similar case

To(R)

F(R)=const, 6(R)=

=const . (8.4)

One can show that Eq. (8.4) is also a sufficient condition
for self-similarity. This solution is limited to the range
1/y <0. As in the k >0 case, the space of self-similar
k =0 solutions is two dimensional. Each solution is
characterized by F and 6.

All the solutions with F70 do not have a regular
center. To show this we consider the behavior at r =0
for T#0. According to Egs. (8.3a), (8.3b), and (8.4),
T#0 implies m =R=*0. Thus, instead of a regular
center there is a massive singularity at » =0. One can
easily check using Eq. (8.1) that p and u" also diverge
there. Hence, the family of solutions with a regular
center is only a one-parameter family. In the k >0 case,
because of the regularity requirement the space of solu-
tions for x| <|x,| is one dimensional. But the space of
solutions is two dimensional beyond x, (due to the
branching at the sonic point). In the dust case a, =0 and
there is no sonic point.

We shall consider only the case F =0, for which we
have

rz(%R)I/S(eR _T)2/3 ,
1

4r'r

(8.5)

p= > grr=r" grr=-—1. (8.6)
One can obtain from Eqgs. (8.5) and (8.6) an explicit ex-
pression for p:
1 _
=——[(6R —T)36R —T)]'. 8.7
P=10n [( (30 )] (8.7)
Using Egs. (8.5) and (8.7), we expand p(r, T) near the reg-
ular center, for a given T <0, as a power series of :

(8.8)

(a similar expansion but with 7 and ¢ instead of r and T
will have a similar form). Analyticity at R =0 requires
an expansion of the form p=ay(T)+a,(T)r?
+a,(T)r*+ ---. Hence, even the F =0 self-similar dust
solutions are not analytic (though not singular) at r =0,
T <0 (Ref. 36). These solutions were not included among
the Tolman-Bondi solutions studied by Christodoulou’
and Newman.?® Unlike the dust solutions, all the k >0
solutions considered earlier are analytic at » =0 [see Eq.
(2.15a)].

We turn now to study the causal structure of the dust
solutions. In Sec. V we have shown that a necessary and
sufficient condition for a naked singularity at R =T =0 is
the existence of a simple outgoing RNG: R =y *t. Such
a RNG, if it exists, must satisfy 0<y* and 6>1/y".
Hence 6 must be positive. R=y*t is a RNG if
y *2ggr =1. According to Eq. (8.6) this reads
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T/R=r'=43)"°[(6—T/R}”>+26(6—T/R)"'"].
(8.9)
Defining z =(6—T /R)'/?, Eq. (8.9) is reduced to

244671323 —09z +2x67139=0 (8.10)

with the constraint 0 <z < 6. A solution of Eq. (8.10) ex-
ists for 6>6,=2+5V'3 (Ref. 37). Hence, all the solu-
tions with 6 > 6, have naked singularity.

As in the k >0 case, a self-similar dust solution which
is locally naked, is also globally naked, and vice versa.
This is in a remarkable contrast to the behavior of non-
self-similar dust solutions which are analytic at r =0
(T <0). Those solutions are locally naked,>”?° but
might be globally dressed.>®

Newman®® has studied the strength of singularities in
Tolman-Bondi solutions with analytic behavior at r =0,
T <0. He found that all the naked singularities in these
solutions are weak (in the sense of Tipler!”). The assump-
tion of analytic behavior at r =0, ¢ <0 is critical in his
analysis. In Sec. V we have shown that all naked singu-
larities in the self-similar solutions are strong. Clearly,
this analysis includes the k =0 case as well (see, also, Ref.
18).

So far we have obtained the self-similar dust solution as
a special case of the Tolman-Bondi solutions. One can
also obtain the self-similar dust solutions from the k >0
solutions by letting k approach to zero, with fixed D4 and
ur. (We recall that the Newtonian solutions are obtained
also by a k—O0 limiting process, but with fixed
D;=D;/k and uj/V'k.) The properties of the k >0
solutions can generally be translated to the dust case sim-
ply by substituting k =0 in the relevant expressions.
Most properties of the k >0 solutions are invariant to
this change: the existence of solutions with and without
naked singularities, the existence of simple RNG’s and
their implications on the causal structure, the existence of
a spiral RNG, the divergence of redshift along x 7, etc.

There are, however, a few differences. (1) In the limit-
ing process k —0, X, tends to zero. Hence, all the oscil-
latory structure (which might exist for kK >0 in the region
0 <|x| <|xl; see Sec. IV) does not exist in the dust case.
Also, there is no band structure in the space of solutions.
(2) As mentioned earlier, there is only one-dimensional
family of solutions with regular center. Even those solu-
tions are not analytic at » =0. (3) g does not diverge at
T =0. (4) The matching of a self-similar interior to a
vacuum exterior is trivial.
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APPENDIX A

Initially we have four equations [Egs. (2.29a)-(2.29¢)]
for the four variables v, A, D, and u”. We have eliminat-
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ed v between Egs. (2.29a) and (2.29c) to obtain Egs.
(2.11)—(2.13). There remain now three equations [say,
Egs. (2.29b)—(2.29d)], for the three variables A, D, and u".
Equation (2.9b) can be written as

xA'=Ay(A,D,u") . (A1)
In view of Eq. (2.12),
xv,=2+xd1n[Q2/(l+e}‘u’2)] )
dx
so that Eq. (2.9¢) takes the formal form
A, x\X+B,xu"+C,xD'+D,=0 . (A2)

We now multiply Eq. (2.9d) by x and substitute Egs.
(2.12) and (2.13) in it to get rid of v and u". It also takes
now the form
A, xA +Byxu”+C,xD'+D,=0. (A3)
The coefficients 4,,B,,C,, 4,,B,,C, are functions of
A, u’, and D only so that Egs. (A1)~(A3) form an auto-
nomous set of differential equations for A, u”, and D with
respect to the independent variable Inx. Dividing Egs.
(A2) and (A3) by Eq. (A1) we finally obtain a closed sys-

tem of two equations that express du’/dA and dD /d X in
terms of A, ", and D.
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APPENDIX B

The “worst” assumption about the evolution of the tail
(from the point of view of outgoing null geodesics) is that
all its matter is located at r;(z), and that r;(¢) moves in-
wardly with the speed of light. Let us denote by P the in-
tersection of y| with the incoming RNG that emerges
from the initial cutoff point r,~°, and let T, be the r value of
p. Clearly a sufficient condition for the singularity to be
globally naked is 2m,, /r, <1.

One of the degrees of freedom that is involved in the
choice of initial data is the embedding T,(R) of the initial
slice in the plane (R, T) of the self-similar solution. We
require that T(R) is spacelike and that the initial slice is
regular. Regularity implies that for R =0 (the center),
T, is negative. However, T, may increase with R (and
may be positive for sufficiently high R values). In partic-
ular, one can choose Ty(R) such that (for sufficiently
high R values) it coincides with some similarity line
y=const=y, [i.e., yo=R/TyR)] We  define
€=y,—y| and for €>0 one can always choose a space-
like curve T\,(R) in that manner.

The total mass m, consists of the self-similar part
r’M(y,) and the tail mass 8,,. In the limit €, 8m —0 we
have yo—y 7, r,—r’, and m,—r2M(y,). In this limit

2m 2m
s g 2y 2M (T )< 1
"p T

Thus, one can always choose small enough € and §,,
values such that the (0,0) singularity is globally naked.
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