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The current estimate of the 8 lifetime is obtained by averaging the results of six experiments. We

point out problems connected with the conventional approach to combining data and discuss ways

of overcoming them. Our recommended value is 1.13+0.15 ps. Our discussion is relevant to a wide

range of problems in which data are combined.

The naive method of combining results (r, +o, ) of
different experiments is based on minimizing the sum of
squares:

S(r)=Q

It yields a weighted average

gr, /o',
(2)

with error

(3)

This is, for example, the technique used by the Particle
Data Group. ' We point out that this averaging pro-
cedure is not unique and probably not optimal. Although
most of our comments are of much more general applica-
bility, we illustrate our discussion by specific reference to
the case of the B lifetime.

There are several problems which complicate the use of
the above procedure.

(i) The errors (o; ) are supposed to be the true errors on
each experiment, whereas what are available are the es-
timated errors, which may depend on the lifetime esti-
mate (~, ). For example, when the experimental resolu-
tions are small, the maximum-likelihood method yields
0.

, that are proportional to ~, . Thus for a series of experi-
ments measuring N, events, the results (7, +v, /QN, ) to-
gether with Eq. (2) yield an estimate

gN; /r;

gN; /2
This violates what we call "the combination principle":
the combining technique should give the same answer as
if all the data had been regarded as a single experiment, '

viz. ,

gN, r;

(ii) Lifetime errors are often asymmetric, whereas Eqs.
(2) and (3) use a single number for the error. This prob-
lem is acute for experiments with low statistics and is
hence relatively unimportant for the B-lifetime results we
wish to combine.

(iii) Experiments have systematic as well as random er-
rors and often the systematic errors are correlated be-
tween experiments. Thus uncertainties in assumptions
about the fragmentation of b quarks, or in the lifetime of
possible charm contamination in the sample, would pro-
duce common effects on several experiments. These
difficulties can be compounded by the use of contradicto-
ry assumptions by different experiments.

(iv) Experiments use different techniques for extracting
lifetimes (e.g., maximum likelihood or trimmed means;
decay distances or impact parameters).

(v) Resolution effects on the measured decay distance
or impact parameter may very well need to be treated
differently from other statistical errors.

(vi) The samples selected by the various experiments
may contain different mixtures of B hadrons. There is,
however, experimental evidence ' and theoretical preju-
dice that the different 8-hadron species have similar life-
times. We therefore do not consider this further.

An alternative approach for combining data is to add
the log-likelihood functions of the separate experiments.
This automatically takes care of asymmetric errors; reso-
lution effects can be incorporated in the individual likeli-
hood functions and the problem of estimated errors is
completely absent. The drawback is that there is no
ready way to incorporate systematic errors, whether or
not they are correlated. It is incorrect to use the likeli-
hood functions to obtain the best value and its statistical
error, and to combine the systematic errors afterwards.
It would be valuable to have a procedure for widening the
likelihood function of each experiment in order to allow
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for its systematic errors. Another complication is that
not all experiments determine lifetimes by likelihood
methods. Even for those that have done so, it is often the
case that only the result and the upper and lower errors
are quoted, from which it is impossible to reconstruct the
likelihood unambiguously.

We are thus persuaded to look for some method which
uses just the quoted results, but is better than Eq. (2).
For statistical errors, we propose that this equation can
be used, but with the errors (0, ) set at the values they
would have been had each experimental result been v

rather than r; (compare page 26 of Ref. 2, and Refs. 6
and 7). Thus

gr; /a;(r)
(6)

g 1 /o; (r)
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o = gl /cr, (r) (7)

dn 1 t' (t —t')'
exp ——exp — dt'

~2m re «p 2r
T

1 r t 1 r
exp ——erfc

21p 2r rp v 2 rp
L ~ i.

(8)

We show some of these distributions in Fig. 1.
For each "experiment, *' we determine the lifetime by a

rnaxirnum-likelihood fit, and its error by half the
difference in the values of ~ at which the log-likelihood is
—,
' less than its maximum. For each value of r, we want to
see how the error varies with v.;. We thus select experi-
ments producing a given value of w;, and then find the
average of the errors for these experiments. The depen-
dence of this average error on ~, is shown in Fig. 2; the
error bars are estimated from the spread of lifetime errors
for experiments in that bin.

From Fig. 2 we are led to a parametrization:

k, ~ r,-

a;(r)= + (9)
N;

Equation (6) can be solved iteratively for ~. We call our
method the "locally matched solution" (LMS). It is simi-
lar to the iteratively reweighted least-squares method.

The LMS method is not equivalent to minimizing S(r)
of Eq. (1), with the o, regarded as functions of r. This is
because the functional dependence of the error on v.; is a
description of how, for example, the second derivative of
the log-likelihood function at its maximum would have
varied, had v; been different, rather than giving the shape
of the log-likelihood function as we move away from the
maximum. A consequence is that one cannot interpret
S(r) as a y distribution in order to assess whether the in-
dividual lifetime measurements are consistent.

To see the way in which the error estimates scale with
~;, and to study the properties of the LMS method, we
have generated a series of Monte Carlo "experiments, "
each consisting of 100 decays, generated according to an
exponential distribution of lifetime F0=1.0, smeared with
Gaussian resolution functions of width r: i.e.,

FIG. 1. Monte Carlo decay-time distributions, with lifetime
up=1. 0 and with resolutions r =0.125, 1.0, 2.0, and 4.0. The
distributions change from being almost exponential when r/~p
is small to being approximately Gaussian, centered on 7 p and
with width r, when r/~p is large.
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FIG. 2. The dependence of the average estimated statistical
error o., squared on the square of the lifetime estimate v.„for
Monte Carlo "experiments" of 100 events with lifetime ~p=1.0
and with resolutions r =0.125, 0.5, 1.0, 1.5, and 2.0.

where k; is a factor which describes the statistical accura-
cy of the experimental technique employed (i.e., neglect-
ing resolution), and is unity for direct measurement of the
decay times. This is what would have been expected had
the r; been determined instead from the average of the
decay times. For impact-parameter methods, k, & 1, be-
cause of the intrinsic smearing produced by the range of
decay angles and kinematics. Its value depends on the
Lorentz-boost factor of the decaying hadron in the labo-
ratory, and on the momentum cuts. We estimate by a
simple Monte Carlo program that k; =1.3 at the SLAC
storage ring PEP (29 GeV) and k;=1.4 at the DESY
storage ring PETRA (35 GeV), and is only weakly sensi-
tive to the momentum cuts. For two-jet methods, look-
ing at the separation of decay vertices, k,.=0.5.

We then apply the LMS method [i.e., Eq. (6), with the
parametrization (9)] to pairs of Monte Carlo experiments.
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TABLE I. Results of the comparison of the LMS method (II)
with the naive least-squares procedure (I). These results are
from 1000 Monte Carlo trials (or 10000 for r =2) of combining
two "experiments, " each consisting of 100 events. The Monte
Carlo generator uses a lifetime of 1.00, and four separate values
of the experimental resolution r (fixed values of 0.5, 1.0, and 2.0,
and a uniform distribution in the range 0.5—1.5). The table lists
the means of the r distributions ((ri); the means of 5, where
5—'7«r, and ~« is the result from a maximum-likelihood fit to
a combined sample of 200 events; and the rms deviations from
zero of the 5 distributions.

S(r)= y(r, —r)(Z-')„(r, —r), (10)

where E, is the error matrix. This yields

r"=g r;(& ');, g(&

with error

tions. If the errors are treated as constants, the combined
lifetime is obtained by minimizing with respect to ~:

(d2)1/2
'
y(g —1)

' —1/2 (12)

(I)050
( )

(I)
(II)

(I)0.5-1.5
)

(I)
(II)

0.991+0.002
1.000+0.002

0.989+0.003
0.997+0.003

0.991+0.003
1.000+0.003

0.990+0.002
0.999+0.002

0.010
0.001

0.010
0.002

0.011
0.002

0.011
0.003

0.014
0.001

0.014
0.003

0.015
0.003

0.015
0.004

In Table I we compare its performance with that of Eq.
(2). We see that it does not suffer from the downward
bias of the naive method. We have also investigated the
two procedures as far as the combination principle is con-
cerned, by finding how the combined ~ for a pair of "ex-
periments" each of 100 events compares with rs„ the
value obtained for a single likelihood fit to all 200 events
together. Since for the combination principle these
should agree, we define b, =vs, r", and e—xpect (b, ) and
(5 )' to be zero; we see that again the LMS method is
significantly better (see also Ref. 7).

We have also tested the method with the more realistic
situation where an experiment has a spread of r values.
The case where r is uniformly distributed between 0.5 and
1.5 yields a graph of o; against r; which is virtually in-

distinguishable from that for the fixed value r =1 of Fig.
2. The satisfactory performance of the LMS method for
the variable r case is shown in Table I.

We now turn to the systematic errors and their correla-

This approach has been used by Muller, ' following an
earlier simplified treatment by Wu. " When the elements
of the error matrix are estimated, we again adopt the pro-
cedure of using E;,(r) in the right-hand sides of the above
equations.

In order to apply Eqs. (11) and (12) to the 8 lifetime,
we need to specify the functional dependence of E; on
v.; . We make the following assumptions.

(i) The statistical errors are uncorrelated.
(ii) Statistical errors can be parametrized as in Eq. (9),

with the values of k, and r; as given in Table II, and the
effective N, chosen to reproduce the quoted statistical er-
rors. Here we have estimated the event measuring errors
from the published information on resolutions, mostly
from impact parameters, and the scale factor from mean
impact parameter ((5) ) to mean lifetime ((5)-0 6cr at.
&s =29—35 GeV). In the case of TASSO, this error and
the scale factor are the result of some averaging over
methods.

(iii) The systematic errors are also expressible as
(a;r +P;)' (see Table II). Apart from MAC, the sub-
division of systematic errors into scale factors and offsets
is our own, based on published information.

(iv) The correlations between all pairs of systematic er-
rors are the same, with correlation coeScient c, which we
allow to vary from zero to unity (in principle c could be
negative, but we believe it is not likely to be so). (We
could have been more careful about the systematic error
matrix by considering how each source of error contrib-

TABLE II. 8-lifetime measurements. In the "Result" column, the first errors are statistical and the second are systematic. For
each experiment, the statistical errors of an individual event are taken as (k; 2+ r,')'i' [compare with Eq. (9)]; the systematic ones on
the lifetime are parametrized as (a,'r +P; )'

Experiment
Result

(ps)

Statistical errors
Scale Resolution
(k;) (r, } (ps)

Systematic errors
Scale Offset
(a;) (P, ) (psl

DELCO (Ref. 12)

HRS (Ref. 13}

JADE (5, ) (Ref. 14)

JADE (5„) (Ref. 14)

JADE (dipole) (Ref. 15)

MAC (Ref. 16)

Mark II (Ref. 17)

TASSO (Ref. 5)

+0.27+0. 171.17—0.2z —0. &6

1.27 —+0 29+0.24

1.36 0' F7+0.2 1

1 .46+p 2 &
+0.34

(1.29+0.20+0.07)
X (1.00+0. 15)

0.98+0.12+0.13

1.3520. 10+0.24

1.3

1.3

1.4

1.4
0.5

1.3

1.3

1.0

1.6
1.7
1.8
1.8
1.7

1.7

0.9

0.09

0.17

0.15

0.20

0.15

0.10

0.16

0.14

0.10

0.07
0.18

0.07
0.07

0.13
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utes to the separate experiments. This, however, is a ma-
jor undertaking, beyond the scope of this study. )

Then for any assumed value of ~, we construct E;i by
adding the diagonal statistical and full systematic error
matrices, and use it in Eqs. (11)and (12).

We have calculated the combined lifetime ~ for the ex-
periments listed in Table II as a function of the common
correlation coefficient c for the systematic errors (solid
line in Fig. 3). We have compared this with extreme as-
sumptions about the v dependence of the errors: the
naive method using constant errors (dashed line), and the
situation where both statistical and systematic errors are
proportional to r (dotted line).

In the absence of detailed knowledge of c, we take its
value as 0.5+0.3. This then provides a lifetime estimate
of 1.13+0.14+0.05 ps, where the first error is statistical
and the second arises from the uncertainty in c. We as-
cribe a further error of +0.03 ps from the uncertainties
of the coefBcients of the constant and 8-dependent contri-
butions to the error. This gives us our Anal estimate of
1.13+0.15 ps. Compared with the naive method, the
effect of the variation of the errors with ~ is to increase
~z by 0.03 ps, whilst the correlation of systematic errors
lowers it by 0.07 ps; the statistical error is increased by
40%. Our answer is dominated by the Mark II result,
with its small errors (for example, if we increase their er-
rors by 50%, we obtain 1.2120.16+0.0320.03 ps); the
fact that vz decreases as c increases is caused by their
particularly small systematic error. Our result is close to
that obtained by Muller using slightly different input
from Table II. By including the efFects of correlations he
obtained 1.15+0.14 ps (Ref. 10).

Finally, we note that the type of considerations dis-
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FIG. 3. The dependence of the weighted averaged B lifetime
(v"&) on the correlation coefficient c of the systematic errors.
The dashed line is for the naive least-squares method with the
random and systematic errors constant; the dotted one has both
the errors proportional to v~ and in the solid one they are
parametrized as given in Table II. The point with error bars
show our preferred value.

cussed here can be applied to a wide variety of problems
of combining data from experiments where the estimated
errors depend on the measured values of the parameters.
Thus in measuring cross sections for rare processes or
small branchin ratios, the result is likely to be propor-
tional to ¹ N. A low estimate of N will yield a small
apparent error, and again it is necessary to avoid giving
such a measurement an unduly large weight.
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