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In a previous paper, a second-order propagation equation was derived for covariant and
gauge-invariant vector fiields characterizing density inhomogeneities in an almost-Friedmann-
Lemaitre-Robertson-Walker (-FLRW) perfect-fluid universe. However, an error there led to
omission of a term representing an effect of vorticity on spatial density gradients at linear level.
Here we determine this interaction (leading to an extra term in the second-order propagation
equation for the spatial density gradient), and examine its geometrical and physical meaning. We
define a new local decomposition of the observed density gradient and we show that the scalar
variable defined in the decomposition naturally describes density clumping, and satisfies the
standard Bardeen second-order equation. The physical meaning of the other variables defined
in the decomposition is discussed, and their propagation equations are presented. Finally, the
vorticity-induced time growth of the density gradient is derived in the long-wavelength limit.

I. INTRODUCTION

In a recent article [Ellis, Hwang, and Bruni' (EHB)] a
new covariant and gauge-invariant approach to cosmolog-
ical density inhomogeneities [Ellis and Bruni (EB)] was
extended to the case of a perfect fluid with barotropic
equation of state. A gauge-invariant and covariant vec
tor field that codes the information needed to describe
density fluctuations in an almost-Friedmann-Lemaitre-
Robertson-Walker (-FLRW) universe model was defined
in these papers (the comoving fractional density gradient
'Ds), and a second-order homogeneous equation deter-
mined that characterizes its dynamics in the linear case.
However in the course of extending previous work on
the Newtonian limit of general relativity to the case of
almost-FLRW models, ~ Lot termoser (Max Planck Insti-
tute of Astrophysics, Munich) found an error in the EHB
analysis. That analysis is correct for the case of vanishing
vorticity, but an extra term occurs in the equations when
both density and vorticity fluctuations occur (which is of
course the general case). In particular, the second-order
equation has a source term which can be expressed in
various ways, and vanishes if the vorticity is zero. Here
we derive this term and discuss possible physical implica-
tions. It should be emphasized that our analysis is based
on standard general relativity with ordinary matter.

As in EB and in EHB, the basic philosophy is not to
start with a FLRW universe and then perturb it, but

rather to take as our starting point an anisotropic, in-

homogeneous (realistic) space-time that is kinematically
approximately FLRW. The approximation takes place
by neglecting higher-order terms in the exact equations
when the kinematic and dynamic variables take values
close to those they take in a FLRW universe. Thus we do
not distinguish between real and background variables,
but do all calculations in the real space-time, linearizing
the resu1ting equations; the "background solution" is just
the zero-order approximation to the full solution of the
exact equations.

The key points is that if there is vorticity, there
are no 3-surfaces orthogonal to the fluid flow in the real
space-time (although such surfaces do exist in the back-
ground space-time); consequently, the surfaces of con-
stant density in an expanding universe cannot be or-
thogonal to the flow lines and a spatial density gradi-
ent must be measured by the fundamental observers (ob-
servers comoving with the fluid) if the universe is expand-
ing and rotating (even if the Universe is exactly spatially
homogeneous). s 2 ~s Equivalently, there must be a pecu-
liar velocity of matter relative to the surfaces of constant
density, and an associated dipole in the observed matter
distribution. If one uses the usual variable bp to charac-
terize energy density perturbations, this effect will

be reflected in variations in bp of a dipole character which
can only be removed by gauge choices which lead to pe-
culiar motions of the matter relative to the chosen time
surfaces. Now essentially the same argument applies to
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the fiuid pressure. Provided the fluid has nonvanishing

speed of sound, there will necessarily be a spatial gradi-
ent in the pressure in the local rest spaces of the fluid in

an expanding and rotating universe; this will afI'ect the
fluid flow through the momentum-conservation equation.
If the fluid is a perfect fluid with barotropic equation of
state, we get simple predictions of the implications.

After the presentation of the necessary preliminary ma-

terial, we derive the interaction term in Sec. II, also dis-

cussing the role it plays in the second-order propagation
equation for the spatial density gradients.

In Sec. III we define a new local decomposition of our
basic variable, the density gradient B„and we show that
it contains more information than the scalar variablei
usually employed in the analysis of density inhomo-
geneities. The latter scalar is however recovered in the
decomposition as the part that naturally describes the
density clumping, which satisfies the standard Bardeen
second-order equation, with vorticity playing no role
in its evolution. Thus, there is no contradiction between
the vorticity —density-gradient interaction presented here
and the standard results of cosmological perturbation
theory is only scalar modes contribute to describing
density clumping. The physical meaning of the other
variables defined in the local decomposition is also dis-
cussed in this section, and their propagation equations
are presented.

Finally, in Sec. IV, we explicitly derive the vorticity-
induced time growth of the density gradient B, in the
long-wavelength limit, for a general barotropic perfect
fluid in a fiat universe.

The vorticity and shear magnitudes are defined by ~
1 ab 2 1 ab
24)ab4J )

0' =
~

0 ab0'

Because we are here considering the case of a
barotropic perfect fiuid, the conserved matter stress ten-
sor will take the form

Tab = Puaub + Phab ~

where the pressure p and energy density p are related by
a barotropic equation of state

(4)

We will use standard notation as follows:

io = p/p, c, = dp/dp w io = —(1+u))(c, —io)O

(the implication following from the energy-conservation
equation).

The projected covariant derivative

A crucial role is played by ~ ~V'„ the covariant deriva-
tive operator orthogonal to ua, obtained by totally pro-
jecting the 4-dimensional covariant derivative operator,
see, e.g, Refs. 3 and 9—11, and the Appendix; when ~=0
this is the covariant derivative in the surfaces Z orthog-
onal to the fundamental flow lines, but we are concerned
precisely with the case when cu g 0 and there are no such
surfaces. In terms of this derivative, which we will call
"spatial derivative" for simplicity, (1) can be written

II. THE INTERACTION TERMS +bua = 7bua —&aub )
—(3)

(6)
The variables we use, the motivation for their use, and

the equations they obey are explained in detail in EB and
in EHB; only sufficient repetition of this material will be
given here to establish the notation used.

A. Preliminaries

&qua = ~ah+ &ah+ sehab

For present purposes, the importance of ~3~%', arises be-
cause it determines the fiuid acceleration through the mo-
mentum equation

As in Refs. 9—ll, 15, and l6, the 4-velocity vector tan-
gent to the flow lines (the world lines of a fundamental ob-
server in the Universe) is u (u'u, = —1). The projection
tensor into the tangent 3-spaces orthogonal to ua (the
rest space of a fundamental observer) is li i, = g, i +,u, .ui

The time derivative of any tensor T', g along the fluid
flow lines is Ta,d = T',g.,u', in particular the acceler-
ation vector is aa = u~ = ua.

i, u (~ a, u' = 0). The first
covariant derivative of the 4-velocity vector is

7bua —~ab + Oab + 38~ab daub1

where 8 = u'. is the expansion, ~,b
——~~ b~

is the vor-

ticity tensor (io i,
u~ = 0), and o, i,

—
o&,sl is the shear

tensor (o i, u = 0, o = 0). A representative length
scale S along the flow lines is defined by

s/s = —,'e .

2. The inhornogeneity variabtes

In a FLRW universe model the shear, vorticity, accel-
eration, and Weyl tensor vanish, and the energy density

p, pressure p, and expansion 8 are functions of the cos-
mic time t only. The covariantly defined and gauge-
invariant quantities we use to represent the spatial vari-
ation of p and 0 in almost-FLRW universes (EB, EHB)
are the comoving fractional density gradient orthogonal
to the fluid flow,

and the comoeing expansion gradient orthogonal to the
Quid flow:
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z. = s~'lv. e. (9) first order,

These quantities, which are in principle observable (EB),
characterize inhomogeneity in a covariant way, and van-
ish in the FLRW universe models. In Sec. III we define
derived quantities from these variables that further elu-
cidate their meaning.

A supplementary quantity simply related to 'V, and Z,
can be defined from the 3-curvature scalar in the tangent
space

~ lR = 2(—-'0 + 0 —~ + ~y + A) (10)

(see the Appendix), where ic is the gravitational constant
and A the cosmological constant; when ~=0, jslR is the
Ricci scalar of the hypersurfaces orthogonal to the fluid
flow lines. The covariant and gauge-invariant vector

C. = S'~six. (IslR) = --', eS'Z. + 2~&S'V.

(3)/ (3)/~p (3)/ (3)/tZ)

(~+p) ' S(1+w) (17)

where we use the notation ( )V' = ( )V'y( )V, the sec-
ond equality following from (5) and the assumpt, ion of
adiabatic evolution used throughout this paper (which
implies the perturbation is adiabatic).

The dynamics of our basic variable, D„ is given by
(12) in combination with one of the two equations (13)
and (14) [on using (14), one should trivially substitute
for Z~ in (12) from (11)], or by the linear second-order
equation which follows directly from (12) and (13) using

(17). This equation is

Z ~. + W(t)V, .—e(t)V. —cPslV. (&'lrbnb) = 0,
(18)

is the spatial variation of this 3-curvature variable, ' the
equality being taken to linear order. This quantity plays
in our formalism the same role that bk does in Lyth and
Mukherjeezo [compare their Eq. (23) and our (25) below].

3. The evolution equations

where the coefficients

A(t) = (sz —2w+ c,)0,
8(t) = (-'+ 4w —swz —3c, )irp

+(c, —w), + (5w —3c,)A,
12k

(20)

The exact nonlinear evolution equations for D, and
Z, in a general space-time were obtained in EB by taking
the spatial derivative of the energy-conservation equation
and the Raychaudhuri equation. Here we use these equa-
tions (and the equations for C, ) when linearized about
the FLRW models with nonvanishing pressure (see EHB).
Using the subscript J to denote projection orthogonal to
u, i.e., writing h, '(D, )" = Dg, , h '('D, )

' = D~„etc.,
they are

A(t) = (s —w)0,

&(t) = -', (1 —w)(1+ 3w)Kp+ 2wA .

(21)

are determined from the background model. This form
of the equations allows for a variation of w = p/p with
time. However if w = const, then from (5), c, = w, and
the coe%cients simplify to

'Dg, = we'D, —(1+w)Z, , (12)

3k
Zg = —~sOZ, —ziKpD, +S a, +A,

~
G G)

6kCi, —— 0 '(-'C, —~ps'D, )

, (3k—40S /
a, +A,

f (14)

where the covariant derivatives (implied by the overdot)
may all be taken in the background (zero-order) model,
A is defined by

Aa =— ' '7a(a';c),

B. The extra terms

The problem with (18) is that although it is a homo-
geneous equation, the last term is in an awkward form.
We wish to commute the derivatives to bring the equa-
tion to a more standard form, with the spatial Laplacian
acting on B,. When this was done in EHB, it was as-
sumed that the derivatives ( )7' commute when acting
on scalars. However this is true only when the vortic-
ity is zero. When the vorticity is nonzero, there are no
surfaces in space-time orthogonal to the fluid flow, and
consequently these partial derivatives do not commute;
rather

and we have used the zero-order relation

~'lR=6k(S', k=o
(3)/$(3) / p (3)~ (3)~$p —g~ p

= —2c,'(1y w)pe~ b (22)

(accurate to the required order of accuracy), where k

corresponds to the curvature constant for the background
FLRW universe model (see the Appendix). From the
definition (15) of A and (4), (5), and (7) we see that to

[see the Appendix for a detailed discussion of the first
equality and related results; the second equality follows
from the energy-conservation equation and (4) and (5)].
It follows from (22) that
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Z~e ——3PZe —
2 KP17e—

—2c,'Se (')v b~.b .

C2 +()~2 ~1)I+~ &S2

(24)

~ 6k
Cg, —— 20 '(2C, —IcpS 'D, )

+4pS2 a + (3)g2
c' k

1+to S2 )
+s 2S3p2 (3)~ b (25)

The last term on the right-hand side (RHS) of (24) and

(25) is the (first-order) term2' giving the effect of vor-

ticity on the expansion and curvature gradients, and so
on the density gradient, measured by a fundamental ob-
server. The final version of the linearized second-order
equation (18) follows directly from (12) and (24) or from

(18) and (23). We find

Bi.+ A(t)Di. —8(t)D. + Z(t)V.

—C(t) ( )V' u) b = 0, (26)

where the coefficients A(t), 8(t) [given by (19) and (21)],

( )~ (( )~ 1),) —
~

+( )~S'
+2O(1+ u))S( )V ~,b .

The final linear first-order equations we obtain from (13)
and (14) are

(3)~e ((3)~b~ b)
—() (30)

(see the Appendix). This means that the contribution
the extra term induces in the density gradient will have
vanishing spatial divergence: ( )'7'1), = 0 [if this diver-

gence and its first derivative vanish initially, the eA'ect of
the vorticity term is to leave it zero, see Eq. (48) below],
so the induced growth of inhomogeneity in one direction
will be compensated by a lessening in other directions.
The geometric meaning of this result will be discussed
below (see Sec. III B).

This already shows that the vorticity and density gra-
dients are linked in the linear approximation, because
expansion and density gradients are intimately related
[see (12) and (13) above]. Equation (29) restricts how

initial data can be chosen, while the extra term in (26)
shows how (consistent with this) there is a direct effect
of vorticity. in the linear approximation, as a source of
growth of density gradients. However the coefficient C(t)
of this extra term vanishes if the speed of sound is zero,
or the Universe is static. The term does not occur in
the case of Newtonian theory, because in that theory the
hyperplanes orthogonal to the fluid flow are always tan-
gent to hypersurfaces of absolute time, and are therefore
integrable; so the equations in Ref. 5 correctly include the
case of combined vorticity and density perturbations.

To linear order, the divergence of the extra term in

(26) vanishes:

C(t) = c,2S(1+ io)e, (27)
1. The growth of the vorticitg source term

and the operator

g(t) = c'
~ S2 )

are determined from the background model. The last
term in (26) is the extra term due to (22) and (23), omit-
ted in EHB. The key point here is that it is the operator
l:(t) that determines the effective wavelength of density
inhomogeneities through its eigenvalues and eigenfunc-
tions [unlike the last term on the right-hand side of (18)].

At first glance this extra term seems to imply that
the equations do not close at the second order anymore,
because the covariant derivative of the vorticity along
the fluid flow lines involves the shear. However this
is not the case because vorticity propagation decouples
in the linear approximation, so we can (to this level
of accuracy) determine the evolutionary behavior of the
extra term. In more detail, a perfect fluid with p = mp,
w = ur(p) [see (4) and (5)] has an acceleration potential
r (Refs. 9 and ll), where

C. The interaction
dp

&,. 1 (I+~)) ' (31)

V' ~,g,
—~ )V' o.g„+ — V', 0 = 0 . (29)

The linking of vorticity to the time evolution of the
density gradient is through the 3-divergence of the vor-
ticity tensor (i.e., the 3-curl of the vorticity vector). The
effect is nonzero provided ( )V'~, g 0; if vorticity is
nonzero but this divergence vanishes, there is necessar-
ily a density gradient associated with the vorticity (see
the Introduction), but the groioth of this gradient is unaf-
fected by the extra term. The same divergence is related
to the 3-divergence of the shear and the 3-gradient of the
expansion through the (0, v) constraint equations in

its linearized form (Ref. 15):

(S res„) =0. (33)

When io = const, p = M /S ( + ) M = p S
M~ ——0, where So is the present value of the scale factor,
and the acceleration potential is

and the vorticity evolution equation (in the linear ap-
proximation) is

~ac + 38~QC I7[Q+Q]
2 (3~

(3)~( (3)~ )p-p+p r

Thus



42 DENSITY-GRADIENT —VORTICITY RELATION IN PERFECT-. . . 1039

Hence

f p& '+- i'M, ~l '+-

kp~) &p')

0„ O„=o, 0, =At,),

(34)
While it is not necessary to introduce the usual harmonic
decomposition to derive our equations, it is instructive to
consider how they relate to harmonic representations and
the ADM decomposition.

A. The ADM decomposition
where all multiplying constants are now included in
0« —rs2~«( '

) &+ . Finally Eqs. (93)—(95) in the

Appendix show that (S& lV') is the orthogonal deriva-
tive operator which, acting on a purely spatial first-order
tensor that is covariantly constant along the Quid flow

lines, preserves time independence. In particular, to first
order, the divergence term obeys

(S ts&Vb~. b) = S slurb(~. b),

thus

fslV'(S&'lV'n. ,) = 0

(36)

where t is proper time along the fluid flow lines, and so
the vorticity goes as

(38)

The divergence goes as

& lV"~„=0, (pt) &+-, (39)

where we defined

n. = s ~'~v'n. , n. = o, ~'&v"n. = o (40)

[the last condition expressing the vanishing-divergence
property (30)j. The nature of the interaction depends
(a) on the equation of state, and (b) on the initial value
tsar%'Q«of the spatial vorticity divergence; the inter-
action term always decays as the Universe expands, if
m ( 1.

As a simple example, in the case of a flat background
with vanishing cosmological constant (k=0, A=O), the
scale factor of the background model obeys

This nonlocal splitting can be applied to vectors and
second-rank tensors in a standard manner. zs 2 In the
case of a vector field V„ independent of any Fourier anal-
ysis, it represents V, in terms of "scalar" and "vector"
parts V, P, B, relative to a chosen family of 3-surfaces:

V. = O'.P+8. , 7'B. = 0, (41)

B. A local decomposition

where V, is the covariant derivative in these 3-spaces.
If appropriate boundary conditions are satisfied (which
could be problematic if the background model has k=0),
and k g —1, then B is unique and P unique up to
a constant. 2s As the first term has vanishing curl but
nonvanishing 3-divergence, whereas the second has van-
ishing 3-divergence (it is "solenoidal" ), if we take the
3-divergence of V, we obtain an equation involving only
the first term, while if we take its curl we obtain an equa-
tion involving only the second. However it must be em-
phasized that this splitting is nonlocal: there is no local
equation determining 7', P and B, uniquely from V, .

Suppose we apply such a splitting to our first-order
or second-order vector equations for B, above. A vital
point in the case of nonzero vorticity is that the pro-
jected derivative ~ &V'~ in the real space-time is not the
3-derivative V~ in any family of 3-surfaces (although in
the zero-order approximation, ~ ~V', is the same as V',
in the natural time surfaces in the background). Thus
the importance of the distinction made above: the co-
variant derivatives must be correctly worked out in the
real space, to the linear order, before applying such a
splitting; and as no surface can be chosen orthogonal to
the fluid Qow, on applying the splitting (41) to (12)—(14),
(24)—(26 the derivative operator '7, cannot be the op-
erator &s 9'~ that affects the fluid dynamics through (7).
Furthermore because this splitting is nonlocal it does not
relate directly to local properties of (26). The implica-
tions of applying such a splitting to our equations are
thus a bit obscure. We therefore turn to an alternative
(local) decomposition whose meaning is more immediate.

III. INVARIANT DECOMPOSITION

The standard harmonic representation, which
combines the Arnowitt-Deser-Misner (ADM) tensor de-
composition with a (logically independent) harmonic
analysis, should be regarded with some reservations be-
cause it is nonlocal, whereas the physics we are concerned
with is essentially local. We present an alternative lo-
cal decomposition and discuss its geometrical meaning.

S t ~ V'b'D, —:A, b
——W, b + Z, b + ~sb.h, b,

where

(42)

The spatial variation of the density (orthogonal to the
fluid Qow) is characterized by 17,. A unique local split-
ting can be attained by considering the spatial derivative
of this vector (multiplied by the scale factor S for conve-
nience), and splitting this derivative into parts in analogy
with (6):
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Z, b
——E(,b), Z, = Q.

The skew-symmetric part is

(43)

(3)~) (3)~ )p—
P

S ~,by, = —S (1+io)Ocu, b,
P

(44)

1~ab = +[ab] & ~ab = +(abl s+~ab servation equation (32) [it is clear this must be so from

(44)]. Thus, we check the consistency of our equations,
and so confirm the form (26) of the effect of the vorticity
on the density anisotropy. This equation is the law con-
trolling the dipole part of the observed density gradient,
e.g. , through governing the way the tilt angle of the sur-
faces of constant density in a Bianchi universe changes
with time [see Eqs. (1.17), (1.31), and (1.32) in Ref. 13].

(ii) Symmetric part

where we neglect a second-order term from ~s]V' S. This
skew part by itself represents spatial variation of B, in
which its magnitude is preserved (i.e., rotations of this
vector), e.g. , that associated with the "tilt" of the fluid
flow vector relative to the surfaces of constant density in
homogeneous universes (i.e. , the velocity of the matter
relative to these surfaces). Thus although the associated
density gradients exist and are observables they are
essentialy dipolelike in character and are not directly as-
sociated with formation of local inhomogeneities.

By contrast, the spatial divergence

~ =- ~ .= S t']V'V. = (3)~2

by itself is related to spherically symmetric spatial vari-
ation of p where density is accumulated, i.e. , to spatial
aggregation of matter that we might expect to reflect exis-
tence of high-density structures in the Universe. Finally,
the trace-free symmetric part

~ab = ~ 7(b+a) 3t-bhab (46)

1. Evolution equations

Now the evolution equations for these quantities follow

from (26) and their definitions.

(i) Antisyrnrnetric part

Taking S& ]V'b of (26) and antisymmetrizing over in-

dices [b, a], gives

o&
Wg, b

— u)O+ — W, b = 0

Since W b oc ~,b, this is equivalent to the vort, icity con-

by itself is associated with spatial variations of 17, which
do not represent spatial clumping of matter (as the as-
sociated divergence of 17~ is zero) but rather represent
change in the spatial anisotropy pattern of this gradient
field. This seems to be what one might associate with
the existence of pancakelike or cigarlike structures.

A general pattern of inhomogenity will have all the
components (44)—(46) nonzero, for example, implying ag-
gregation (4 ) 0) in a pancakelike structure (E~b g 0)
and with turbulence present (W, b g 0).

(a) Trace: Take the divergence of (26), keeping only
the linear terms that arise. While the divergence of the
vorticity term is nonzero, it is second order [see the Ap-
pendix and (30)], so to linear order we obtain

b, + A(t)A —8(t)6 —c,'~']V'6 = 0 (48)

C(t) ~ ]'&7 & ]'&7'~o, = 0, (49)

where

c&&i = .,& (
", —»') . (50)

This equation [similar to (26)] governs the growth of pan-
cakelike or cigarlike density inhomogeneities, because it
will alter E,b in time. The eKect of vorticity in this equa-
tion will bc nonzero provided the initial conditions sat-
isfy &s]V~b& ]7'0 ], g 0; and there seems to be no reason
why this term should vanish, in general.

Alternatively, operating by S& ]V'b on Eq. (18), sym-
metrizing on the indices [b, a], and taking the trace-free
part, we have

Z~,b+ A(t)Z~, b
—8(t)E b

-c,' ~']V„~']V.] ——,'h. ,~']V' ~ = 0 (51)

giving a form of the equations for E b that does not ex-
plicitly contain the vorticity. Instead there is an inho-

for the scalar 4 =—S &s] V' Db. This is like (26) except that
(a) it is a scalar equation (for 6,), (b) the linear operator
Z(t) is replaced by a simpler Laplacian term, and (c)
the vorticity term does not appear. Thus we attain a
"scalar mode" equation (see Woszczyna and Kulakzs for
a similar result) independent of the vorticity source term.
That part of the density evolution relating to spherical
aggregation of matter (and so to growth of local density
inhomogeneities) is expressed in this equation (equivalent
to the Bardeeni" scalar harmonic equation, see Ref. 29):
therefore, there is no contradiction between the presence
of the vorticity source term in Eq. (26) and the standard
results of cosmological perturbation theory in which only
scalar modes contribute to describing density clumping.

(b) Trace free symm-etric part: We now take the sym-
metric, trace-free part of the spatial gradient of Eq. (26),
finding

Zg, b+ g(t)Zg, b
—8(t)Z, b+ Z(t)E b+
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mogeneous source term involving gradients of A. This
means that if we know the evolution of b, (and its spatial
variation) from (48), we do not need to explicitly intro-
duce the vorticity term; we have enough information to
find the evolution of E y. However it is simpler to use
the form (49) that explicitly refers to the vorticity (be-
cause of the vorticity conservation equations discussed

above). The kinematic and physical eff'ects described by
these two forms of the equation are of course the same.

We do not necessarily need to specifically consider
Eqs. (47)—(49), for all the information we need is in the
original equation (26). However if we do wish to further
reduce our equations, by contrast with applying a nonlo-
cal decomposition (41) to them, the above procedure is

(a) locally well defined and (b) independent of large-scale
boundary conditions which may or may not be satisfied
in the real Universe.

2. Harmonic analysis

If we apply a harmonic analysis, we can do so either to
the full equation (26) or to the set of derived equations
(47)—(49). We can do so without simultaneously applying
the ADM splitting discussed above. The basic point is to
expand every quantity in terms of eigenfunctions of the
Helmholtz equations

(s)~2q(o)+" q(0) —p

n2(s)&2@(i)+" q(i)
2

(3)+2(2) + q(2) p

obtaining effective wavelengths from the eigenvalues.
The eigenfunctions however do not relate in a simple
manner to the length scales associated with the extra
term in the second-order equations (irrespective of which
form we use to express this term). We do not pursue this
matter further here, except to remark that the harmonic
analysis of the scalar equation (48) is unchanged from
that given in EHB and Ref. 29 (as the vorticity makes no
contribution to this part), and gives the standard scalar
mode equation.

A final remark: whatever splitting or harmonic anal-
ysis is applied to the propagation equation (26) should
also be applied to the constraint equation (29), where
the same vorticity term occurs (indeed the ADM split-
ting was precisely developed to analyze the constraint
equations, 25 see Ref. 26 for the cosmological case). We
will again find a linking of vorticity to density perturba-
tions, but this time in terms of initial data.

IV. IMPLICATIONS

No diA'erence arises from the extra term in the case of
pressure-free matter (EB), rotation-free matter (EHB),

or the Newtonian limit; our previous discussions stand
in those cases. The new term takes effect when (p+ p)c2

g 0, e g 0, and the fiuid is rotating with (s)V' w, i, g P.
This is the generic case for a Quid with nonvanishing
pressure; that is, the new term will almost always have a
physical eff'ect. However, the homogeneous (source-free)
solutions are unaltered, so the speed of sound is unal-
tered. The Jeans length criterion in EHB is unaltered,
but now a new issue arises: the vorticity term can con-
ceivably dominate the equations. Presumably this will

only occur under conditions of extreme turbulence.

A. Long-wavelength solutions

Suppose we can ignore the "Laplacian part" of the
second-order equation, that is, C(t)17, can be ignored
relative to the other terms in (26) [and consequently the
Laplacian term in (48) can also be ignored]. We shall call
this the long- maveleng/h limit. This does not necessarily
mean we can ignore the term A, in our equations, for
(23) and (28) show that now we can have

(')V.S = 2es'(1+ ~) (')V'~., (52)

a spatial gradient in 6 occurring in conjunction with the
vorticity source term. Thus in general we cannot assume
we can ignore the latter in the long-wavelength limit, but
only (s)T~6. In this limit, (48) becomes an ordinary ho-
mogeneous differential equation; with the solution of the
latter, we can then consistently integrate (18) and (51),
or use the vorticity law (36) to integrate (26) and (49),
neglecting (50) [and so effectively using (52)]. However in
this section we prefer to solve for 'V through the system
of first order equations introduced in Sec. II A 3.

1. A conserved quantity on large scale

c 3ku)e —
i

are@(1+ w) — 0 ' 'D
g

2 0

3(1+w)—
4 S28

While the curvature variable C~ introduced previously
[see (11)]is a geometrically natural quantity which is use-
ful in discussing the long-wavelength limit, it turns out
that a closely related quantity C, is physically significant
because it is conserved in a more general set of circum-
stances; in particular it is suited to examining the long-
wavelength limit for general k and A. This quantity is
defined by

C, —:—~sS eZ, +2KpS 'D,
i

1—c
2~p I+ io )

(53)

and reduces to C when k=0. The dynamics of our basic
variable 'V~ can be determined through the system of two
first-order linear equations for D, and C, that follows
from (12), (24), and (53):
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4 c2S20 (3) 2 2k

3 (1+i') ( S'
2S3O2 (3)~b8
8 ~ah .

2

(1+u))t

[following from (37)] to rewrite (56) as

(58)

2. Denaity gradient growth induced by uorticity

In the case of flat background (k = 0), the above-
defined variable coincides with the previously introduced
curvature gradient: i.e. , C, = C, . In this case Eqs. (54)
and (55) coincide with (12) and (25) and we can pro-
ceed to integrate them, neglecting the Laplacian term.
Remembering that 302 = )(:p is the zero-order equation
when k=0=A, the equations for D, and C, become

Di, + (1 —u)) —D, = 48 '(1+ w) (56)

s 2S3 O2 (3)~b (57)

It is clear from the RHS of Eq. (57) that C, is no longer
a constant of motion, but can be determined from the
source term ~ )V'~a, ~. Then it acts as a source for B,.
Now we can use

In the assumed large-scale limit, the first term in (55)
vanishes; thus if there is no vorticity term, C~ is a con-
served quantity on large length scales, for any value of k
or A (and so C is conserved if k=0).

A scalar type variable S(3)V'C, is a conserved quan-
tity on the large scale even considering the vorticity term
(in this case, an integral solution in the large-scale case
can be found in Ref. 29), so the aggregation of matter to
form spherically symmetric high-density concentrations
(protostructures) is unafl'ected. Notice that this is valid
for general k and A, thus it generalizes the conserved
quantity in Refs. 20 and 31. However, the vector vari-
able C~ can have a contribution from the vorticity even
in the large-scale case, as, for example, when there are
homogeneous (Bianchi) perturbations. The effect of the
vorticity is analyzed below for the case k=0=A.

1 —u) D, 3 (1 + u)) 2

+J a+ g 3(1+u ) Q1+10 t 8 p3(1~
(59)

while from the vorticity equation (34), assuming c2 = u),

Eq. (57) becomes

32 2u/ 2Ci, = — P1+-A, t 1+-,3(1+ )' (60)

where A, was defined in (40). From the above equation
we have

1 —u)-(t )~g 1 ~ C. =C("»—
~

—
~

+ C(1)

(61)

where we have included an explicit initial time t, , and

C = C, (t;) is the initial value of C, (the constant of(~)

motion when u = 0) and

C(-) -=— P1+- Q.t '+-.32 XU

3 1 —&2 (62)

Using (61) and (63) we can look at the time behavior of
"curvature perturbations": then we see that for m & 1
the extra mode induced by the vorticity term on the RHS
of (60) grows up to an asymptotic value, while for u) ) 1

(not allowed physically) there is a growing mode. Finally,
C, grows logarithmically if u)=1.

With (61) we can now integrate (59) when w g 1. The
general solution for P~ is

is the asymptotic value of C, . Thus Eq. (61) shows how
the decaying vorticity term on the RHS of (60) induces
an asymptotically growing mode in C, (for u) g 1). Note
that in the dust case (u)=0), C, = 0 by the above(oo)

definition. For m=1 we obtain

Ml»
~

—
I +C,'f t ) (,)

0t, )

1 —ur

1+-—~()]
(,t'r

2{1+3~)
9(1+ iU) C t' f t ') '('+-)

+
8(5 + 3w) (pt. ) 3(1yu) (tj )

5+3'

(
3(1+-)1—

t;)
2(1+3m) 5+3u)

, 9 C&-' (+ ) ( t 3(1+m)
+(1+u))—

8 (pt.).(,+ ) 5+ 3~

9u) —1 2{1+3u()
3(1+m) ( t 3(1+m)

2(1+ 3u)) (t, j (t,

A similar expression can be found for the variable

4—:KpS D

introduced in EHB in analogy with Bardeen s variable C)H (Ref. 17); it is
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3(1+w) t i '+-

2(l + 3w) t, )

5+3m 5+3+
—@()~

~

+C() ( +
kt, r

' 2(5+ 3w)

5 3
C 3(1+ w) ( t l '&'+-)

+
2 (5+ 3w)

2(1+3m)(t ) 3(+-&

&t r
(66)

In both of the above expressions, the first term comes
from the homogeneous equation, the second arises from
the constant mode in C, (61), and the last is due to the
vorticity source term in (60). The solution for 6 is imme-
diately obtained by applying S( )7' to (64); then the last

term disappears, for (s)7'C( )=0 by definition (62) and
(40), and the second term is the term that comes from the
scalar conserved quantity C = S( )7'C(') which exists
in the long-wavelength limit even if ~ g 0 (see previous
section and Refs. '20, 29, and 31). Also we point out that
in the very particular case in which C,' and C, [thus

Q~ defined in (40)] have values such that C(') = —C(
two of the growing modes in the above equations cancel.
For the special case w=l, P = /3KMi we obtain, from

(59) and (63),
W

'D. ='D' + 'C.'t'( -[
/

—
f

1 —(—'
&,pt'r «r «r

, ~(tb (t) 3+30,P t,'
i

—
i

ln
i

—
i

—— 1—
gt r «r 4 t )

(67)

showing that in this case the vorticity induced mode dom-
inates. For the variable 4, in this case we have

8. Radiation

The case of pure radiation is of particular relevance to
the early Universe. In this case, p = 4/3, w = 1/3 = cz,

P = 2+a Mi, then we find, from (64),

z) —z)(&}

(69)

where we explicitly see that the growing mode induced

by C(') and one of those induced by C( ) (the faster

growing mode) can eventually reciprocally cancel if C,')

= —C, . An analogous expression for 4, can be found
(oo }

from (66).

V. CONCLUSION

The linearized dust equations of EB (cz=0) and Newto-
nian equations of (Ref. 5) for density inhomogeneities are
correct even if arbitrary (first-order) vorticity is present.
The perfect fluid equations of EHB (c, g 0) are cor-
rect when the spatial divergence of the vorticity is zero
(so in particular if the vorticity is zero) or the fluid is
not expanding, but otherwise the extra term discussed
here should appear in the density inhomogeneity evolu-
tion equations. It shows that in the linear approximation,
vorticity can act as a source for the growth of density gra-
dients with vanishing divergence.

Is this a real effect, or a mathematical creation? We
have been forced to conclude it is real, arising from the
fact that the acceleration of the fiuid is generated by the
pressure gradient orthogonal to the fluid flow lines [see

(7)]; but when vorticity is nonzero, there are no inte-
gral three-spaces orthogonal to the fiuid fiow, so these
eff'ective pressure gradients are not integrable (indeed
the gradient operators do not commute when acting on
any scalars). This is the source of the extra term. It
will be missed in any analysis where the commutation
of these operators is calculated in the background space-
time rather than the real space-time; however the local
physics is determined by the latter, not the former. For
example, we can consider a situation in the early Uni-
verse where a phase-transition takes place, and resulting
viscosity enables local vorticity generation (the fluid is
not a barotropic fluid at this time); generically this will
then result in creation of density inhomogeneities (for
only in rather special cases will the spatial divergence of
the vorticity tensor vanish).

Given that the effect will occur, its physical impor-
tance is still open to debate. One might think that it is
just a kinematic effect, because the growth of the vortic-
ity term is governed by the vorticity conservation equa-
tions, which are essentially kinematic identities. However
on the one hand, kinematic identities certainly must be
obeyed; so this would not diminish the significance of the
effect. On the other hand there is more than kinematics
in these equations, for the evolution depends crucially on
the equation of state of matter (in particular, our anal-
ysis has considered only the case of a barotropic perfect
fluid; the results will be different for an imperfect fluid
or for a nonbarotropic equation of state).

At a first glance, it could seem that the effect of vortic-
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ity on density gradients presented here is in contradiction
with the standard results of cosmological perturbation
theory in which a harmonic decomposition is carried out
from the beginning: namely, that only scalar modes
contribute to density perturbation. However, introduc-
ing a new local decomposition (Sec. III), we have clarified
that our basic variable, the density gradient D„contains
more information on the density distribution than the
usual scalar variable, but we have shown that the latter
is recovered as the spatial comoving divergence 6 of 17„
and that this variable does indeed satisfy the standard
Bardeen second-order equation. Thus, there is no
contradiction, and the eKect presented here is related not
to local aggregation of matter (clumping) but either to
dipoles in the density distribution (e.g. , velocity eff'ects),
or to growth of pancakelike or cigarlike structures.
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[X,Y']' —hb'[X, Y] = —2u'cub, X Y', (7o)

where the defect tensor

aD yg=u

expresses the fact that the vector [X,Y']' does not live
in D. In this case Frobenius's theorem tells us that
D does not possess integrable submanifolds, i.e. , surfaces
orthogonal to u'.

1. The spatial derivative

By definition, acting on scalars, vectors orthogonal to
u, and tensors orthogonal to u, the orthogonal covari-
ant derivative ( ~V', is given by

()V,f =h, 'Vbf =h, fb, (72)

7a X$ —ha h5 +cXd —ha ha "Xd;c (73)

and h, t,
= g, t, + u ug is a metric in H&. The collection

of these subspaces H& can be called a distribution D (see
Crampin and Pirani, p. 141) or a smooth specification
(see Wald ss Appendix B.3). When the vorticity is non-
zero we have for two vectors X,Y g D,

APPENDIX A: PROPERTIES OF THE
SPATIAL DERIVATIVE abc = ha hy hc 7gTey —ha hg hc Tef (74)

Given the smooth 4-velocity field u' (u'u, = —1) at
each point p of the space-time we have a subspace Hp
of the tangent space T& at p which is orthogonal to u',

I

This compact notation is a convenient way of avoiding a
plethora of indices:

(')V.S~' '-„=h 'h~„hs h' h-„h, 'h, " hd~h, ~V, S"' "",„ (75)

It follows from the above definition that ( ) V', preserves
the orthogonal metric hb, . that is, ( )7', hb, ——0. Conse-
quently, we can raise and lower indices through equations
acted on by ( &V'~ by use of h, p, h' . However we can-
not simply treat this operator as the standard covariant
derivative of a 3-space, because the defect tensor will be
nonzero when u g 0. Thus we cannot assume the usual
corTUIiutation relations; rather we must use the expres-
sions given in the following sections.

2. Commutators

together with (6) in the form

(3)+bua —~ab + Oab —kab

where O~g ——o,y + 30h, y ——Oy~ is the expansion tensor
(O,bu = 0). We obtain

(s)Q( (s)Qblf — Dc ( b)Qsf — ~ bf (77)

Similarly, tot, ally projecting the derivatives in the vector
commutator, we find that, for all vector fields X, orthog-
onal to u' (X,u' = 0),

( )V'l, ( )'Vb)X, +~,b Xg, ——
2

( )Rd, b,X, (78)
From these definitions we can calculate the commuta-

tor of the 3-derivatives when acting on scalars, vectors,
and tensors. The key point in the first case is to note
that, for any function f,

where, using the above defined k y, we define

(3)Rabcd —(Rabcd) J + kadkbc kackbd

W ( )R',d = (R',d)~ —2k('(, k ldl (79)
( )'7 (( )V' f) = h 'h "T ( )V' f)

= h, 'hb V, (hd"V, f)
and then use the Leibniz rule for V' on the last bracket,

(which is not defined by (s)V', alone but also by its em-
bedding). When a=0, k, b

——e,b and this is the 3-
curvature of the spaces orthogonal to u and will have
the usual curvature tensor symmetries. In the case of
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nonvanishing vorticity instead we have

(3) —(3)Rabcd = R[ab][cg, R [bcg: 2k [bucd]
(3) a a

and

3 Rab —3R ab = —8 [a Ob

(80)

(8l)

3
( )V, ( )R). These expressions can be substituted

for the 3-curvatures above when performing systematic
approximations of the equations.

3. 3-divergences
Further, for each tensor field T b orthogonal to u

(T,bu' = 0 = T,bub = 0),
(3) (3)7[a +b]Tcd+idab +J.cd —

2 ( RccbaT d+ RcdbaTc ) ~

~ (3) & (3)

It follows from (82) that

(3)p (3)g T[cb] T'ab + (3)R Tab (90)

(82) which shows that in particular

It follows from the above relations that the corresponding
"3-Ricci tensor" is

(3)g (3)g ab ab + (3)R ab
a b~ — ~ah [cb]~ (9l)

(3)
R[cb] 3~bee + (4 db&c 4 dc&b )

d d

and the "Ricci scalar" is

(84)

(')R=(3)R'. = R+2R u'u" —2e'+2~' —2~'

(3)R = (3)R b (3)Rb

= h (R,b,d)g —ek„+ k,bk, , (83)

with skew part

which [see (32) and (84)] is nonzero in general, but van-
ishes to first order in an almost-FLRW universe model.

4. Time derivatives

Calculating

( )V,(f) —(( )V,f)'i —(f ,u') bh. , —.(fbh d),,u'h,

(85) we find

Rabcd = zK(P + p)(uaucgbd + ubudgac
1

—ucudgbc —ubucgcd)

+~3(&P + A)(gacgbd gcdgbc) (86)

Thus the zero-order versions of the 3-curvature quantities
(remembering that to zero order, u, .b = 30h, b) are

(3)Rabcd = 1~(hachbd hadhbc) (87)

(3)R„=2I&h„= R„, (')R = 6', (88)

giving Eq. (10) on using the Einstein field equations.
When (78) and (82) are applied to a first-order quan-

tity, the time-derivative term can be neglected and we

only need the zero-order curvature tensor term in these
expressions to get the correct first-order result. From the
field equations, the zero-order expression for the curva-
ture tensor [see (28) in Ref. 40] is

(3)g (f) ((3)g f)'~

")V.(Xb) —((')r7.xb) '& = —,'e (')V'.Xb

~ s(')v.x, = (s(')v.x,), , (93)

where we have used (86). Similar results will then hold
for a first-order tensor, e.g. , if Tb, is orthogonal to u'
then to first order

( )V', (Tb, ) —(( )V',Tb, )'g —30( )V', Tb,

W S )7',Tb, —(S( )7',Tb, )'g . (94)

=-fn +-'e(3)V f+(3)wdf(~d +~d ) (92)

where the last two terins are second order if (3)'7,f is first
order, and so can be ignored in the linear approximation.
Similarly, for a first-order vector field orthogonal to u',
we And that to first order

where

k
Ii. = 3(—30 + ~P + A) =, k = 0 (89)

VVe can contract this equation to obtain the result for a
divergence:

(the last equality following from the contracted
Bianchi identities for the 3-curvature: (3)Q' ( )p,

(3)V'(T„) —((3)V'T„) = —,'O (3)V'T„
~ s(')v'T, =(s(')v'T„), . (95)
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