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Chaotic inflation as an attractor in initial-condition space
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We study the evolution of scalar field inhomogeneities in the preinflationary phase of an

inflationary universe. We decompose the scalar field configuration in Fourier modes and consider
initial conditions in which more than one mode is excited. We find that the long-wavelength modes

are stable against perturbations due to short-wavelength excitations and that chaotic inflation re-

sults even if at the initial time the short waves contain most of the energy density.

I. INTRODUCTION

The issue of initial conditions has been a stumbling
block in the development of consistent inflationary
universe models. ' New inflation, for example, assumed
initial conditions which were later ' shown to be incon-
sistent with the constraints on the model parameters.
Chaotic inflation has emerged as the only one of the
original inflationary scenarios that has a chance of being
self-consistent.

Although there have been many heuristic arguments
about the initial conditions required for chaotic inflation,
there have only been a couple of attempts at a quantita-
tive analysis (see Sec. II). In Ref. 6, we started a quanti-
tative analysis of this issue. We considered a model in
which inflation is generated by a weakly coupled scalar
field P (the inflation) with a double-well potential. We
considered single-Fourier-mode inhomogeneities in P and
classified conditions for which chaotic inflation, dynarni-
cal relaxation, or no inflation result. The main result
was that for chaotic inflation to occur, the wavelength
must be larger than the initial horizon. Here, we consid-
er excitations with more than one Fourier mode. We
show that, provided a single long-wavelength mode is ex-
cited, it will dominate the late time evolution and give
rise to chaotic inflation, even if the energy density in
short-wavelength modes is initially larger. In this sense,
chaotic inflation is an attractor in initial-condition space.

The outline of this paper is as follows. In Sec. II, we
discuss the various aspects of the initial-condition prob-
lem and comment on previous work. Next, we describe
our method and the approximations we were forced to
make. Section IV contains an analysis of two-mode exci-
tations, and Sec. V extends the results to more general in-
itial conditions. Section VI contains our conclusions.

We use units in which A=c =k&=1. t,- is the initial
time (which we take to be the Planck time, the earliest
time a classical analysis can be justified) and a (t) is the
scale factor of the universe [for simplicity a flat
Friedmann-Robertson-Walker (FRW) model] normalized
such that a (t, ) = 1. H (t} is the Hubble expansion param-
eter, H(t)=a(t)la(t). mp~ denotes the Planck mass.

II. PRELIMINARIES

Two of the main claims of success of inflationary
universe models' are the claims that inflation naturally

p(t, ) & —
—,'p(t, ) . (2.1)

In old inflation, ' the above problem did not arise. In
this model, P(x) was assumed to be strongly coupled and
/=0 was a local minimum of the potential energy V(P).
In this case, P(x, t) can be in thermal equilibrium with the
thermal bath. Then, finite-temperature effects make

P =0 the global minimum of the finite-temperature
eff'ective potential Vr($), ensuring that at t, $(x, t, )=0
and that, hence [assuming V(0) )0],

p(t, ) = —p(t, ), (2.2)

leading to exponentia1 inflation. Old inflation, however,
ran into other problems which led to its quick demise.

The problems of old inflation could be successfully
overcome in the new inflationary universe. Here, /=0 is
a local maximum of V(P). (Fig. 1). It was initially be-
lieved that finite-temperature effects would lead to initial

produces a homogeneous and flat universe out to at least
the present Hubble radius. Unfortunately, most analyses
of inflation assume homogeneous and flat initial space-
times at very early times (exceptions are mentioned later}.
Before claims of having solved the horizon and flatness
problems are made, it is important to carefully study the
question of initial conditions.

There are two quite separate aspects to the initial-
condition problem. The first concerns the inhomo-
geneities in the matter fields, the second concerns initial
inhomogeneities and anisotropies in the metric. In gen-
eral, the two problems are coupled. In this paper, howev-
er, we shall focus on the first aspect.

To illustrate the first problem, consider a toy model
which consists of a homogeneous metric g„„(t),a homo-
geneous radiation bath with energy-momentum tensor
T„„(rad), and a scalar field P(x, t) (the inflaton) with
energy-momentum tensor T„(P). We assume that ini-
tially T„„(rad) dominates. In this case, it is also reason-
able to consider g„, to be homogeneous. We now follow
the evolution of P(x, t) in this initial preinflationary,
radiation-dominated period. This period ends at a criti-
cal time t, when the potential energy in P(x, t) and
Tao(rad) become equal. The first aspect of the initial-
condition problem concerns the question, under which
circumstances the equation of state of P(x, t) at time t,
will lead to inflation. The condition for (generalized)
inflation is
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will almost immediately dominate T„and inflation will
commence. In contrast, if P(x, t, ) is a plane-wave excita-
tion with sufficiently large wave number, then, in (2.4),
V (P) will be negligible. In this case, P(x, t) will oscillate
in conformal time r(t) with an amplitude which is
damped as a '(t):

((i(x, t)-a '(t)A()(x)cos[cor(t)], (2.5)

FIG. 1. Sketch of a potential for new inflation.
where co is the comoving wave number and r(t) is defined
by

dt=a(t)dr . (2.6)
conditions P(x, t; ) =0, similar to old inflation. However,
in order not to generate too large density perturbations, '

the potential V((()) must be very flat. For a potential of
the form

(2.3)

P+ 3H Q aV P = ——V'((() ) . (2.4)

To obtain chaotic inflation, we consider locally homo-
geneous initial conditions for which (()(x, t) will move
slowly. Thus, in (2.4), (() and a V P are negligible.

v($)

(f&(X)

FIG. 2. In the case of a double-well potential (top sketch),
diferent initial conditions can lead either to dynamical relaxa-
tion or to chaotic inflation. In the bottom sketch, the evolution
of P(x, t) at a fixed point x is shown in two cases. For the curve
to the right, P(x) has a large initial amplitude and is homogene-
ous, leading to chaotic inflation. If P(x) at the initial time is a
plane wave with short wavelength and small amplitude (curve to
the left), then dynamical relaxation occurs.

A, ( 10 ' is required. Constants coupling P to other
fields are also constrained to be very small since they in-
duce one-loop contributions to A, . Hence, P will not be in
thermal equilibrium with the radiation bath. Therefore '"

P(x, t, ) is not constrained by thermal forces to be close to
(() =0.

The only classical constraints on P(x, t; ) at the initial
time come from requiring that the energy density in P
does not exceed the Planck density. Two ways to obtain
inflation have been proposed, chaotic inflation and
dynamical relaxation. The former works also for a quad-
ratic potential V(P) =

—,
' m P, the latter requires a

double-well potential. Chaotic inflation and dynamical
relaxation are compared in Fig. 2 The equation of
motion for P(x, t) is

The crucial question is how general is either of the two
scenarios.

The second aspect of the initial-condition problem con-
cerns the fate of initial metric inhomogeneities and aniso-
tropies.

There have been several attempts to deal with both as-
pects of the initial-condition problem from a very general
point of view by establishing "no-hair theorems. " Such
theorems claim to prove that for general initial condi-
tions, in models which can give inflation space-time will
exponentially approach de Sitter space.

Most of these "no-hair" theorems are, however,
inapplicable to inflationary universe models. A class of
theorems which show that anisotropies" and inhomo-
geneities' decay exponentially assumes a metric theory
which contains an explicit cosmological constant and ad-
mits only matter which satisfies the dominant and
strong-energy conditions. ' The strong-energy condition
demands that the pressure p be positive and is obviously
not satisfied for scalar fields matter. In fact, it is the pre-
cise condition p &0 required to obtain inflation which
renders the "no-hair" theorems inapplicable.

In addition to the above fundamental problem, the
proofs contain technical deficiencies. They assume the
existence of synchronous coordinates (which could break
down if large inhomogeneities develop), and demand that
the three-curvature scalar of the spatial section be posi-
tive (to prevent a fast recollapse of the universe).

There are improved proofs' which show that anisotro-
pies decay exponentially even in a theory without bare
cosmological constant but with a scalar field with large
amplitude. However, these proofs do not extend to inho-
mogeneous models, as explicit counterexamples' ' '

show.
Some arguments that inflation is generic' are based on

the claim that in de Sitter space, metric fluctuations de-
cay exponentially. However, the gauge-invariant mea-
sure of fluctuations PH defined by Bardeen' remains con-
stant. This means that perturbations are frozen in
comoving coordinates, at least when their wavelength
exceeds the Hubble radius. This can be seen very nicely
in an analysis of scalar field and gravitational perturba-
tions of a chaotic inflation model, ' and in a nonperturba-
tive Regge calculus model. '

In the absence of a general no-hair theorem, an
analysis of the initial conditions required for inflation
must be based on an analysis of the equations of motion.
We shall here mostly focus on the evolution of scalar field
inhomogeneities in a homogeneous background metric.
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V(P)- T((t )-K($)-mp, , (2.7)

where T(P) is the tension energy density stemming from
spatial gradients in P and K (P) is the kinetic energy den-
sity. If V(P) is only slightly larger than the other two
terms, inAation will set in, leading to a sharp decrease of
both T(P) and l( (P) due to redshifting, while V(P)
remains almost constant.

The first attempt to make these arguments more quan-
titative was made by Piran who showed that certain
plane-wave excitations of a scalar field lead to chaotic-
type inflation. The full phase space of single-mode scalar
field inhomogeneities was investigated in Ref. 6 (see Sec.
III). This analysis reveals the connection between
Linde's arguments and the explicit examples of
Goldwirth and Piran' which do not inflate. In this pa-
per, we extend the analysis of inhomogeneities by includ-
ing multimode excitations.

III. FRAME%'ORK

The analysis presented in this paper is based on classi-
cal physics alone. It may well be that a quantum theory
of gravity would shed light on the initial-condition prob-
lem. Recent developments in quantum cosmology ad-
dress this issue. However, at present, different prescrip-
tions for the "wave function of the universe" give rather
different initial classical configurations. In addition, they
do not include inhomogeneities beyond linear approxima-
tion.

Since our analysis is based on classical physics, it will
break down at very early times. The earliest we can ap-
ply our methods is to the Planck time tp&

= t,- determined
by T( t, ) —m p, , where T is the temperature of radiation.
In order to be able to apply classical physics, the energy
density of P is constrained by

p(P, t;)&mp, . (3.1)

Note that this cutoff renders the single-Fourier-mode

In Ref. 20, the initial conditions required for chaotic
inflation were analyzed for a homogeneous scalar field. It
was found that, provided p( t; ) )m P& Iv'4~, chaotic
inflation is generic.

In the case of plane-wave scalar field inhomogeneities
and a double-well potential (2.3) there are values for the
amplitude and wavelength of P for which dynamical re-
laxation occurs. ' ' This is true even when including
gravitational inhomogeneities. The stability of dynami-
cal relaxation to thermal and gravitational Auctua-
tions has been shown.

At a linearized level, the stability of chaotic inAation to
gravitational and scalar field perturbations was shown. '

Initial pure gravitational perturbations decay exponen-
tially, whereas the scalar field perturbations are frozen in
comoving coordinates.

It is crucial to analyze the initial-condition dependence
of inflationary universe models beyond linear theory.
Linde has argued qualitatively that initial conditions re-
quired for chaotic inflation are likely in at least part of
the initial spatial hypersurface. He argues that initial
conditions will have

measure finite.
We take matter to consist of a homogeneous radiation

bath plus a scalar field:

T„„=T„„(rad)+T„,(P) . (3.2)

If the radiation bath has N spin degrees of freedom, we
shall require, at the initial time t,-,

p(P) & —p(rad) .
1

(3.3)

Our most severe approximation is to constrain the
metric to be homogeneous. Matter influences space-time
only via the spatial average of the energy-momentum ten-
sor. To be specific, we consider a flat universe and deter-
mine the time evolution of the scale factor a (t) via

(T~&, (3.4)
a 3

where the angular brackets indicate spatial averaging.
Initially, given a homogeneous radiation bath and (3.3),

a Aat homogeneous metric will be a very good approxi-
mation. However, as soon as T„,(P) starts to dominate
over T„„(rad), the approximation becomes questionable.

In the case of single-Fourier-mode scalar field excita-
tions, we can identify situations in which our approxima-
tion mill be reasonable, and others in which it will break
down. If the wavelength A, of the scalar field excitation is
much larger than the Hubble radius H ', the g„ob-
tained from (3.4) may be viewed as a local FRW metric
valid near the crest of the wave. For A, «H ', the
metric cannot respond to the rapid variations in the
matter fields and will evolve according to the time aver-
age of T„, which is equal to the spatial average of T„.
Thus, only for wavelengths k-H ' our approximation
will be badly wrong. To treat this case, a complete nu-
merical general relativistic treatment is required, such as
the code developed by Goldwirth and Piran.

Our model contains the following degrees of freedom:
the scale factor a (t), the radiation temperature T(t), and
a scalar field P(x, t) with potential V(P) given by (2.3). In
Ref. 6 we considered single-mode excitations of P at the
initial time t;:

P(x, t, )=gosink x,
$(x, t, )=gosin(k. x+a) .

(3.5)

We here briefly summarize the results before going on in
this paper to study multimode excitations.

There are various possible outcomes of the evolution of
our system given by initial conditions (3.5). The first pos-
sibility is to obtain chaotic inflation. This will occur if
P(x, t) is almost static for r & t, In this case, .T„(rad)
redshifts whereas Too(P) remains approximately con-
stant, soon dominates the total T„,and leads to a period
of inflation.

The second possible outcome —however only for a
double-well potential such as (2.3)—is dynamical relaxa-
tion. In this case, it follows from (2.6) that the kinetic en-

ergy density and tension energy density decay like radia-
tion, namely, as a (t). Thus, given that radiation ini-
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tially dominates Too, it will keep on dominating Too until
P(cr when V(P) is constant and eventually starts to
dominate Too, leading to a period of inflation.

Finally, P(x) may evolve quickly to its ground-state
values +cr and never give rise to inflation.

Demanding that the initial scalar field energy density
obey (3.3) leads to the following a priori constraints on
the initial conditions Po, Po, and k in (3.5):

100
(3.12}

Minimal conditions for chaotic inflation to occur are
that the scalar field configuration evolve to a
configuration dominated by potential energy, and that
the slow-rolling ansatz (P negligible) be self-consistent.
The first condition leads to the requirement

1/4
mp}

T;

yo&X "4T, ,

kPo( T;

o(T
(3.7)

(3.&)

1
4o&

4m

(3.6) the second to
1 /2

mp) (3.13}

100
N

where
' 1/2

8a
a) =10 = 16.6; (3.10)

the tension energy gives
' 1/2

100
N

1
0o& aj mpl (3.1 1)

Thus, dynamical relaxation will occur only for initial
conditions in the very bottom of Fig. 3 (below curves 3
and 4).

l0

We illustrate these constraints on a Po/k plot (Fig. 3).
For simplicity we assume static initial conditions. The al-
lowed range of initial conditions is below curve 1 and to
the left of curve 2.

Minimal conditions for dynamical relaxation result
from demanding that with an ansatz of dynamical relaxa-
tion for tI)(x, t), the energy density in P remain subdom-
inant over at least one oscillation period of P. The poten-
tial energy density gives

' 1/2

(3.9)
k a) T;

Thus, the domain for chaotic inflation is to the left of
curve 5 and above curve 6.

In the initial-condition space allowed by (3.6) and (3.7)
but not included in the region 2) of dynamical relaxation
or C of chaotic infiation, the above arguments are too
simple to make any definite statements. In Ref. 6 we dis-
cussed a subspace of this set in which it can be shown
that no inflation results. In models without a double-well
potential, region 2) becomes a set of initial conditions for
which there is no inflation.

At this point it is instructive to discuss previous work
in the context of Fig. 3. Linde assumes initial condi-
tions with V(P) —T(P)- m p~. These initial conditions sit
close to point (0.1,10) in Fig. 3 and thus clearly in the re-
gion for which chaotic inflation is expected. Goldwirth
and Piran' consider single-mode excitations and con-
clude that the "noncausal" wavelength A, )H ' is re-
quired in order to obtain chaotic inflation. In the light of
Fig. 3, this is not surprising. For A, &H the initial con-
ditions clearly lie outside the region of chaotic inflation.
Obviously, in order to draw physical conclusions as to
how generic inflation is, we must consider initial condi-
tions with more than one mode excited.

IV. TWO-MODE EXCITATIONS

In the case of realistic initial conditions, many Fourier
modes will be excited, with wavelengths both smaller and
larger than H '. We first analyze the simpler case of ini-
tial two-mode excitations with (for simplicity) static ini-
tial conditions

P(x, t; ) = A, sin(k, x+a, )+ A&sin(kzx+a2) . (4.1}

fA
PI

l.30—
O.28
005 r

K

Pl

l

I 6.6

FIG. 3. The single-Fourier-mode initial-condition space
(static case). Chaotic inflation occurs for points above line 6, to
the left of line 5, below line 1, and to the left of line 2. The
latter two conditions come from a priori energy density con-
straints.

In particular, we are interested in determining the late
time behavior if the first mode lies in C and the second in
2) (see Fig. 3).

We consider weakly self-coupled scalar field models,
the only ones which do not give rise to fluctuations in ex-
cess of those observed. In this case, we expect both
Fourier modes to evolve independently. Since the energy
density of the second mode decays as a (t) whereas that
of the first remains almost constant, we expect the first
mode to dominate the late time behavior. Note that this
is essentially the argument given by Linde in support of
the claim that inflation is generic.

The above intuition could be proved wrong by the fol-
lowing efFects: (a) nonlinearities in the equation of motion
of P could lead to a significant change in the evolution of
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For any Pi E C and PzGZ), 5F is smaller than the force F
froin P, alone:

F= —2A, p, l P, . (4.3)

Hence, nonlinearities do not disrupt the evolution of P, .
Let us now address (b). If the energy density is dom-

inated at t; by the homogeneous mode (()i, there is noth-
ing to prove since P~ will not change the gravitational
back reaction. Thus, we now assume that at t, the energy
in P is dominated by the inhomogeneous mode Pz. In this
case, the universe is radiation dominated and the gravita-
tional back reaction differs. In the evolution equation for
Pi, H is no longer constant but decreases as t '. Hence,
Pi(t) will be afFected. We now show that nevertheless, at
late times P, (t) will dominate T„,.

We first solve the slow-rolling equation for (t, :

3HQ, = —2A,Q,

for H ( t }=H; t; /t. The solution is
—1/2

(4.4)

(4.5)

The onset of inflation can be prevented if the slow-rolling
approximation breaks down before P, dominates the en-

ergy density. Using H, =(2t, ), the condition for break-
down becomes

lution of the first mode and prevent the onset of inflation;
(b) the presence of the second mode will change the ex-
pansion rate of the universe and can thereby effect the
evolution of the first mode. This is a gravitational back-
reaction effect.

We do not expect either effect to be important. Non-
linearities should be negligible because the self-coupling A,

is very small. Concerning the gravitational back reac-
tion: adding the additional scalar field excitation will add
more energy density, will thus increase the Hubble damp-
ing constant H in the equation of motion for the "homo-
geneous" mode, and thus should not significantly effect
the onset of inflation.

In the following, we shall demonstrate that the above
conjectures are indeed true. In particular, we shall show
that inflation occurs even if the energy density in the
homogeneous mode is much smaller than the density in
the inhomogeneous mode. [We are calling the mode
( A „ki ) E C the "homogeneous" mode, the mode
( A z, k z ) E2) the "inhomogeneous" mode. ]

In the case of two-mode excitations it is easy to address
(a). The extra force term in the equation of motion for
(A„k, )=P, dueto(Az, kz)=/&is

(4.2)

(4.8)

Using t, '=(32m/3)mp, , (4.7) and (4.8), the condition
(4.6) becomes

3
o,'(

32m.

1/2

g 1 /4 (4.9)

a, —A, ', (4.10)

which is satisfied to good accuracy. In Fig. 5(b) we plot

which implies a value of Pi(t, ), which conflicts with the
criterion (3.13) for P, E C. Hence, gravitational back re-
action from a single mode Pz E2) cannot disrupt the onset
of chaotic inflation due to a mode P, in C, even if initially
the energy density in P~ dominates. In this sense, chaotic
inflation is an attractor in initial-condition space.

The arguments made above are based on various ap-
proximations and must be checked numerically. We have
solved the equation of (2.4) for a real scalar field with the
double-well potential (2.3) numerically in an expanding
universe. The expansion rate is given by (3.4); and T„,
contains both the contribution from P and from the
homogeneous radiation bath with temperature
T(t)-a '(t) The in. itial time t; in the numerical runs is
the Planck time, as in the preceding discussion. We as-
sume planar symmetry [this reduces the problem to a
(1+1)-dimensional problem]. Since computer time in-
creases as the coupling constant X decreases we choose a
fairly large value of )(, (by the standards of inflationary
universe models), namely, A, =10 . We also chose o =0
(without loss of generality in a study of chaotic inflation).

In one set of simulations we chose two modes Pi F C

and PzE2) with equal energy densities and determined
the value a, of the scale factor at which inflation com-
mences (i.e., at which pressure p becomes smaller than
—I /3p). We then reduced the amplitude of the homo-
geneous modes in steps from I, '

mp] to 0.4X '
mp],

the lowest value for which we get a substantial amount of
inflation in the absence of the inhomogeneous mode. We
kept the second mode unchanged and determined a, as a
function of the amplitude of the first mode.

In Figs. 4 and 5 we show the results of a simulation
with initial amplitudes and wave nuinbers ( A i, k, )
= ( 10mp] 0. imp& ) atld ( A~ k~ ) =(0.05mp] 20mpi ) ~

In Fig. 4 we plot how the two modes lie in initial-
condition space (A, k) as a function of the varying A, .
Note that if A, is reduced by a factor a, the energy den-
sity in P, decreases by a factor a . Thus, at the end, our
homogeneous mode contains only 16% of the energy den-
sity of the inhomogeneous mode. In Fig. 5(a) we plot a,
as a function of A, . Since a, is determined by when the
potential energy starts to dominate, we expect

If Pi(t, ) is a times the maximal amplitude, i.e.,

y, (t,. )=uk '"mp, ,

then radiation domination will end at

(4.7)

a, (A, )
R(A, )=

i

—1,
a, (A, )

(4.11)

where a, is the critical value of a without the inhomo-
geneous mode. The striking result is how minor the
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FIG. 4. A representation of the two Fourier mode runs on
the initial-condition space of Fig. 3. The two lines with arrows
show how the initial data are varied. In one set of runs, the am-
plitude of the homogeneous mode is reduced, keeping the inho-
mogeneous mode constant. In the second, the amplitude of the
inhomogeneous mode is increased, keeping the homogeneous
mode fixed.

(a)

ac

FIG. 6. The critical value a, as a function of A2 in the
second series of runs.

effect of inhomogeneities is on the onset of inflation.
In another set of runs we considered initial modes

(A~ k&)=(2Mp] 0. 1mp~) and (A2, k2) =( „',mp~,
16.6m p~ ) and gradually raised the amplitude of A 2 to
0.5m PI. With 3 2

= „',m pI& the inhomogeneous mode
contains 25 times the energy density of the homogeneous
mode; with 32=0.5mpI, the ratio is about 2X10 . How-
ever, in all case the homogeneous mode prevails at late
times. The onset of inflation changes from a, =17 to
a, =22 (Fig. 6).

We conclude that a single inhomogeneous mode can-
not disrupt the onset of chaotic inflation due to a mode in
C, even if it contains initially much more energy.

0
I

4
I

6

A,

Pl

I

l0

(b)

V. MULTIMODE EXCITATIONS

We now extend the stability considerations of Sec. IV
to the more realistic case in which one "homogeneous"
mode P& and many (n) inhomogeneous modes are excited.
To make an analytical analysis possible we assume that
the n short-wavelength modes have random phases. We
denote the modes by

P.5x lO-'—
$; =P(k;)=( A;, k;), (5.1)

p 0x)0-

l.gxlO 3

I

IO

where as before A, and k, are amplitude and wave vector
of the mode.

For simplicity, we take all n inhomogeneous modes to
lie in a rather narrow range of wave numbers. Hence it is
not unreasonable to take their amplitudes to be equal.
Using k, ~mpI and demanding that the tension energy
density not exceed m PI, we obtain the following condition
on the amplitude A;:

A,
rn

Pl

&n m Pl (5.2)

FIG. 5. The scale factor a, when inflation begins as a func-
tion of the initial amplitude of the homogeneous mode for the
first series of runs {a). In {b), the relative change in a, as a func-
tion of A& is shown.

With these assumptions, it is easy to show that once
again the evolution of the inhomogeneous mode is not
disrupted by the nonlinear coupling to the other modes
via the force term V'(P) in the equation of motion. The
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force term in the equation of motion for P& is

+2~ g 0k)4k~0k —k) —
k~ &

k, , krak
(5.3)

where the sums run over all inhomogeneous modes. By
(5.2), the second term is bounded by

2~&leak l'Pt &2~m P)P(, (5.4)

and is thus negligible compared to the self-coupling of p1.
In the last term in (5.3), all modes are of short wave-
length. Hence,

'"m p&,
klk2&k

(5.5)

VI. DISCUSSION AND CONCLUSIONS

which is smaller than the other two terms. Thus, the
evolution of P& is not disrupted via nonlinear matter cou-
plings to short-wavelength modes.

The second issue to check is the effect of many inho-
mogeneous modes via gravitational back reaction. How-
ever, the back-reaction analysis of Sec. IV [Eqs.
(4.4)—(4.9)] depended only on the energy density in inho-
mogeneous modes and applies equally well to the case
discussed in this section. We conclude that, provided the
initial energy density in inhomogeneous modes is bound-
ed by m p&, gravitational back reaction cannot prevent the
onset of chaotic inflation.

cays as radiation, and the homogeneous mode determines
the late time evolution and the onset of inflation. In this
case, chaotic inflation is an attractor in initial-condition
space.

We have not addressed the question of how likely it is
to have a mode in C excited. It is important not to forget
that these modes have a wavelength larger than the initial
Hubble radius. However, our view is that, after Fourier
transforming some general initial scalar field config-
uration, it is unlikely not to have some long-wave length
modes excited. However, we do not expect such a mode
to dominate the energy density —and hence our results
are important in that they vastly extend the space of ini-
tial conditions for which chaotic inflation has been shown
to arise.

The main deficiency in our analysis is that we neglect
gravitational perturbations. In particular, we assume
that the metric is initially homogeneous and flat. Large
initial inhomogeneities and deviations from flatness can
prevent any inflation. Since chaotic inflation is stable to
linear gravitational perturbations, ' we do not expect our
conclusions to be qualitatively changed by including
gravitational perturbations at a later stage. Goldwirth
and Piran have developed a code to follow inhomogene-
ous gravitational and scalar field configurations. Using
this code, they have checked some of the examples we
analyzed in Sec. IV.

Our analysis requires some severe approximations.
The most important one is our crude way of including
gravitational back reaction. We have commented on this
in Sec. III. Nevertheless, we hope to have pointed out
the main mechanisms which make chaotic inflation an at-
tractor in initial-condition space.

We have analyzed the evolution of classical scalar field

configurations in a model which initially is dominated by
a homogeneous radiation bath. It is convenient to
Fourier transform the initial scalar field configuration.

We considered initial conditions in which a single large
wavelength (A, )8 ') mode is excited with an amplitude
sufficient to, on its own, lead to chaotic inflation. We
have then shown that this behavior is not disrupted when
adding short-wavelength excitations, even if the energy
density of the short waves exceeds that of the "homo-
geneous" mode. The energy density in short waves de-
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