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The evolution of Bianchi type-I and type-IX universes for a theory of gravity with an eR term
added to the usual Lagrangian is considered. As in the spatially flat Robertson-Walker case con-
sidered previously by others, inflation is found to occur. For any amount of initial anisotropy, the
anisotropy decays quickly relative to the length of the inflationary epoch, and the amount of expan-
sion is enhanced by the anisotropy. The exceptions are Bianchi type-IX universes near or at isotro-
py. In these cases a wide range of initial parameters causes the universe to recollapse, thus reducing
the phase space in which inflation can occur. The diagonal metric is shown to be the most general
form in the R theory for both Bianchi type-I universes with a perfect fluid and vacuum Bianchi
type-IX models.

I. INTRODUCTION

Several mechanisms have been introduced to generate
expansion in inflationary universe models. In theories
such as new inflation' and chaotic inflation, field theory
is used to create an effective cosmological constant which
drives an exponential expansion of the scale factor.
Another interesting mechanism, dubbed R inflation,
adds an t.R term to the usual gravitational Lagrangian.
For a certain range of initial parameters the effect of the
R term is to generate suScient expansion to solve many
cosmological problems.

Among the problems which inflation purports to solve
are why our observable universe is so remarkably homo-
geneous and isotropic and why it is so close to being spa-
tially flat. In the standard hot big bang model this
smoothness and flatness is put in by hand as initial condi-
tions. The inflationary scenario explains the observed
smoothness by having our present Universe evolve from a
causally connected region. However, most calculations
involving inflation have been done using the isotropic
Robertson-Walker metric to describe initial geometry;
hence the smoothness is still put in by hand. For this ex-
planation to be meaningful, it is crucial that arbitrary ini-
tial geometries be used, to discover if inflation still occurs
and if the anisotropy is dissipated.

In this paper, I examine R inflation with Bianchi
type-I and type-IX universes as initial geometries. These
geometries reduce to the spatially flat and positively
curved Robertson-Walker universes, respectively, in the
limit of zero anisotropy. Anisotropic R inflation has
been considered previously by other authors, but their
results were not applicable to Bianchi type-IX universes.
In addition, the techniques of this paper yield quantita-
tive data and are adaptable to more complicated La-
grangians or matter which violates the energy condition
used in previous works. ' I use both numerical results
and analytical arguments to show that in both cases
inflation is actually enhanced by the presence of anisotro-
py, and that this anisotropy is indeed dissipated. The ex-

ceptions are Bianchi type-IX universes near or at isotro-
py. For these cases a wide range of initial parameters
leads to a recollapse of the universe before an inflationary
era can occur.

II. BIANCHI TYPE-I UNIVERSES

T„„=(p+ p )u „u„+pg„„, (2.2)

where p is the energy density, p the pressure, and u„ the
four-velocity of the matter. I will furthermore use the
equation of state

p =(y —1)p, (2.3)

where y is a constant.
I first consider the Bianchi type-I universes, whose

form of the metric may be written without loss of gen-
erality in the case of a perfect fluid as

2P,.(t),.2
ds = dt +a (t)ge —' dx' (2.4)

with +3,P; =0. To see that this form of the metric is
most general, write the metric as an orthonormal tetrad

ds = dt +(cr') +(u ) +—( (2.5)

where

I start by considering the Lagrangian density
L =R +eR to describe gravity, with R the Ricci scalar
and e an arbitrary constant. For simplicity and to facili-
tate comparison with previous work, terms involving the
squares of the Riernann and Ricci tensors are not con-
sidered. The field equations including matter are

Ru„,'Rg„, +—2e—[R(R„, ,'Rg„„)——
+R ,„(g"g„5„"5. )]=8trG—T„„.

(2.1)

Throughout this paper I will use a perfect fluid to de-
scribe matter, so that
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o'= bJ, b bJ gJ, bJ —
bJ;

while the (ii) equations yield

and summation over repeated indices implied. The
differential forms o' thus obey

1

1+2eR
2Q4—QH — —8eQRH
H

der'=k, dt R, o.J,
with

—1

EJ /S SJ

(2.6a)

(2.6b)

and an overdot indicates a time derivative. I will also use
the following matrix notation: B, 6, and K represent b;,
g;, and k;, , respectively. K may be broken up into its
symmetric and antisymmetric parts L and M as

L= —'(K+K ) M= '(K —K )

By proper choice of coordinates, I may take both B and
B to be diagonal at some time tp ~ Then at this time
K=L will also be diagonal, while M=O. Now, the (Oi)
equations imply that u, =O at all times. The (ij) field

equations then give, at t = tp,

R;&( I+2eR )=0, i Wj

In general this equation is solved by

R,J
= l,J+l,Jl„+l,,m,J+ lJ, m„=o

at tp, which implies that L is diagonal
Differentiating the relationship

BL—LB=BM+ MB

(2.7)

(2.8)

at tp.

(2.9)

then gives M =0 at tp, and differentiating the relationship

B=LB+MB (2.10)

shows that B(to) is diagonal. Using the same arguments
as above with time derivatives of the equations shows
that arbitrarily many time derivatives of B remain diago-
nal at tp. By constructing a Taylor series about tp, B is
seen to remain diagonal at all times.

Straightforward calculations for the diagonal metric
(2.4) then show that

eQR
3H

4eR Q
H

16m.6pQ
3H

(2.16)

Equation (2.13) implies that as Q goes to zero so do the
individual P, . In all cases the anisotropy does become
zero, so there is no need to consider equations for the in-
dividual P, . Equation (2.14) may be considered
superfluous because of the contracted Bianchi identities
and the covariant conservation of the stress-energy ten-
sor, and provides a check of the accuracy of the program.
In a vacuum, Eq. (2.14) was numerically never larger
than 10

I first consider the case with no matter, and hence, Eqs.
(2.11), (2.15), and (2.16) form a set of three first-order
differential equations for the three variables H, R, and Q.
They may easily be solved numerically using a fourth-
order Runge-Kutta routine. For the rest of this paper I
will consider the case e) 0, R; & 0, H,. & 0, where the sub-
script indicates the value of the quantity at the beginning
of the classical regime. This case was shown in Ref. 3 to
be the only one of interest.

Typical results are shown in Fig. 1. The anisotropy al-
ways increases the rate and amount of inflation and de-
cays to zero. This behavior can be justified by simple an-
alytic arguments. Equation (2.16) shows that Q ~0, with
the equality holding only when Q =0, so long as H
remains positive. Hence, anisotropy will only decay with
time, and the greater the initial anisotropy, the quicker it
will decay. In fact, in the limit @~0, Eqs. (2.12), (2.15),
and (2.16) yield the standard general relativity result

Q 0-a for a vacuum. The inclusion of the e terms fur-
ther decreases the anisotropy, as may be seen in Fig. 2.

To see why anisotropy helps enhance expansion, I first
consider the isotropic case using an analysis in R-H phase
space (see Fig. 3). For Q =0, Eqs. (2.11) and (2.15) give

R =6H+12H +6Q,
where H is the Hubble parameter,

(2.11)

QH= —,
a

and Q is the anisotropy parameter

3

Q
J g P2

(2.12)

(2.13)

Q is proportional to the trace of the square of the shear
tensor, and is therefore a measure of the shear.

The contracted field equations give

10,
10,
10

(~) 10

a 10,
~ 10

10
10
10

0.0 10.0 20.0 30.0 40.0 50.0
time

R+3HR+ '
R ="

6e 3e

The (00) equation gives

R H RQ Q 477Gp

12H 2e H 2eH 3'

(2.14)

(2.15)

FICx. 1. Scale factor vs time for a Bianchi type-I universe
with different initial values of the shear: Q; =0.0 (curve Al, 0.1

(curve 8), 0.2 {curve C), 0.5 (curve D), 1.0 (curve E). In this
and all subsequent figures, a=5.0, H;=0. 3, and R; =1.08, un-

less otherwise noted.
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10
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10
10
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10'
10
10
10
10

H=O R =12H~,

R=O R =6H 1+ 1+ 6'
' I/2

(2.17)

(2.18)

Note that as e~ ~, these two relations become identical.
In this case, any universe which starts with R; &12H;
will evolve to the curve H=R =0 and then stay there.
Since H=O on this curve, H will be constant, and the
Universe will exponentially expand indefinitely.

For a finite but large e, curves I and II (Fig. 3) describ-
ing H =0 and R =0 will be close together. The Universe
will evolve slowly while near these curves and thus under-
go almost exponential expansion; hence the e term pro-
vides the inflationary mechanism. In greater detail, if the
Universe begins the classical era with

' I/2

R, )6H, 1+ 1+
6eH,

(2.19)

then R &0 and H &O. The Universe will evolve to the
R =0 curve, with H increasing. Once at this curve, if
H & 1/v'6e then H = 1/12e. Hence, H will grow linearly
but slowly until reaching the H=O curve while rapid ex-
pansion occurs. At the H =0 curve, R = —H/2e, so only
now will the Universe move down in the phase diagram
into the H &0 region. H will decrease, and the Universe
will exit the inflationary phase. Hence, in the isotropic
case, any universe with initial values above or near the

time

FIG. 2. Shear vs time in a Bianchi type-I universe for
Q;=0. 1,0.2,0.5, 1.0 (curves A D, res-pectively). The case of
Q; =0 remains shear-free for all time.

1
dc' — E' co A coijk (3.2)

where e, .
k is the fully antisymmetric symbol with e&&3= 1.

The p sum to zero, and a useful parametrization is

p, =p++v'3p, p2=p+ —t/3p, p, = —2p+ . (3.3)

The field equations (2.1) then yield, for a Bianchi type-IX
universe,

H=O curve will inflate. If the universe enters the classi-
cal regime with values significantly below this curve, then
not enough expansion will occur to solve the desired
cosmological problems.

Now consider the inclusion of anisotropy. As seen by
Eqs. (2.11) and (2.15), the presence of initial anisotropy
increases R and decreases H. This change moves the
Universe up and to the left in the phase diagram, and
hence boosts some additional initial values into the
inflationary region of phase space, as seen in Fig. 4. One
may worry that an excessive amount of anisotropy may
force H to be negative. However, because Q has a quad-
ratic dependence on Q, the anisotropy always decays
away before H can become negative, and the increase in
R further prevents the decrease of H.

If matter is included, these results remain the same.
From Eq. (2.15), the presence of matter increases the
value of R faster than in the vacuum case, and hence fur-
ther enhances infiation. The matter contribution to Q is
negative, and thus will cause an even quicker decrease in
the shear. The fate of matter is independent of Q. The
(Oi) field equations show that u; =0, and using this fact
along with the covariant conservation of T„gives

p~a (2.20)

Therefore, once the Universe starts to inflate, the matter
content will rapidly lose any influence it may have had.

III. BIANCHI TYPE-IX UNIVERSES

I first consider the diagonal Bianchi type-IX universe,
whose metric is given by

ds = dt +a —g e 'co'2Pt i2
(3.1)

i=1
where a and the p; are functions of time only. The one-
forms ~' obey the relation

1.0
1.0

0.5
0.5

0.0
0.0 O.l 0.3 0.0

0.0 0.1 0.2 0.3

FIG. 3. R-H phase space in flat Robertson-Walker universe.
The dashed curves represent various initial values, with the ar-
rows indicating the evolution of the parameters in time. Curve
I is R =0, curve II is H=O. Near II inflation occurs.

FIG. 4. R-H phase space in a Bianchi type-I universe for
Q;=0 (curve A) and Q;=0.05 (curve 8). Curve I is 8=0,
curve II is H=0.
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H =—'R —2H —(8 +8 )+
4a

B +BR H 8++8 — R 2 2 V —1 +R(V —1)+4 GP
12H 2e 2' H sgHa 4Ha 3EH

a =aH,

(3.4a)

(3.4b)

(3.4c)

~ 1

1+2'
J+—2HB + 2a

8+ 8+( V —1)
(8++8 )—

4Ha

8~GpB+ 2RJ++e —4HRB
3H 2

R B+
6H

2RB+ RB+( V —1)
(8+ wB )—

2Ha
(3.4d)

(3.4e)

where I have defined the following useful symbols:

3

V= —,
' g (1+b; 2b; )— (3.5)

J+ =
—,'(b, +b2 2b3+—b +b 2b )— (3.6)

J = (b4+b —b —b )1 1 2 2 (3.7)

b;=e '. (3.8)

2.0

L0

10
U
O
M

V is the anisotropy potential familiar from Hamiltonian
cosmology. V and J+ are all zero when P+=P =0. V
is always positive for nonzero P s, while the J+ may be ei-
ther sign.

While these equations are considerably more compli-
cated than those governing a Bianchi type-I universe,
they may be handled numerically in the same manner.
As before, the contracted field equations provide a
theoretically vanishing quantity, whose numerical value
provides a check of accuracy. This quantity was never
greater than 10,and usually was several orders of mag-
nitude less. Typical results are seen in Figs. 5 —11, and
are described in detail below. Again, an increased anisot-
ropy increases the amount of inflation and eventually de-
cays away.

An interesting case where inflation is prevented is the

isotropic one, with P+=0, corresponding to the positive-
ly curved Robertson-Walker universe. Typical results are
shown in Fig. 5. Because V is zero, the —1 j4a can
dominate Eq. (3.4a) while the scale factor is small. This
term will make H negative, causing rapid recollapse.
This behavior is an example of what Barrow termed the
"premature recollapse problem. "' However, a large
enough R will prevent recollapse by making a positive
contribution to H. Hence, inflation is not prevented in
the isotropic case; rather the R-H phase space which will
inflate is decreased compared to the spatially flat case.

The addition of anisotropy in the form of the B terms
in (3.4a) might seem further to prevent inflation by giving
a negative contribution to H. In fact this shear contribu-
tion aids expansion, as seen in Fig. 6. The reason is that
nonzero shear also raises R via (3.4b). This larger R
makes a positive contribution to H which more than
offsets the negative shear term. Further, these B terms
will cause the P to assume nonzero values, as seen in

(3.4e). V will then also acquire a nonzero value and con-
tribute positively to H. Hence, the anisotropy plays a
significant role in facilitating inflation in a large region of

10„
10,
]0 s.

10„ i-

10

10,

+10, -
0 10~"

10,
'

10,
10,
10,
10, e-

10
0.0

time

10 20

time
30 40 50

FIG. 5. Scale factor vs time for a positively curved
Robertson-Walker (zero-anisotropy limit of Bianchi type-IX
universe). Recollapse occurs.

FIG. 6. Scale factor vs time for a Bianchi type-IX universe
with initial conditions 8+ =0.35, 0.50, 1.0 (curves A —C, re-
spectively). In these calculations, P+ =0 initially.
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10.0
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B-
—0.5

0.0
0.0 0.5 1.5

-1.0

time
10

FIG. 7. R-H phase space for a Bianchi type-IX universe with
initial values of P+; =0.2, 0.3, 0.4, 0.5 (curves A D, resp—ective-
ly). 8+ is set to zero initially. Curves I and II cannot be dis-
tinguished from each other in this figure; they represent H =0
and R =0. Curves A -D evolve back towards the origin close to
curves I and II.
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FIG. 8. Scale factor vs time for a Bianchi type-IX universe
with initial values of P+; =0.2,0.3,0.4,0.5 (curves A —D, respec-
tively). 8+ is set to zero initially in these calculations.

R-H phase space which would have recollapsed in the
isotropic, positively curved case. For example, with
a=5, H; =0.3, R;=1.08, and P+=0, an initial value of
Q=B++B greater than about 0.5 prevented recol-
lapse, while Q, greater than about 1.3 led to inflation.

The effects of V should be considered in greater detail,
because a large enough contribution might seem to de-
crease the chances of inflation by moving H too far to the
right in the R-H phase diagram. However, this effect
does not occur. To see why inflation is not prevented for
the positive V case, consider the H and R equations,
which differ from the Bianchi type-I equations only by
the presence of the (V —1) terms. A large positive V
does move H to the right in the phase space, but also
raises the value of R, as shown in Fig. 7. Hence a large
positive V will lead to R =12H, with larger values of R

FIG. 9. 8+ vs time for a Bianchi type-IX universe for initial
values 8+, =0.35, 0.50, 1.0 (curves A —C, respectively). The
solid curves describe B+, the dashed curves describe 8 . 8+ is
set to zero initially.

and H, thus leading to increased expansion (see Fig. 8).
For the above values of e, H;, and R;, with Q, =0, an ini-
tial V greater than about 1.0 prevented recollapse, and
when V started at greater than about 10.0 sufficient
inflation ensued. As the scale factor increases, the
influence of V will wane, as this anisotropy potential is al-
ways divided by a .

Examining Eq. (3.4d) shows why anisotropy always de-
creases, as seen in Fig. 9. All but the terms involving
( V —1) or J+ enter with sign opposite B+, and will hence
drive B+ towards zero. The ( V —1) term acts to increase
the shear only for cases near isotropy, where its effect will
be minimal. More anisotropic initial conditions will re-
sult in the potential also contributing to (3.4d) with a sign

0.5

0.0

—05
t

CD

-1.0

—2.0
0

time
10

FIG. 10. 8+ vs time for a Bianchi type-IX universe with

8+ =0 initially. The contribution of the P+ terms makes the
8+ nonzero, but competing effects quickly drive 8+ back to
zero. The four cases are g+;=0.2, 0.3, 0.4, 0.5 (curves 3 D, —

respectively). The solid curves describe 8+, the dashed curves
describe 8
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0.5

0.0

p+

with the same relations for o', b;, and g,J as before. The
differential forms o' thus obey

(3.11a)

with

-0.5

0-—c-
B-

10

time
20

jk ts ~sl'u ~fj uk

K, L, and M are defined as before.
For the vacuum case the (Oi) field equations give

I„d,'; [ I +2e(2l„k +1„„1„„+1„„1„„
—

—,'d]„d]„——,'d,"„d,"„)]=0 .

(3.11b)

(3.12a)

FIG. 11. Py vs time for a Bianchi type-IX universe with ini-

tial values P~;=0.2, 0.3, 0.4, 0.5 (curves A D, res—pectively).
As B+~0 (Fig. 10), the P~ become frozen at nonzero values.

The solid curves describe P+, the dashed curves describe P

In general, this is solved by

1„d,';=0 . (3.12b)

(3( 3( 1 V)

2Q
(3.9)

The exponential expansion of the Universe also ex-
plains why the oscillatory behavior of standard general
relativity is not seen. These oscillations result from the
Universe bouncing off the potential V in p+-p space.
However, the equipotential lines of V move further apart
with increasing scale factor. Once inflation occurs, the
potential will be pushed out to such large values of phase
space that it will lose all importance.

So far I have only considered diagonal Bianchi type-IX
equations. However, I will now argue that these results
should hold in general. As in the Bianchi type-I case, I
start by writing the metric as"

ds = dt +(o') +((r ) +—(o ) (3.10)

which decreases the shear. Large negative values of Jz
might appear to cause an increase in shear, because they
would enter (3.4d) with sign opposite the rest of the
terms. However, corresponding large values of V will al-
ways occur when J+ is large. The V term will act oppo-
sitely to the J+ terms, mitigating their effects (see Fig.
10). Also note that any increase in 8+ will be compen-
sated for by the large negative contribution to 8+ from
the 8+ terms. Furthermore, as discussed above, either a
large V or large shear will result in increased expansion.
This expansion minimizes the effects of 8'and J+, which
are always divided by the scale factor squared. Hence,
the occurrence of inflation always leads to vanishing
shear.

Note that when the shear vanishes the values of P+ will

be frozen at values not necessarily zero, implying anisot-
ropy (Fig. 11). This anisotropy manifests itself in the
equations by V and J+ assuming values not equal to the
positively curved Robertson-Walker ones. However, as
the universe expands, the influence of these terms dimin-
ishes, as they are always divided by the square of the
scale factor. This reduction of influence is reflected in the
vanishing of the three-curvature as the scale factor in-
creases, namely,

By proper choice of coordinates, I may take B to be diag-
onal at some time to,

8=a(t)diag(e ",e ",e ") .

Then (3.12b) implies

1$3sinh(p22 —p33) =0, et cyc. ,

(3.13)

(3.14)

at t =to. In general Ppz+P33 so the general solution of
(3.14} is 12& =0, and hence L is diagonal at to The. rela-
tionship

e~L —Le~= e~M+ Me~, (3.15}

Because E. depends on time and to is chosen arbitrarily,
the relationship in the first set of parentheses must be
zero. For i' the d terms automatically vanish, giving

1;~ =0, and hence L(to) is diagonal. Writing

B=LB+MB (3.17)

shows that B(to) is diagonal. Similar arguments show
that arbitrarily many time derivatives of L and B remain
diagonal at to, while arbitrarily many times derivatives of
M are zero at to. By constructing a Taylor series about
to, 8 is seen to remain diagonal for all times, and hence
the diagonal Bianchi type-IX metric is the most general
that need be considered for the vacuum case.

Finally, consider the addition of matter. The energy
density p affects the Bianchi type-IX evolution via Eqs.
(3.4b) and (3.4d). In the R equation, the presence of
matter makes R larger and thus only helps inflation.
Meanwhile, matter makes a contribution opposite in sign
of 8+ and thus only serves to hasten the vanishing of
shear. For the diagonal case, the (Oi) equations imply
that the spatial components u, of the matter four-velocity
are zero. Then, the covariant conservation of the stress-
energy tensor yields the same behavior for matter as in
the Bianchi type-I universe, given by Eq. (2.20). Again,

then implies that M=0 at to. The vacuum (ij ) equations
yield

(1; ,'d, dj', ,'d,—d—',+ ,'dI dj(—)(—1+2e—R)=0,

i', t =t, . (3.16)
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as the Universe expands the matter contribution to the
modified field equation diminishes rapidly. While the full

Bianchi type-IX case will be considerably more cornpli-

cated, this same trend of the matter providing a boost to
R and then vanishing should hold. Once the matter be-

comes negligible, a suitable coordinate choice will diago-
nalize the metric, which will remain diagonal as shown

above.

IV. CONCLUSIONS

For an inflationary mechanism to be successful in ex-
plaining the observed flatness and isotropy of the real
Universe, it must not use these properties as initial data.
The R theory of inflation does indeed pass the anisotro-

py test, as far as Bianchi types-I and -IX models are con-
cerned. No matter what the initial anisotropy, inflation
still occurs in these models for a wide range of initial
values of R and H. Indeed, the anisotropy even increases
the amount of expansion. The exponential increase of the
scale factor drives the anisotropy to zero, and hence
could explain the observed isotropy of the Universe. Of
course, to discuss the likelihood of inflation a measure in
R Hphase -space is needed. Page' has attempted such
an analysis for isotropic universes, but the results are am-
biguous.

Exceptions can occur in a positive-curvature
Robertson-Walker universe or a slightly anisotropic Bi-
anchi type-IX model. In these cases, the positive curva-
ture of the spatial sections can cause the Universe to
recollapse. Inflation will still be realized if the Universe
exits the Planck era with a value of R sufficiently large
compared to the Hubble parameter H, but the amount of
phase space which leads to inflation is restricted com-
pared to the Bianchi type-I case. Thus, the ability of R
inflation to explain spatial flatness is weakened.

The Bianchi type-IX case is of particular interest, be-
cause the result of Maeda will not always be applicable.
Wald's result is only valid if the cosmological constant is
initially greater than —,

' of the isotropic ' 'R at fixed prop-
er volume. Maeda showed that the Lagrangian density

with added R term is conformally equivalent to stan-
dard general relativity plus a scalar field with a potential
equal to 1/8e initially. For initial values such that

1 3

4a (1+2eR)
(4.1)

inflation is not guaranteed. In fact for the initial values I
chose, with a=5, R; =1.08, and a; =1, this condition is
not met. For fixed R, I found that both recollapse and
inflation are possible. Recollapse occurs for small anisot-
ropy, while larger anisotropy can cause inflation by rais-
ing the value of R so that Wald's criterion holds at a later
time.

One final problem of R inflation deserves comment.
A very large value of the R 2 coupling constant E) 10111p2

where l~ is the Planck length, is required to yield
sufficient perturbations for galaxy formation. This limit
immediately poses a fine-tuning problem: This value
seems unnaturally large. Furthermore, once an R term
is added, consideration of higher powers of R in the ac-
tion seems reasonable. Indeed, these terms do arise as
higher-order effects in most renormalization schemes.
Yet if e is so large, then it is not unreasonable to suppose
that the coupling constants for the higher-order terms
will also be large. Hence, these terms will contribute
significantly in a regime just after the Planck era. Al-
though Mijic et al. give several arguments for why only
an R term may be added, none of them are convincing.
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