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Physical effects in a spacetime with a traversable wormhole are considered. It is shown that the
interaction of a wormhole with the surrounding matter and with the external gravitational field al-

most inevitably transforms it into a time machine.

I. INTRODUCTION

One of the most intriguing predictions of general rela-
tivity is the possibility of the existence of topologically
nontrivial spacetimes. The real three-dimensional space
might in principle be multiply connected and there might
exist wormholelike objects in it. ' Recently interest in
this problem increased because it was shown that a stable
wormhole (if only it exists) can be transformed into a
time machine.

One can imagine a wormhole as a three-dimensional
space with two spherical holes (mouths) in it. These
holes are connected one with another by means of a han-
dle. The length of this handle I does not depend on the
distance L between the mouths in external space and in

principle this length might be much smaller than L. The
two-dimensional section of such a space is schematically
shown in Fig. 1. The wormholes with the stationary or
slowly-changing-in-time geometry of the handle are of
particular interest. It is possible to enter into such a
wormhole, to pass through the tunnel, and to exit into
external space again (traversable wormholes). This prop-
erty distinguishes wormholes from black holes. In Refs.
3 and 4 it was shown that for the existence of traversable
wormholes the stress-energy tensor must violate the aver-
age weak energy condition.

The mouths of the wormhole may be moving one with
respect to another in an external space without any not-
able changes of the interna1 geometry of the handle. In
Refs. 4 and 5 it was shown that this relative motion of the
mouths can be chosen in such a way that there arise
closed timelike world lines. It happens already in a prac-
tically Aat Minkowski spacetime. This result means that
there arises a "time machine" which allows one to return
in his own past. The reason why it happens is rather sim-

ple and can be explained as follows. ' Suppose that one
of the mouths (A) is at rest in an inertial frame while the
other (8) which initially was at rest near A begins to
move with a high speed and afterwards returns back to 8.
As a result of the Lorentz time contraction, the time in-

terval b, Ttt between these two events (the beginning of
the motion and its end) measured by the clock moving

with 8 can be made much shorter than the time interval

ET' between the same events measured by the clock at
rest near A. In other words, the clock which moved has
slowed by hT~ —AT& relative to the standard inertial
clock ("the twin paradox" ). The short distance through
the handle between A and 8 remains practically un-
changed during the motion so that along this way both
clocks all the time remain practically at rest near one
another. Their relative time difference is determined only
by noninertial effects connected with the acceleration of
8 and this difference for short handles can be made negli-
gibly small. This means that an observer comparing the
time of the clocks through the handle will see that their
time is almost the same, while by comparing them in
external space he will find out that their time difference is
bT„—AT&. Consider now an observer who enters the
handle through 8 at the moment when the clock at 8
shows some time To (the event po). This observer goes
out to the external space through A (the event po) when
the clock near A shows approximately the same time To.
But the time measured by clock A coincides with the
standard inertial time while clock 8 after its motion was
slowed down. This means that the observer after passing
the handle will be transferred into the past (as seen by the
clocks in the inertial frame) by the time interval
AT„—AT&. If this time interval is larger than the time
L/c needed for a causal signal to propagate from 3 to 8
in the external space then the event po lies in the causal
past of the event po. In other words, such a device can be

FIG. 1. A two-dimensional section of a static spacetime with
a wormhole.
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used as a time machine and in principle it allows one to
return into his own past.

It seems that the physical laws do not forbid the ex-
istence of wormholes and time machines but an as-
sumption about their existence creates a lot of problems.
The most important one is the problem of causality. This
problem is analyzed in Ref. 6.

The main aim of this paper is to analyze some physical
processes in spacetimes with wormholes. Namely, we
consider a wormhole which is inserted in an external elec-
tromagnetic or gravitational field and we describe non-
trivial effects which may happen in this system. In par-
ticular we show that almost any wormhole placed in an
external gravitational field or interacting with external
matter becomes a time machine.

This paper is organized as follows. In the next section
we consider some simple models of static wormholes and
use these models to analyze what happens when the
wormhole is affected by an external static gravitational
field. The general properties of static wormholes in an
external gravitational field are considered in Sec. III.
The electrodynamics of wormholes is discussed in Sec.
IV. Section V contains some additional general remarks
concerning the physical properties of spacetimes with
wormholes.

In this paper we use the natural units c =6 =6= 1 and
the sign conventions of Ref. 7.

sphere. The proper radial distance I from the wormhole
throat ranges from —~ to + ~ and I =0 at the throat.
The functions a(l) and r (1) possess the following proper-
ties. The value of r decreases from + ~ (for l = —ca) to
a minimum r =b at the throat l =0 and increases to
infinity (for l=+ oo). The spacetime (2.1) is static and
the redshift function a(l) is connected with the norm of
the Killing vector: a = —P(„(PB„=B,). We assume
that a is positive everywhere and hence there is no event
horizon. Denote the asymptotic values of a(l) at I =6 ~
by a+, correspondingly. It should be stressed that we
cannot require that a+ =a and we shall see that, in gen-
eral, a+Pa . Because this point is important for con-
siderations we discuss it in more detail.

The metric (2.1) is a solution of the Einstein equations
with a nonvanishing right-hand side T„,. The stress-
energy tensor T„, necessarily violates the averaged weak
energy condition. ' For our consideration it is instruc-
tive to consider at first the following simple model of a
wormhole. Namely, we assume that matter which
creates the gravitational field of a wormhole is localized
in a narrow region l E ( e, e ) n—ear the throat (Fig. 3).
Outside this region the spacetime geometry coincides
with the Schwarzschild one and it is described by the
metric (2.1) with

a+(I) =a+(1—2M+ Ir+ )'~ (2.2)

II. WORMHOLE GEOMETRY

ds = —a dt +d1 +r den (2.1)

I

where dc@ =d6 +sin 8dg is a line element on a unit

We begin by considering some of the properties of a
static spherically symmetric wormhole connecting two
difFerent asymptotically fiat spaces. (For a general and
more detailed discussion of wormholes, see Ref. 3). The
embedding diagram for such a wormhole is shown in Fig.
2. The metric for this spacetime reads

=+(1—2M+ jr+ )'~ (2.3)

The signs + and —are used for quantities in R+ and
R regions, correspondingly. The parameters M+ and
M are the masses of the wormhole as measured by dis-
tant observers in R+ and R spaces, correspondingly.
In the general case in order to specify the parameters a+
and M+ one needs to know the solution of the Einstein
equations in the region with matter. But in our case,
where this region is narrow it is enough to know only
some integrated characteristics of the matter distribution
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FIG. 2. The embedding diagram for a two-dimensional sec-
tion t =const, 0= /2 for a static spherically symmetric
wormhole, connecting two different asymptotically flat spaces
R+ and R

FIG. 3. The embedding diagram for a two-dimensional sec-
tion t =const, 0= /2 for a static spherically symmetric
wormhole, connecting two different asymptotically flat spaces
R+ and R in the limiting case when the matter creating the
gravitational field of the wormhole is located in a narrow region
near its throat.
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and

r+(0)=r (0)=b,

and one can use the method of massive thin shells. '

Denote

S„=lim J T„dl (n, m =0,2, 3),
E~O

(2.4)

(2.5)

a' (1—2+' )'/ =a0 (1—2@ )'

S 0—(4~+ )
—

1[(1 2(P1 )1/2 (1 2@ )I/2]

1 —4+ 1 —4+
(1 —24+ )'/ (1—24+ )'/

(2.10)

(2.11a)

(2.11b)

yg=M+ lb .

Then one has

0 (1 2~ )1/2 —~0 (1 2 )1/2

S0=(4mb) '[(1—2P+)' +(1—2y )' ]

(2.6)
where

(2.7)

(2.8a)

M, M',
+ B

(2.12)

S =S =(8mb)
1 —y+ 1 —q+

( 1 2~ )1/2 ( 1 2~ )1/2

and S o and S 2
=S

3 are the mass density and pressure of
the shell. By using Eqs. (2.7) and (2.10) we can obtain

(2.8b)

Other components of S„vanish.
For given values of the mass density So and pressure

S2 =S2 of the massive thin shell of radius b, Eq. (2.8) al-
lows one to obtain the masses M+ and M . Equation
(2.7) shows that a+=a if and only if the masses M+
and M are identical. This result has a very simple
physical interpretation. The quantities q+ may be con-
sidered as gravitational potentials. Let us consider a pho-
ton propagating through the wormhole from R+ to R
Its frequency becomes blueshifted when it is moving from
R+ infinity to the throat where the gravitational poten-
tial is less by the value y+. The redshift of the frequency
of this photon during its further motion from the throat
to R infinity is determined by the gravitational poten-
tial y . If we denote by 01+ the frequencies of the photon
at R+ infinities then we have

0a+
a0 (2.9)

Now we show that even if initially the wormhole was
"prepared" in such a way that a+ =a this equality will
be violated as soon as this wormhole is inserted into an
external gravitational field or some matter is placed close
to it. In order to make the consideration more concrete
we assume that in space R+, there is a spherically sym-
metric cloud of matter surrounding the mouth S+. For
any spherically symmetric motion of the cloud there is no
gravitational radiation propagating through the throat to
the R infinity and hence the mass M remains un-

changed; i.e., it does not depend on the radius B of the
cloud. Thus for fixed parameters of the matter distribu-
tion (2.8) in the throat of the wormhole the spacetime
geometry in R and in the part r+ &8 of R+ remains
the same as earlier and is described by Eqs. (2.2) and
(2.3). The geometry outside the cloud is again the
Schwarzschild one with some new mass which we denote
M+. This mass depends on the wormhole parameters
and the mass of the cloud. If the cloud is thin one can
use again the massive thin shells method in order to ob-
tain this dependence in explicit form. Namely, one has

1a+
a0

(1—24+ )(1—2y )

(1—24+ )(1—2p+ )
(2.13)

This relation shows that for given wormhole parameters
the relative redshift factor at R+ infinity with respect to
R infinity depends on the mass and position of the
cloud surrounding the wormhole and the equality
a+ =a can be valid only for a very special
configuration. This result is of quite a general nature.
Even if the wormhole was originally "prepared" in such a
way that a+=a this relation will be almost always
violated as soon as the wormhole is inserted in an exter-
nal gravitational field so that there arises a difference of
the gravitational potentials between its two mouths.

Now consider a static wormhole which connects far
distant regions in the same asymptotically flat spacetime.
Such a spacetime can be obtained from the spacetime
shown in Fig. 2 by identifying infinite almost flat regions
of R+ and R (for details see Ref. 3). In the general case
for a wormhole connecting two different spaces a+Pa
and the spacetime which arises as the result of
identificaton of R+ and R infinities possesses a rather
remarkable property: the work done by the gravitational
field on any particle which propagates along any closed
path passing through the wormhole is not equal to zero
and hence the gravitational field is nonpotential. This
property of spacetime can be formulated in a more
geometrical way. The redshift function a coincides with
the norm of the Killing vector. At any given point the
norm of the Killing vector can be fixed arbitrarily but
after this the Killing vector is unique defined in any sim-

ply connected region surrounding this point. In a multi-
ply connected spacetirne it is not so. Fix the norm of the
Killing vector at some point and consider the changes of
this vector along a path passing through the wormhole
and returning back to the initial point. The initial and
final Killing vectors have the same direction but their
norms are different. This means that the Killing vector
field is well-defined locally but it does not exist globally.
In the next section we consider the general properties of
such spacetimes.
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III. STATIC SPACETIMES WITH WORMHOLES:
GENERAL PROPERTIES

Consider a spacetime, i.e., a four-dimensional manifold
M with a metric g„. Consider a region U of the space-
time M. The spacetime is called stationary in UCM if
there exists a timelike vector field P such that

X(g„,=O . (3.1)

Here X& is the Lie derivative along P. The field P is a
Killing vector and Eq. (3.1) is identical to the usual Kil-
ling equation

(3.2)

It is easy to show that any Killing field satisfies the rela-
tion

The spacetime is static in U if the Killing field obeys the
equation

(3.3)

Ref. 10.} It is evident that u "w„=O and

w[u;v] =0 (3.1 1)

The four-velocity u" and four-acceleration w" of the Kil-
ling observer are invariant under the rescaling transfor-
mation (3.6).

For given values of P and g„„at a fixed point Eqs. (3.4)
unambiguously define P in any simply connected region
surrounding this point. But in the general case, as we
have seen, there may be no globa1 Killing field while lo-
cally the Killing field exists in the vicinity of any space-
time point. In order to be able to deal with this kind of
situation it is useful to reformulate the definition of a
static spacetime in terms of the quantities u" and w"
which have a well-defined physical meaning, are invariant
under scale transformations (3.6), and hence are uniquely
defined.

It is possible to show that in any simply connected re-
gion of a spacetime the system of Eqs. (3.2) and (3.3) is
equivalent to the following system of equations for vec-
tors u" and w":

where

(3.4a)

(3.4b)

u„u"= —1,
u p'v wpu v

(3.12)

(3.13)

(3.14)

This equation shows that all higher covariant derivatives
of P can be expressed in terms of P and its first deriva-
tives.

Consider integral lines x "(t) of the Killing field P:
dx"
dt

(3.5)

p~g'"=pp, p=const . (3.6}

Under this transformation the Killing time is changed as
follows:

(3.7)

The parameter t is called the Killing time. It should be
stressed that the norm of the Killing vector field is not
fixed. We can change it:

dw =0,
and hence the integral of w over any closed path C',

(3.15)

I, [w]=—f w= f )wd "x, (3.16}

depends only upon the homology class of the path. The
value of this integral is called the period of w on [C'],
the homology class of C' (Ref. 2). In a simply connected
space any closed path is homological to a point and
I ) [w] =0. In other words, the form w is exact:

We shall call "static" any (not necessarily simply con-
nected} spacetime which admits global vector fields u"
and w" obeying the conditions (3.12)—(3.14).

Now consider the properties of "static" spacetimes.
Eq. (3.14) shows that the one-form w:—w„dx" is closed,

One may consider a test body which is moving along an
integral lines (trajectory) of the Killing field. The four-
velocity of this body is

(3.8)

It is easy to show that

)p= —,
) in~( ~+)p&&, y)i=const .

(3.17)

(3.18)

and its four-acceleration w" reads

w"—=u'V„u"= —,
) V"1n~g

~
. (3.9)

2~ ) /2rIr (3.10)

(For more detailed discussion of the Killing frames, see

In the general case this acceleration does not vanish.
This means that such a body must be affected by some
external nongravitational force. One can attach a proper
reference frame to the chosen body. The proper time in
this (Killing) reference frame is

In the general case of a multiply connected "static"
spacetime the vanishing of the periods I( ) [w] for all

closed paths is the necessary and sufficient condition of
exactness of the closed form w and hence of the global ex-
istence of the Killing field P:

P=e~u" . (3.19)

The possibility of the existence of a time machine in a
static spacetime which was described in the Introduction
is a quite general property of multiply connected spaces.
In order to show this we consider at first the problem of
clock synchronization in a static multiply connected



42 PHYSICAL EFFECTS IN %ORMHOLES AND TIME MACHINES 1061

xf[p ~] 0 e (3.20)

In a simply connected region this equation implies the ex-
istence of a time function t such that

spacetime with the potential gravitational field. Using
Eqs. (3.13), (3.18), and (3.19) one can show that the vector
r)"=e ~u"—=P/~g ~

obeys the relation

tangent to u". For each point of M one can find the tra-
jectory of u" which passes through this point so that
there exists the natural projection mapping g: M~S.
One may consider S as a three-dimensional manifold.
For a spacetime with a wormhole the space S is multiply
connected. The three-dimensional metric h on S is con-
nected with the four-dimensional metric on M as follows:

(3.21) A pv gpv + Q p Q 1~ (3.23)

The surface t =const is the set of events which are simul-
taneous in the reference frame of Killing observers. The
period

I,, [q]=f,q=g, , q„dx~ (3.22)

of the one-form g vanishes for any closed path C' lying
in a simply connected region. This result means that the
result of the synchronization procedure for two clocks
placed at any two points in this region does not depend
on the particular choice of the path connecting these
points. In a multiply connected spacetime the period
I

& [rt] depends on the homology class of the closed

path C' and in the general case it does not vanish. In a
static spacetime with one wormhole the homology class
of closed paths can be specified by an integer winding
number n which defines how many times the chosen
closed path passes through the throat of the wormhole in
the direction from the S+ mouth to the S mouth. For
the opposite direction of a path the number n is negative.
Denote b, , as the value of the period (3.22} for n = l. If
b, WO then the form rI does not allow globally the repre-
sentation (3.21) and it is impossible to synchronize the
clocks along any closed path passing through the
wormhole. The quantity 5& as we shall show later gives
the gap between the initial value of the Killing time and
the value of this time at the same point after the synch-
ronization along the path passing through the wormhole.
The quantity 5, is well defined for a static spacetime.
Suppose that the mouths of the wormhole are moving in
the external space during some time but before this
period and after it the spacetime is static. A simple gen-
eralization of the arguments presented in the Introduc-
tion allows one to conclude that the value of 5& after the
motion may differ from its initial value. A time machine
is created if, after the motion, b, , & L, where L is the dis-

tance between the mouths.
Consider now a general situation where the spacetime

of a wormhole is "static" and the gravitational field is
nonpotential. We shall show that in this case the time
machine is created even without any motion of the
wormhole's mouths. In a "static" spacetime with a
wormhole the period I

~ [w] depends on the winding

number of a path C'. For a winding number n the period
I„[w] of w is I„[w]=nI, [w]. The period I, [w] has a

simple physical meaning. In order to discuss it we need
to make some additional remarks.

For a description of the properties of a "static" space-
tirne it is convenient to use the three-dimensional formal-
ism developed by Geroch. " Let S denote the collection
of all the trajectories of Killing observers Q". That is, an
element of S is a curve y in M which is everywhere

Consider now the problem of clock synchronization in
S along a curve I . Let U be a simply connected region in
S and denote by U& a simply connected four-dimensional
region g 'U in M. Equation (3.13} allows one to show
that the one-form Q =Q„dx" in M obeys the condition

0 R, dQ =0 (3.24)

and hence in accordance with the Frobenius theorem this
form in U& can be written as

u =k(x)dt . (3.25)

Denote by X, a three-dimensional spacelike surface
defined by the equation t=const. The trajectories of u"
are orthogonal to X, and for a fixed value of t the surface
X, is formed by events which are simultaneous with one
another in the reference frame of the u observer. The
surface X, crosses any u trajectory in U& only once.

Any point po in U& defines in a unique way the trajec-
tory yo and the surface Xo to which it belongs. Denote
by the same letter yo the point of S determined by the
trajectory yo and consider a path I in S which begins at
this point. This path can be unambiguously lifted to U&
if we require that the corresponding lifted path err[pa]
lying on Xo. The events on o r[po] are simultaneous with

pa. This procedure provides the synchronization of
clocks along any curve in U. If one considers two
different curves in U which connect the initial point yo
with the same final point y& the synchronization pro-
cedure along both curves will give identical results in y, .
The parameter t defined by Eq. (3.25) may be considered
as the "universal" time in U&. It is the existence of this
"universal" time which makes possible a noncontradicto-
ry synchronization along any closed curve in U.

The situation is quite different if we consider clock
synchronization in a multiply connected space S. Con-
sider a closed path I':y(A, ) in S which passes through the
throat of a wormhole. Denote by I

&
a two-dimensional

surface in M generated by a one-dimensional family I of
u trajectories and denote by yo the y(0) trajectory which
corresponds to X=0 (see Fig. 4}. For a given event po on

yo we inay define the set or[pa] of events which are
simultaneous with po along any curve I beginning at yo.
This path o „[po) is the intersection of a surface Xo pass-
ing through po with the surface 1 &. For A. =A,o this path
crosses yo again at some point po. In general case po does
not coincide with po. For this reason the global synch-
ronization of clocks in such a spacetime is impossible.
(The analogous situation is well known for stationary but
nonstatic spacetimes where it is impossible to synchron-
ize the clocks already in a simply connected region. )
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5' —5ro=5ro[e ' —1],Il [w] (3.29)

C

Po

6 C p,1r

where 6~0 is the proper time distance between the points

po and qo on yo (see Fig. 5). If h, r[po] is the "time gap"
for the synchronization along a closed path with a wind-

ing number n =1 beginning at the event po and 6&r[qo]
is the analogous "time gap" for the events q0 then

Il [w]
b, ,r[qo] —b, ,r[po]=5ro[e ' —1] . (3.30)

FIG. 4. The clock synchronization in a multiply connected
"static" spacetime.

Denote by hrr[po] the difference between the proper
times for the events p0 and p0 on y0. It can be shown
that for a given point po the "time gap" 6&r[po] depends
only on the homology class of the path I in S which
passes through y0. For the "static" spacetime with one
wormhole the value of b, „r[po] depends on the winding
number n of the path and we denote it b,„r[po]. For a
given u trajectory b, „r[po] depends on the proper time 7.

Now we prove that the quantity db, „r[po]/dr does
not depend on the particular choice of the u trajectory
and

(3.26)

In order to prove this we consider two points p0 and q0
on y0 separated by the proper time interval 5~0. Let I be
a closed curve in S which passes through y0 and goes
through the handle of the wormhole. Consider a finite
part of this curve and let p] and q, be the points on the
trajectory y, which are simultaneous along I with p0 and

q0 correspondingly. In the vicinity U& of the y0y& path
in S one can introduce the "universal" Killing time t.
Denote by 6t, and 6~, the interval of the Killing and
proper time between p; and q; along y;, correspondingly.
It is evident that 5to =5t, and hence

T
7 70+

acp
(3.32)

Equation (3.28) also shows that the redshift factor for a

This relation shows that the "time gap" changes with the
proper time along yo at a rate given by Eq. (3.26). The
independence of db, „r/dr on the particular choice of the
u trajectory is just a consequence of the invariance of the
period I„[to].

There are two physically important results which fol-
low from the above considerations. Consider a travers-
able wormhole in an external gravitational field. For ex-
ample, suppose that one of its mouths is moved close to
the surface of a neutron star and it is held there at rest by
some external force while the other mouth remains far
from the star. For such a system the period I, [w] does
not vanish and the "time gap" for the clock synchroniza-
tion in the external space with respect to synchronization
through the handle grows with time

b, ,r=[e ' —1](r ro), —I
l [w]

(3.31)

where ~0 is the time when one of the mouths was inserted
into the gravitational field. When A]~ becomes larger
than the time T of the light propagation in the external
space between the mouths, the wormhole becomes a time
machine. In a weak gravitational field I, [w] = b,y, where

by is the difference of the gravitational potentials be-
tween the mouths and the condition of the time machine
creation is

(3.27)

This relation does not depend on the particular choice of
the norm of the Killing vector in U&. In this simply con-
nected region Eq. (3.27) can be rewritten in the form

~6 E pol

'~ P&

(3.28)

If the end point y(A, O) coincides with the initial one yo
the integral on the right-hand side of (3.28) gives I, [w].
By using this relation one gets FIG. 5. Illustration to the proof of the Eq. (3.26).
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photon which passes though the wormhole is

I
l [au]a=e ' (3.33)

This means that photons (as well as any other particles)
which pass through the wormhole can be used to extract
energy from it. For the wormhole in a weak gravitational
field the time needed for a photon to go through the
wormhole and return back is much shorter than the time
(3.32) for time-machine creation so that during a rather
long time one can use the wormhole as the energy genera-
tor before a nontrivial causal structure will develop.
What is the origin of the energy which can be obtained by
this process? In order to answer this question it is in-
structive to analyze the analogous problem in electro-
dynamics.

IV. WORMHOLES ELECTRODYNAMICS

For simplicity we consider at first the case where

I, [w]=0; i.e., the gravitational field of the wormhole is

potential. We write the four-dimensional Maxwell equa-
tions in the form

Consider now a static electric field created by electric
charges located outside a wormhole. We consider effects
connected with the electric field, so we put the magnetic
field equal to zero. It is convenient to use the three-
dimensional formalism (see also Ref. 10). Let
x '(i = 1,2, 3) be the coordinates in S. Denote by
e =F;„Pdx' a three-dimensional one-form of the electric
field strength. It obeys the equations

5e =4mp, (4.7)

de =0, (4.8)

where 5=( —1}P'd' is an operator of codifFerential (or
divergence) of a p-form and p= j„p is the charge density.
The electromagnetic energy of a system can be written in
the form

E= eh*e= d ve;e'.1, 1

8m' 8n
(4.9)

The Kodaira theorem' ' allows one to show that any
finite-energy solution of Eqs. (4.7) and (4.8) can be
uniquely decomposed into a sum of two-forms,

d "f=4m'j, (4.1) e =e)+e2 (4.10)

=0 (4.2)

Here f=f&„dx"hdx' is the electromagnetic two-form.
These equations can be used to prove some important in-
tegral laws in a multiply connected spacetime. The elec-
tric 4rrq[C; ] and magnetic 4mp[C; ] field fluxes through
the two-dimensional surface C, are

4m.q[C,']=f ef, (4.3)
I

4np[C ]=f j .
l

For any two homological surfaces C, and C2.
C2 —C i =BC, one has

q[Cz] —q[Ci]= f +J (4.5)

(4.4}

p [C2]—p [Cf ]=0 (4.6)

Equation (4.6) shows that the magnetic flux through C2

depends only on the homology class [ C ] of a closed
two-dimensional surface C and does not change in time.
If we choose a part of the surface t =const as C then Eq.
(4.5} shows that the difFerence between the electric field
fluxes through two homological closed two-surfaces is
4n.g, where Q is the electric charge in the three-volume
C bounded by these surfaces. On the other hand, if C2
is just the "late time version" of C, (and hence it is

represented by the same two-surface in S} then Eq. (4.6)
shows that the change of the electric field flux through
this surface is determined by the total charge which
enters through this surface.

For our particular case of a static wormhole the latter
result means that the electric field flux through the han-
dle cannot be changed until charged particles pass
through it. Any motion of electric charges in the exter-
nal space does not change the value of the electric and
magnetic field fluxes through the wormhole.

such that e, =dy is an exact form while the other one ez
is harmonic: 5ez =de&=O. The forms e& and ez satisfy
the orthogonality condition

e& h*e2=0 .

In other words, the field e, is potential; i.e., it is the gra-
dient of a scalar potential which is uniquely defined for a
given charge distribution as a solution of the Poisson
equation on S:

hy=4mp . (4.12)

The field ez is the nonpotential part of the electric field.
In the absence of charges (when e, =0) the field ez is

uniquely defined by its flux through the wormhole's
throat. The field lines of ez are closed. They enter the
wormhole through one of the mouths (S ) and go out
through the other (S+ ). In the external space this neutral
wormhole with a trapped electric field e2 looks like a di-

pole with positive charge being placed at S+ and nega-
tive charge being placed at S (Ref. 2).

Consider now a neutral wormhole with e2 =0 and sup-
pose that the electric charge is inserted from infinity and
placed in the vicinity of one of its mouths. This charge
creates an electric field e whose potential part e, has a
nonvanishing potential difference between the mouths in
the external space and hence the same potential
difference must be created for it along the handle. Thus
there arises some e, -field flux through the handle. But
the complete electric flux of the field e through the han-
dle remains unchanged and must vanish. Hence during
this process there must also arise a harmonic component
ez in order to compensate the flux of e, . This situation is

similar to the one we have discussed in the gravitational
case: the insertion of a wormhole into an external field
generates the nonpotential component of the field.
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A charged particle moving in the nonpotential electric
field acquires energy. The work done by the field on the
charged field particle is compensated by the energy de-
crease of the electric field. In order to show this consider
a charged particle with charge bq which initially is at
rest near the wormhole and then passes through the
wormhole and returns back to the initial position. %e
suppose that the energy gained is used to do some work
and the final configuration of charges coincides with ini-

tial one. Thus the component e, of the field remains un-

changed but the electric flux through the handle is
changed by the value 4mhq. This implies a change of e2.
Using Eqs. (4.9) and (4.13) one can write the energy in the
form

F = f d U[e, e', +e2 e2] .= 1
(4.13)

It is possible to show that the decrease of the electric en-

ergy E due to the change of e2 coincides with the work
done by the field on the charged particle during its
motion along the closed path. The process of the energy
extraction can be continued until the field component e2
vanishes. For a given charge distribution the
configuration with the potential electric field possesses
the lowest possible energy and hence it is equilibrium
state. There is a simple explanation why this happens.
Consider a cyclic motion of a charge hq which passes
through a wormhole with a potential electric field. The
work done by the field on the charge along the closed
path vanishes and hence there is no contribution to the
energy change proportional to bq. On the other hand,
the second order in the bq contribution to the energy
change is positive. This happens because as the test par-
ticle passes the handle and leaves it through the mouth

S+ the effective electric charge of this mouth becomes
less by the value hq. In other words, the charged particle
induces an additional negative charge —bq on S+ and
there arises an additional force of attraction of the parti-
cle to this induced charge.

The situation is quite different for the gravitational in-
teraction. The gravitational field in the spacetirne of a
wormhole is potential for the equilibrium configuration.
But this equilibrium corresponds to a maximum of the
energy and it is unstable. Consider a motion of a massive
test particle through the wormhole. After the massive
particle leaves the wormhole through the mouth S+ the
mass of S+ decreases and its attraction also decreases. If
initially the masses of both mouths were equal and the
gravitational field was potential then after the passage of
a massive particle through the wormhole the masses of
both mouths become different, the field becomes nonpo-
tential, and the energy of the wormhole decreases. These
arguments show that if there is matter outside the
wormhole then the wormhole is unstable with respect to
the processes which transform it into a time machine.

V. CONCLUDING REMARKS

In conclusion we make some additional remarks con-
cerning the interesting possibilities which may arise if
wormholes exist. Suppose that one of the mouths (say,
S ) of a traversable wormhole is placed near a black-hole
horizon and is held there at rest by some external force,
while the other mouth S+ remains at a great distance
from the black hole. Near the event horizon there exists
a thermal atmosphere so that an observer at rest will see
a thermal gas of Boulware quanta with the temperature
Td =2m ld where d is the distance from the horizon (see,
e.g., Refs. 10, 14, and 15). Some of these thermal quanta
can freely propagate through the wormhole and as a re-
sult the mouth S+ becomes the source of thermal (with
the temperature Td) radiation. This process may be con-
sidered as a realization of the general idea of "mining" a
blackhole proposed by Unruh and Wald. '

Another interesting possibility arises if the mouth S
loses its support and begins to fall down into the black
hole. In this case an observer at rest far from the black
hole can use the wormhole to "study" the black hole's in-
terior. This wormhole device in principle could be used
to "save" an observer who had fallen down into a black
hole earlier. At first sight this possibility to get informa-
tion from the interior of a black hole contradicts the
definition of a black hole. It is not so. The point is that
the gravitational radius is only an apparent horizon. If
the weak energy condition is satisfied then the apparent
horizon either coincides with the event horizon or is hid-
den inside it and hence there exists a black hole (see, e.g. ,
Refs. 17 and 18). On the other hand, a traversable
wormhole can exist only if this energy condition is violat-
ed. Hence in the presence of a wormhole the event hor-
izon may be located inside the apparent horizon (inside
the gravitational radius) or simply be absent.

These remarks show that many interesting questions
arise when one considers the interaction of a wormhole
with a black hole. Nevertheless it should be emphasized
once again that all these questions may have physical
meaning only provided wormholes exist and a time
machine is stable. The problem of the classical and quan-
tum stability of the Cauchy horizon which exists inside
any time rnachine as well as the problem of the consisten-
cy of systems with self-interaction in the presence of a
time machine are still the main unsolved problems.
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