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In this paper, we study multibunch beam breakup, with emphasis on theoretical methods applic-
able to the design of a linear collider with a center-of-mass energy near 1 TeV. One way to
significantly improve the luminosity and energy transfer efficiency of such a collider is to accelerate
a train of bunches rather than just a single bunch each time the linac accelerating structure is filled
with a pulse of rf energy. For the required bunch charges and intensities, the transverse instability
due to the wake fields produced in the accelerating structure is very severe unless measures are tak-
en to control it. Therefore, we examine the effects of several methods of reducing this instability:
(1) use of damped acceleration cavities, (2) placing the bunches near nodes of the transverse wake
fields produced by preceding bunches, (3) introducing a spread (over different cells of the accelerat-
ing structure) of the individual mode frequencies in the transverse wake field, and (4) varying the
strength of the transverse focusing from bunch to bunch, in such a way as to partially cancel the
effects of the wake fields from preceding bunches. We present examples illustrating the effectiveness
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of these cures, using realistic linear-collider design parameters.

I. INTRODUCTION

The design of the next generation of e Te ~ linear col-
liders, with center-of-mass energy between about 0.5 and
2 TeV, is based upon extensions of conventional rf tech-
nology to frequencies above 10 GHz. Even at these fre-
quencies, the power requirements are high, and it is
essential to use the available rf energy as efficiently as
possible. Furthermore, the luminosity required by high-
energy physics experiments at these energies is close to
10** cm " 2%sec ™ !. For these reasons, it is attractive to ac-
celerate a train of bunches rather than a single bunch on
each rf fill, as it is then possible to extract a higher frac-
tion of the available energy and to obtain a luminosity
several times higher than in the single-bunch case.

However, the passage of intense bunches through a
high-frequency accelerating structure leaves behind
strong wake fields that influence subsequent bunches in
the train. The longitudinal wake fields produce a spread
in the energies of the bunches (beam loading), and one
must arrange the filling time and bunch spacing to keep
the bunch-to-bunch energy variation sufficiently small.!
The transverse dipole wake fields are responsible for the
cumulative beam breakup instability, which is extremely
severe in the cases of interest here, unless measures are
taken to alleviate it. Each bunch in a closely spaced train
feels the transverse dipole wake produced in the ac-
celerating structure when preceding bunches are slightly
off axis. The spacing between adjacent bunches is only a
few rf wavelengths, and the transverse dipole wake in a
conventional accelerating structure continues to ring for
many multiples of this spacing. Thus, the transverse am-
plitudes of oscillation of the bunches can grow rapidly as
they proceed through many acceleration sections.

Regenerative beam breakup?? is a form of beam break-
up that can occur when there is a buildup of deflecting
fields in a single acceleration section. This buildup of the
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fields is due to a “feedback” of energy due to backward-
wave components of the fields and/or reflections from the
end of the acceleration section. However, the threshold
current for regenerative buildup is well above the actual
beam current for the parameter regimes in which we are
interested here.

The cumulative beam breakup instability in linacs was
first observed in the SLAC linac in 1966 (Ref. 4) and the
first theoretical studies were carried out during the next
few years.»>® A number of subsequent works have treat-
ed regimes of the beam breakup differing in various essen-
tial respects from that considered here.””!® The ap-
proach taken by many of these authors, which is most
useful for a long beam, is to make a discrete or continu-
ous Laplace transform on the equations of motion (de-
pending on whether bunching of the beam and/or
discreteness of the rf cavities are taken into account).
The Laplace inversion is then performed analytically us-
ing asymptotic methods, to obtain results valid in the
steady-state limit, in which the bunch number is ap-
proaching infinity, or the asymptotic transient limit, in
which the blowup has progressed significantly.

Since we are interested in a beam consisting of a rela-
tively short train of bunches, it seems more transparent
to remain in the time domain. Furthermore, we wish to
know how much transverse blowup of the beam there will
be, even when it is only a small factor. We take two
different approaches to calculating it. The most general
is to numerically integrate a Green’s-function integral
representation for the transverse offset of each bunch.
The other approach is to derive simple analytic models
that illustrate the characteristics of the blowup in some
limits of interest and can be compared with the more pre-
cise results based on the Green’s-function integrals.

One such limit occurs when the wake is so strongly
damped that at each bunch only the wake from the im-
mediately preceding bunch need be taken into account.
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For this case, a very simple analytic model is derived and
is shown to be in good agreement with the more general
approach.

In general, the transverse wake consists of a sum of
modes of different frequencies. However, the transverse
wake in the type of accelerating structure we shall con-
sider tends to be strongly dominated by its fundamental
dipole mode. Thus we present a simple analytic model
that is valid for bunches placed close to the zero crossings
of such a single-mode wake field.

Several possible methods for alleviating the transverse
instability will be studied in this paper: (1) damping the
transverse dipole modes by means of axial slots through
the irises of the rf structures, with the slots coupled to ra-
dial waveguides;!” (2) tuning the frequency of the funda-
mental transverse dipole mode to place the bunches as
near as possible to zero crossings of the wake fields; (3)
using an rf accelerating structure in which the frequen-
cies of corresponding transverse dipole modes differ from
cell to cell, resulting in a reduction of the effective Q of
each mode; (4) using time-varying quadrupoles to intro-
duce a small change in the focusing for different bunches,
so that they are not in resonance with each other.

Multibunch beam breakup in very-high-energy linacs
has been previously treated by Yokoya in Ref. 10. He ob-
tains approximate analytic results for the case of a single
deflecting mode or several deflecting modes whose fre-
quencies (modulo the bunch frequency) are sufficiently
well separated. The bunches are assumed to be not too
close to an integer number of half wavelengths of the
(single-mode) wake-field frequency. Decker and Wang in
Ref. 11 have also studied the cumulative beam breakup
for a single deflecting mode and for two modes of slightly
different frequency. Yokoya has studied the use of a
spread in the transverse-mode frequencies as a cure for
the breakup (i.e., the third curve in the above list), but
this method by itself is not sufficient to solve the problem
in the high-frequency linacs under consideration. We
shall emphasize instead the use of damped cavities and
placing the bunches near wake-field zero crossings.

The starting conditions for the transverse instability
can be initial offsets of one or more bunches, or can arise
from misalignments of the rf cavities or focusing ele-
ments. In this paper, we shall consider only the breakup
due to bunch offsets at the beginning of a linac. Misalign-
ment effects in linacs have been discussed by other au-
thors in Refs. 8 and 10.

Multibunch instabilities are a potential problem in oth-
er linear collider subsystems besides the main linacs. In
the injector accelerators and preaccelerators, beam
breakup is not as severe as in the main linacs, but it is
still an issue in their design.'® Damping rings suitable for
a linear collider utilizing multibunching are also being
designed.!”?°® The control of coupled-bunch instabilities
in such rings is addressed separately from the present
work.2!22

The organization of the paper is as follows. First, the
theory used to calculate the transverse beam blowup is
treated: namely, the general Green’s-function integrals
and the simple models for limiting cases of interest.
Next, some possible methods of curing the instability are

discussed. Finally, examples for the main linacs of a TeV
collider are given, to illustrate the theory and to show the
effectiveness of the proposed cures.

II. MULTIPLE BUNCHES WITHOUT ACCELERATION

For reasons that will become clear shortly, it is useful
to begin by examining beam breakup without accelera-
tion. We assume an equal charge of N electrons in each
bunch and uniform spacing / between adjacent bunches;
the bunch spacing [ is of course an integer number of rf
wavelengths. We use the smooth-focusing approximation
k,(s)=1/B,(s) for the focusing function of bunch n,
where B,(s) is an average B function which, however,
may vary slowly with s.

The bunches are considered to be rigid macroparticles.
Single-bunch beam blowup is a separate question and can
be dealt with using different techniques. It is controlled
by opening the irises of the structure, by short bunch
lengths, and by using Balakin-Novokhatsky-Smirnov
(BNS) damping?’ to compensate the wake effects. In this
paper, we shall only be concerned with the longer-range
wake fields, which couple each bunch to the bunches
which follow it.

Although we are interested here in the dynamics of a
train of rigid bunches, it is useful to begin by looking at a
treatment of single-bunch beam breakup, in which the
structure of the single bunch is modeled as two macro-
particles, representing the “head” and ‘“tail” of the
bunch. The case of n bunches is a generalization of this
simpler problem, when each of the n bunches is regarded
as a rigid macroparticle.

The standard treatment of single-bunch beam breakup
using two macroparticles?*~26 starts from the equations of

motion
x| +k3x,=0, 2.1
W, NePw. (D
b +k2x2=———?—x1 . (2.2)

Here, x, and x, are the transverse displacements of the
two bunches (assumed to be in a single plane), E is the en-
ergy of the electrons in the bunches, and primes denote
derivatives with respect to longitudinal distance s. The
bunch spacing is denoted by /, and W (/) is the transverse
dipole wake function at the second bunch due to the first
bunch. The wake function W, is a sum of modes of the
form (Ref. 26)

W (z)= 1 2k,
iz—pa2§ K,

. —K_z/2Q
sin(K,,z)e ™",

(2.3)

where z is the distance behind the exciting bunch, K,
=w,, /c, the wave number of mode m, Q,, the quality
factor of mode m, k,, the loss factor of mode m at the iris
[(V/C)/cell], p the cell length, and a the iris radius.

The units of W (z), the wake function per unit length,
are V/(Cm?). The wake function W (z) is multiplied by
the charge and transverse displacement of the exciting
bunch to get the wake field a distance z behind that
bunch. Note that to include the effect of the finite length
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of a Gaussian bunch, each term in the sum over m in Eq.

(2.3) should be multiplied by the factor e Ko a’, where o,
is the rms bunch length. We do not explicitly include
these factors, since we assume that the modes included in
the long-range wake have wavelengths much longer than
the bunch length.

Suppose the focusing is the same for both bunches, that
is, k, =k, =k. Then if x,(s)=a,e™ and x,(0)=a,, the
solution x,(s) for the second bunch satisfies
Ne*Ww (1)

X2 7%, = iks (2.4)
a, 2KE ¢ '

Note the linear growth of the envelope of the difference
x, —x, with longitudinal distance s.

Now suppose that the focusing of the two bunches is
made slightly different, for instance by using time-varying
quadrupoles. If k, =k and k,=k+ Ak, with Ak <<k,
then

2i sin(Ak s /2)e !k +(2k/Ds

X=X, Ne*w (I)
- 2Ek Ak

a,
(2.5)

In this case, the envelope beats with the wavelength
41 /Ak instead of growing linearly. If the coefficient in
front is made zero by the proper choice of Ak, then there
is no growth of the transverse amplitude of the second
bunch.

As another example, we may consider the case where
the two bunches start out with equal but opposite offsets:
namely, x(0)=—x,(0)=a,. This could also be regard-
ed as a simple model for a bunch that is “crabbed” so
that its head and tail start on opposite sides of the linac
axis. Then, instead of Eq. (2.4), we obtain

xZ_Xl NeZWl(l) iks
a, = VKE s—2 e, (2.6)
and, instead of Eq. (2.5),
T2 % 2cos(ak s /2)+ YLD - iniaks 2)
a =~ cos K SEKAK i sin(Aks /.

xe[[k +(Ak/2)]s . 2.7
In this approach, acceleration has not been taken ex-
plicitly into account; the energy E of the bunches has
been assumed constant. However, we shall see that for a
particular choice of focusing function, we can directly use
the results obtained from the equations of motion without
acceleration if the variables are interpreted appropriately.
Thus, we proceed to the case of n bunches without ac-
celeration. The equation of motion for the transverse dis-
placement of bunch n (n > 1) ignoring acceleration is

x) +kix,=f,(s), 2.8)
where the driving term is
2n—1
f,,(s>=NT" S Wiltn —)Dx,(s) . (2.9)

j=1

We look for a solution of the form x,,(s)=a,,(s)eik"s,
which leads to
a+2ik,a.=f,(s)e " (2.10)

Assuming the variation of a, with s is sufficiently slow,
we may neglect the a,’ term. Solving for a,, then yields

ik s'

— 1 s ’ - n ’
a,,(s)—a,,(O)+——2ik" fof,,(s e nds’ (2.11)

so that the solution for x,, is given by
Ne? s —ik,s"Q! .
= i S WL((n =)
x,(s)=|x,(0)+ SEK. foe z ((n =)

ik
Xx;(s")ds" |e" " .

(2.12)

III. MULTIPLE BUNCHES WITH
ADIABATIC ACCELERATION

Taking acceleration into account, the equation of mo-
tion for x,, is

y(s)x) +y'(s)x, +y(s)k}Xs)x, =F,(s) , 3.1
where we define
2n—1
F =X 's win—pix;(s) . (3.2)

2
mc j=1

Here m is the rest mass of the electron, and ¥ is the usual
Lorentz factor E /mc?. The acceleration is assumed to be
linear: y=v,+Gs, with G a constant. We assume the
smooth focusing functions k,(s) vary as the inverse
power p of the energy:

P

Yo |k, . (3.3)

k(s)= 7(s)

Then, the WKB solutions of the homogeneous equation
are
172

TN Yokn(0) {+, o ]
x(s)=x1(0) ok | P _zfok,,(s )ds
y (1—p)/2
O . s ’ ’
x50 |~ exp [+ [k, (s")ds ] .

(3.4)

Note the presence of the ‘“adiabatic damping factor”
(yo/7)' 7772, due to acceleration. The WKB approxi-
mation assumes that the fractional energy change in a be-
tatron wavelength is small, that is, (y')* <<y?k? This is
well satisfied for the cases of interest to us.

Now look for a solution to the inhomogeneous equa-

tion (3.1) of the form
x(s)=u(s)x (s)+u_(s)x_(s) (3.5)

(suppressing subscript n for the moment). Without loss
of generality we may assume that
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u',x,tu'"x_=0. (3.6)

Substituting into the inhomogeneous equation, we obtain
yu' x'y +u"_x"_)=F(s) . (3.7

Thus, we have two simultaneous equations [(3.6) and
(3.7)] for u’, and u"_, which we many solve and integrate
to obtain

+f ds' .

(3.8)
0 y(x_x'y —x,x")

It is easy to show that the denominator y(x_x’,
—x . x"_)=2i. Thus the general solution to the inhomo-
geneous equation for bunch 7 is

x,(5)=a, %, (5)+ a x, ()% [ G, (5,5 )F, (s")ds” ,

(3.9)

where a,” and a, are arbitrary constants. The Green’s

function is given by

G, (5,8 )=[y(s)y(sk,(s)k,(s")]~ ' *siny,(s,5") ,
(3.10)
where
Yuls,s)= [k, (s")ds” 3.11)
|
N, 5 ¥ (1—p)/2
X,(5)=|x,(0)+ e | =2
2iyome’k,(0) Yo | ¥(s')

n—1

X ¥ W ((n—jl)x;(s")ds

=1

A. Multiple bunches in the “effective length”
representation
Let us assume that the focusing function varies as
1/2

¥
° | k. (3.15)

v(s)

k(s)=

This is a physically reasonable scaling of the focusing
function for the following reasons. We would like to
focus strongly at the beginning of the linac to control
wake-field effects. The quadrupole “lens strength” g (i.e.,
inverse focal length) in, for example, the x plane, scales as

dBl

q= Lquad dx y ’

(3.16)
where L4 is the length of the quadrupole. Since there
are practical limits to the magnetic-field gradient achiev-
able in quadrupoles, it is most efficient to keep this gra-
dient (here, dB), /dx ) constant near its maximum value.
We also assume a FODO lattice (meaning that each cell

consists of a focusing quadrupole, drift space, defocusing

Let us take the
WKB solution as the motion for the

is the phase advance for bunch n.
“positive-phase”
first bunch,

(1—p)/2

ro exp[$1(5,0)] ,

x,(s)=x,(0) 7 (s)

(3.12)

and assume a, =0 for all n > 1. Then upon substituting
the explicit expressions (3.2) and (3.10) for the driving
term F,(s) and the Green’s function G,(s,s’) into (3.9),
we obtain

y (1=p)/2
x,(s)=x,(0) y(i) expliy,(s,0)]
(1-p)/2
Ne? Yo
+
yometk,(0) | v(s)
’ (1-p)/2
s 0 . ,
Xfo () siny, (s,s")
n—1
X 3 W, ((n—j)x;(s")ds" . (3.13)
j=1

It is useful to write this in a slightly different form for
comparison with later results and for convenience of nu-
merical integration. Upon writing sin, (s,s’) in terms of
exponentials, and dropping a rapidly oscillating term, the
solution for the offset of bunch n becomes

exp[ —iy,(s",0)]

(1-p)/2

Yo exp[iy,(s,0)] .

y(s)

(3.14)

r

quadrupole, and another drift space) with cell length L
allowed to vary along the linac. The phase advance p per
cell is

B _ gL .

5 2 (3.17)

sin
and the average of the minimum and maximum of the 8
function in a cell is

L

cell

sinu

(3.18)

Let us also assume that both the phase advance per cell
and the “filling fraction” (i.e., the length occupied by
quadrupoles divided by the total length of the linac) are
kept approximately constant as we go down the linac.
Then both L .4 and L., must scale as y'/2. In this
case, B < y!/2, and the corresponding smooth focusing ap-
prox1mat10n is just Eq. (3.15).

For this choice of focusing function, the result (2.12),
derived without acceleration, gives the same result as
(3.14) except for adiabatic damping factors, provided we
interpret the variables appropriately. In particular, E
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and the k, in (2.12) are taken to be the energy and the
focusing functions at the beginning of the linac, and s is
taken to be not the true distance along the accelerator,
but rather an “effective distance.” The effective distance
is just ¥(s,0)/k (0), where ¥(s,0) is the phase advance in
the actual distance from O to s along the linac and k (0) is
the focusing function at the beginning of the linac, that
is,

=Q(S,O)= 1 s , ,
Sef="1(0)  k(0) J tsnrds
2 1/2
= y((; (y12—yi?) . (3.19)

Note that if y(L)>>y, at s =L, the end of the linac, the
effective length of the linac is approximately
172

Yo | f . (3.20)

v(L)

Lg=2

B. Integration of equations of motion

A computer program (LINACBBU) was written to nu-
merically integrate the equations of motion in the
effective-length approximation (2.12), or for more general
focusing, Eq. (3.14). The wake field at the needed bunch
spacings is computed from an appropriate input set of
transverse dipole modes. The focusing function may be
the same for all bunches or may be varied, for instance
linearly or sinusoidally, from bunch to bunch.

A number of examples using this program will be given
in later sections. In all cases of interest here, the assump-
tion of adiabatic acceleration is an excellent approxima-
tion.

IV. VERY STRONGLY DAMPED WAKE

In cases where the wake field is strongly damped, a
bunch will only see a significant wake from the immedi-
ately preceding bunch, and we can use a simple ‘“‘daisy
chain” model to estimate the transverse blowup of each
bunch in the train. Let us assume that the focusing func-
tion is the same for all bunches. Then, the equations of
motion in the effective length approximation are

x| +k%x,=0,
o, NeW,(D
xn+k xn=—f—-xn_1

We assume x(s)=a e’ where a, is a constant, and look
for solutions x,(s)=a,(s)e’. Neglecting the a,’ terms,

4.1
(n>1).

we obtain
a,=—ioca,_,, 4.2)
where
Ne*Ww (1)
o= “kE - 4.3)
It is straightforward to show that the solution is
a,,(s)='fil(—_—;,—?££an _;(0), (4.4)

j=0

and if we take as initial condition a,(0)=1 for all n, this
simplifies to

4.5)

We see that (a, —a,;) grows linearly with effective dis-
tance s, as we noted earlier, and in general, for sufficiently
large os, the amplitude of oscillation of bunch n would
grow approximately as s” ~'. However, for the strongly
damped wakes we are considering in this model, os does
not necessarily become large in the distances s of interest.
It is apparent that the criterion for little or no blowup in

the linac is |0 L ¢| < 1, that is,

Ne?|W (DIL 4
— = =
2kE

where L 4 is the effective length of the linac. Recall that
k and E are the values of focusing function and energy at
the beginning of the linac.

The results of the daisy chain model, where applicable,
will be compared with the integration of the equations of
motion in the section on numerical results. We will see
that for the main linacs of a TeV collider, with highly
damped acceleration cavities, we in fact have |o L 4|~ 1.
Thus for n greater than a few, a,(s) is approximately
e ~i7S, and there is almost no blowup for bunches beyond
the first few in the train.

(4.6)

V. LINEARIZED WAKE-ZERO-CROSSING MODEL

Let us now consider the case where the bunches are
placed near the zero crossings of a single-mode wake
function, given by

—K,z/2Q

W, (z)=W sin(Kz)e (5.1)

For simplicity, we use the effective length formalism, and
we assume a focusing function k that is the same for all
bunches. The bunch spacing / is assumed to be close to
an integer number g of half-wavelengths of the wake
function. We define the quantity A by

A=mq—K,|I . (5.2)

Then, provided that (n —1)|A| << 1, we can approximate
the driving term for bunch n, given by Eq. (2.9), by ex-
panding the wake function to first order about the zero
crossings:

Ne2nZ! dW,
— M 5z _.x. . 5.3
S E 2 dz - Zn —jXj (5.3)
Here
Zy,= gqn —jpm "K‘ R (5.4)
1

is the position of the bunch-j wake zero crossing that is
nearest to bunch n, and

=(n—j)2 (5.5)

8z, _; K,

is the distance of bunch n from this nearby zero crossing.
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It is convenient to express A in terms of the fractional de-
viation of the wave number K, from the nearby wave
number K¢ for which the bunches would be exactly at the

zero crossings. So, suppose K, =K9+8K,. Using the
fact that K/ =g, we can write
A oK) (5.6)
= - m . .
K9 9

Thus, the condition for the validity of this linearized
wake-zero-crossing model is

ESK1
gmin—1)|—— | 1. (5.7

1

The derivatives of the wake function at the zero cross-
ings of interest are just

d—W :(_1)‘1‘"“1)W1Kle—q(n~j)1r/2Q,
dz K,z=q(n—jim
(5.8)
and so the driving term is
Ne’W A n—1
= 2 (= j)(—e T L (59)

j=1

Substituting into Eq. (2.11), we obtain the bunch ampli-

tude function X
n—

a,(s)=a,(0)—iA(A) Y (n

j=1

—)B" 7 [ ay(shds" ,

(5.10)
where
A(A)= N;ZZ,VI A (5.11)
and
B=(—e ™), (5.12)

A. Initial offset of first bunch only

Suppose the first bunch starts with offset a; =X and all
the other bunches start with offset a,,(0)=0. It is easy to
see that in this case the solution for a, will be of the form
Bn_lnilc,, iAS)j

a,(s)= N
j=0 J:

) (5.13)

where the C;" are constant coefficients defined for j =0 to
n—1. Slnce a, =X, we have C}=1. Upon substituting
a; of the form given in Eq. (5.13) into Eq. (5.10) and sim-
plifying, we obtain, for n > 1,

n—1ln—1 . J
a,(5)=2B""'S 'S (n—k)ck LA (5.14)
j=1k=j J:
Comparing Egs. (5.13) and (5.14), we obtain
Ci=0 (n>1), (5.15)

and, for j >0, the recursion relation
n—1 &
Cj”———kz.(n —k)Ciy .
=J

(5.16)

B. Equal initial offset of all bunches

It is only somewhat more complicated to treat the case
where all bunches start out with the same offset @, (0)=X.
Then one can see that the solution will be of the form

n—1n—1 . j
/( iAs)
a,(s)= 1+2 2 B | (5.17)
ji=16=j

where the Cj, are another set of constant coefficients,
defined for]—l ton —1, and for £=j to n —1. When
we substitute a ; of this form into Eq. (5.10), we obtain,
after some manipulation,

n—1ln—1
a,()=%|1+3 3 2 (n—¢)B"~ K
j=16=jk'=j—1
¢ ¢ (—iAs)
XC_]—I kB j! )
(5.18)
where we have defined the “initial’’ coefficients
Ch=1,
* (5.19)
Cor=0 (£>0).
Comparing Egs. (5.17) and (5.18), we find that
¢
n=3 (n—¢)B" XTIl . (5.20)
K'=j

In order to have a relation among the coefficients that is
independent of B, the exponent of B must be zero. This
yields the recursion relation

z (6—k+1)C/_, (5.21)

k=j

(j=z1),

which together with Eq. (5.19) determines the desired
coefficients C,.

Low-Q limit. Actually, for a damped wake the require-
ment (n —1)A <<1 may be more stringent than neces-
sary. We really only need (n; —1)A << 1, where n, is the
number of bunch spacings at which the wake field has
damped to a negligible value.

Obviously, we recover the daisy chain result when Q is
low enough. In the case where the wake is negligible
beyond one bunch spacing and each bunch is close to a
zero crossing of the wake from the preceding bunch, we
can write the criterion (4.6) for little blowup as

Ne*|W Ale 97/2CL ¢
2kE

High-Q limit. For a single-mode wake field with little
damping (Q — «), we have B=(—1)% Thus, for the
case a; =X, and a,(0)=0 for n > 1, the amplitude func-
tion of bunch # is

<l (A<1). (5.22)
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n—1 . J
a,(s)=2(— 190"~ V'y cpdtAs (5.23)
j=1 J!
For the case a,(0)=X for all n, we have
n—1(_: grjn—1 ,
a,(5)=% 1+ 3 AV S gyeen | 520
= Jt A

Note that for a given j, the terms in the sum over ¢ are
positive for g even and alternating in sign for ¢ odd.
Thus for a given value of A4, we expect the amplitudes to
be larger when the bunch-to-bunch spacing ¢ is an even
number of half-wavelengths of the wake function than
when it is an odd number of half-wavelengths. This just
reflects the fact that the contributions to the driving force
on bunch n due to the n —1 preceding bunches are the
same sign (alternate in sign) for g even (odd), because the
corresponding wake function values are the same sign (al-
ternate signs). Remember that we assumed the bunches
start out with the same offset, and since the focusing
function was assumed the same for all the bunches, they
will tend to stay in phase.

A similar effect (odd g versus even g) also occurs in Eq.
(5.18). Although it is most pronounced for longer-range
wakes, the effect can be seen in our examples even when
the wake is significant for a distance of only a few bunch
spacings. Illustrations will be given in later sections,
where we will also compare this model with results from
the LINACBBU program.

VI. CURES FOR THE TRANSVERSE INSTABILITY

We now turn to the study of ways to prevent multi-
bunch beam breakup in linacs. The four cures that we
shall study are damping the transverse wake, minimizing
the wake effects by placing the bunches close to nodes of
the wake field, introducing a spread in the frequency of
corresponding transverse dipole modes, and varying the
focusing to partly cancel the wake force at the bunches
(BNS damping). As noted earlier, a cell-to-cell frequency
spread in the transverse modes is present in the existing
SLAC linac and has also been examined by Yokoya in the
context of a next-generation collider (Ref. 10). We also
note that BNS damping is used to control single-bunch
emittance growth in essentially all extant designs for a
next-generation collider.”’” We shall emphasize the use-
fulness of the first two curves in a very-high-energy col-
lider utilizing multibunching.

A. Damped cavities

Theoretical and experimental studies show that it is
possible to construct damped acceleration cavities that
significantly reduce the Q’s of the transverse dipole wake
modes (Ref. 17). One way to construct such cavities is to
cut axial slots through the irises of the structure and cou-
ple these slots to radial waveguides. Transverse-mode Q’s
as low as 10 can be obtained in this way. Measurements
have shown that there is no significant adverse effect of
such slots on the accelerating mode. Another type of
damped cavity has side-coupled slots that go into the cav-
ity without cutting the irises. These slots perturb the ac-

celerating mode to some extent, but do not transmit it.
The Q’s of the transverse modes can be as low as about 40
in this case.

The Q’s obtained for the higher-order modes should be
at least as low as the Q of the fundamental. For simplici-
ty in the numerical computations, we will generally take
the Q’s to be the same for all modes. Another option is
to assume that there is ‘“equal damping” of all modes.
That is, given a value of Q for the fundamental mode, as-
sume that all modes damp as e ~ %*, where a is the damp-
ing rate of the fundamental mode:

K,
a=—-

20,
Obviously, if the fundamental dipole mode is sufficiently
dominant, it does not make much difference whether we

assume equal Q’s, equal damping of the higher-order
modes, or individual Q’s for each mode.

(6.1)

B. Tuning the frequency of the fundamental transverse mode

The transverse dipole wake for the accelerating struc-
ture considered here is indeed strongly dominated by its
fundamental mode and has zero crossings that are ap-
proximately equally spaced. Figure 1 shows the dipole
wake computed using the program TRANSVRS (Ref. 28)
for a disk-loaded structure designed to operate at 11.4
GHz. The structure has a cell length of 8.75 mm, inter-
nal cell radius of 11.2 mm, and a relatively large iris ra-
dius of 5.2 mm. This structure has no slots to damp the
transverse modes. However, assuming that such slots
damp higher-order transverse modes at least as much as
they damp the fundamental transverse mode, and that
this fundamental mode dominates the others, the slotted
structures will have a damped wake with nearly periodic
zero crossings throughout the extent of the wake.

Therefore, it is possible to place all the bunches in a
train near zero crossings of the wake field, if the ratio of
the frequency of the fundamental dipole mode to the fre-
quency of the accelerating rf is appropriately tuned. The
condition that this be so is just
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FIG. 1. The dipole wake for a disk-loaded structure designed
to operate at 11.4 GHz. 90 modes have been included. The
wave number of the fundamental mode is about 308 m~' and
the zero crossings are nearly equally spaced at half the corre-
sponding wavelength.
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%q}»W1=m?xrf=l , (6.2)
where [ is the bunch spacing, m and g are integers, and
A and )»W1 are the wavelengths of the rf and the funda-

mental dipole wake mode.

C. Spread in frequency of each transverse dipole mode

One might also consider an rf structure in which the
frequencies of corresponding transverse dipole modes
differ from cell to cell. This is the case, for example, in
the existing SLAC linac, where the mode frequency
spread is a few percent.?’ The frequency spread results in
a reduction of the effective Q of each mode.

In the main linacs of a linear collider, this method is a
partial cure at best. Note that the design and construc-
tion of an accelerating structure incorporating both
damping slots coupled to radial waveguides and a cell-
to-cell mode frequency spread would probably be rather
complicated.

D. Bunch-to-bunch variation of transverse focusing

By the use of a system of time-varying quadrupoles in
addition to the main system of quadrupoles, we could in-
troduce a small spread in the focusing functions k,, of the
bunches. This is essentially the BNS damping mecha-
nism (Ref. 23) applied to multiple bunches. If the focus-
ing increment at a given bunch is chosen appropriately,
one can at least partially cancel the wake force due to the
preceding bunches [cf. Eq. (2.5)]. It is not practical to use
this method by itself to control the wake-field effects of
multiple bunches because, for the parameter regimes we
will be considering, the required spread in the values of
the k, would be large. The resulting chromatic phase ad-
vance differences create complications with orbit correc-
tion, as will be discussed later in the examples. Note also
that a given bunch feels the wakes from all the preceding
bunches, which means that the choice of an optimum
bunch-to-bunch focusing spread is not as simple as in the
two-bunch case.

VIL. CHOICE OF MAIN LINAC PARAMETERS

A. Linac rf frequency

In the choice of rf frequency, there is a tradeoff be-
tween less power consumption at higher frequencies and
lower transverse wake fields at lower frequencies. We
shall consider some examples of main linacs with ac-
celerating frequency of 11.4 and 17.1 GHz. The optimi-
zation depends on many factors other than just the need
to control beam breakup.*°

B. Scaling of focusing function

As discussed earlier, a focusing function scaling as the
inverse of the square-root of the energy is a reasonable
choice physically, and is also particularly convenient to
analyze. We shall assume this scaling in all our examples
of TeV collider main linacs.

C. Relation between bunch charge and bunch spacing

Keeping the bunch-to-bunch energy variation as small
as possible imposes a relation between the number of par-
ticles per bunch, N, and the bunch spacing / (Ref. 1):

7o

lchf—z—eT (7.1)

where T is the filling time and 7 is the ratio of the filling

time to the attenuation time of the rf structure. The
single-bunch loading is
Sl (72)
1]0_ 6 ’ .

z

where k; is the loss parameter of the accelerating mode
and &, is the acceleration gradient. Thus, for given pa-
rameters of the accelerating structure, we have a relation
between the bunch spacing / and the number N of parti-
cles per bunch.

VIII. EXAMPLES OF MAIN LINACS AT 17.1 GHZ

For illustration, let us first consider a main linac ac-
celerating frequency of 17.1 GHz.

The parameter set used is shown in Table I. Each linac
accelerates ten bunches per rf fill, to an energy of 0.5
TeV. The bunch spacing and bunch charge should be
chosen to make the energy of each bunch as nearly the
same as possible, in accordance with Eq. (7.1). Taking
T;=60 nsec, 7=0.6, k=430 V/(pCm), and &,=186
MeV/m in this equation gives

1=(0.25 m)m (8.1)
The single-bunch loading, from Eq. (7.2), is
No=(1.5X 10‘2)%[10 : (8.2)

In the present examples, we shall take / to be 24 rf cycles
(about 42 cm) and N =1.67 X 10'°; this gives 7,=2.5%.
We shall examine all four of the cures for beam break-
up discussed earlier. In all our examples we assume that
the first cure, damped acceleration cavities, is used to
reduce the Q’s of the transverse modes to values well
below 100. Except for very low Q’s, it is still necessary to
also apply at least one of the other cures. We shall try to
give a representative selection of examples, with realistic
parameters for main linacs at 17.1 GHz in this section

TABLE I. Parameters for main linacs at 17.1 GHz.

Number of bunches 10
Number of particles per bunch 1.67Xx 10"
Bunch spacing !/ 24A~42.0 cm
Initial energy of linac 18 GeV
Final energy of linac 500 GeV
Linac length 3000 m
Initial B function 32 m
(ko=0.3125 m™Y)
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and at 11.4 GHz in the next section.

In considering the first two cures, we have a two-
dimensional parameter space to explore: namely, (1) the
Q value of the modes of the transverse dipole wake (taken
to be the same for all the modes); (2) the frequency of the
fundamental transverse dipole mode (in our computa-
tions, the frequencies of the other modes will be assumed
unchanged).

The rf wavelength at 17.1 GHz is 1.75 cm, and the
wavelength of the fundamental mode of the unmodified
transverse dipole wake (Fig. 1) is 1.36 cm. If the frequen-
cy of the fundamental mode is shifted slightly, so that its
wavelength is 1.31 cm, then Eq. (6.2) is satisfied with
g =64, and we have

i _4
}\'W 3 )

1

(8.3)

When this relation is satisfied, the frequency of the funda-
mental transverse mode is 477.85 m ™!, which we shall
denote by K9. In Fig. 2, we show “tuning curves” of the
maximum transverse amplitude x,, in the bunch train
as a function of the frequency of the fundamental trans-
verse dipole mode, for values of Q =20 to 50. The value
of X . 1S the maximum of the amplitudes reached by all
bunches as they travel down the linac, normalized by di-
viding out the adiabatic damping factor (y,/y)'/*. The

central frequency K, at which Mg/ Aw =4/3, is 477.85

m~!. The range about the central frequency shown in

the figure is =1%. If we take x,, =2 as a figure of mer-
it, then for Q =50 we would have to tune to within about
0.26% of the central frequency K.

Of course, the lower the Q, the less sharply defined is
the frequency of the mode; the full width at half-
maximum of the resonance around the central frequency
K9 is IT=K9/Q (and the central frequency is shifted
slightly from that of the undamped mode). Therefore, it
is also of interest to compare the ratio R of the tuning

—_
o

Xae OF ALL BUNCHES
H »

n

FIG. 2. Maximum transverse amplitude x,, of all bunches,
normalized by dividing out the adiabatic damping factor
(yo/7)'"*, as a function of the frequency of the fundamental
transverse dipole mode, for values of Q=20-50, at 17.1-GHz
accelerating frequency. The central frequency K9, where
Ai/Aw =4/3, is 477.85 m~'. The spread shown about K is

+1.0%.

TABLE II. Tuning parameters for the fundamental trans-
verse dipole mode for 17.1-GHz main linacs.

K? AK? 0
Q0  AKYm™Y =——Qi(m—‘> K?' REAI’f‘
20 o 23.9 o ©
30 © 15.9 ) o
35 3.26 13.7 0.68% 24%
40 2.10 11.9 0.44% 18%
45 1.53 10.6 0.32% 14%
50 1.26 9.56 0.26% 13%

tolerance for a given Q to the full width I" of the reso-
nance at that Q:

AKY
=

In Table II we show the full-width tuning tolerance
AK for the criterion x ,,, <2, the full-width " of the res-
onance peak, the tuning tolerance expressed as a percen-
tage of the undamped central frequency, and the ratio R.
The parameters used and the values of Q tabulated are
those used in Fig. 2. For all these values of Q, the toler-
ance on tuning is at least 10% of the bandwidth of the
resonance; this should be straightforward to do. For
sufficiently strong damping (Q =20 and 30), the blowup
is less than a factor of 2, even without tuning the value of
the fundamental transverse mode to put the bunches near
wake zero crossings. However, for the larger Q’s, some
tuning of the frequency of this mode would be necessary
to keep the blowup small.

In Fig. 3 we show the effects of introducing the third
cure. In this example, there is a total spread of 2% in the
frequency of each transverse mode, distributed uniformly
over 200 values. Except for this frequency spread, the
parameters used are the same as in Fig. 2. For Q’s of 40
or less, no tuning of the fundamental transverse-mode

(8.4)

-
o

Xnax OF ALL BUNCHES

FIG. 3. Maximum transverse amplitude x ,,, (normalized) of
all bunches as a function of the frequency of the fundamental
transverse dipole mode, for values of Q=40-70, at 17.1-GHz
accelerating frequency, with a spread in each transverse mode
frequency of 2%. The central frequency K9, where
Ai/Aw =4/3, is 477.85 m~!. The spread shown about K{ is
*1.0%.
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frequency is required to keep the blowup less than a fac-
tor of 2. For the higher values of Q shown, some tuning
would be required. Recall that Q’s of 40 or so are obtain-
able without slotting the irises. Thus, for these parame-
ters, an acceptable solution is possible without slotting
the irises, provided that we either tune the fundamental
transverse-mode frequency or introduce at least a 2%
spread in the transverse-mode frequencies.

Finally, in Fig. 4, we illustrate the effect of the fourth
cure: namely, a variation in the strength of the focusing
function at each bunch to partially cancel the wake
effects. From Eq. (2.5), we see that there will be exact
cancellation of the part of the wake that is due to the im-
mediately preceding bunch when

Ak Ne?w (]) ®.5
a " 2FEk, )
Here, Ak, is the difference between the focusing func-

tions of adjacent bunches. Multiplying this by 9 gives the
total spread Ak, over all 10 bunches. For Q =40 and
for a frequency of the fundamental transverse mode 0.6%
above K, we obtain Ak, =10.8%. We show the results
with this value in Fig. 4(b). However, the phase advance
difference due to a focusing spread can introduce compli-
cations. In our example, the total phase advance in the
main linacs is about 907. Thus, for a focusing spread of
1%, the spread in phase advance is already significant
compared to 27. In such a case, the amplitude of beta-
tron oscillations must be smaller than the transverse
bunch dimensions or there must be position control of in-

Xy OF ALL BUNCHES

474 476 478 480 482
K 1 ( m- 1)

FIG. 4. Maximum transverse amplitude x,,, (normalized) of
all bunches as a function of the frequency of the fundamental
transverse dipole mode, for values of Q =20-50, with nonzero,
linearly distributed spread in the focusing functions over the
bunches. In (a), Ak /ky=1%, and in (b), Ak /k;=10.8%.

dividual bunches at the end of the linac, to keep the
bunches from missing each other at the interaction point.
Figure 4(a) shows the case of a total spread of 1% linear-
ly distributed over the bunches. We see that for the
smaller value of Ak, shown in Fig. 4(a), there is no ap-
preciable increase in the tuning tolerance compared to
Fig. 2. Thus, in order to obtain a significant effect on the
tuning tolerance, it would be necessary to introduce a
spread so large that there would be significant “chromat-
ic”” phase advance differences among the bunches.

A. Comparison with daisy chain model

In the 17.1-GHz examples just given, the number of e-
foldings of the wake between bunches is about

KU 100

—_ e~ —

~ , (8.6)
20 @

which gives about three e-foldings, for Q =35. This is a
case in which it would be reasonable to apply the daisy
chain model, which only takes account of the wake be-
tween adjacent bunches. In Fig. 5 the results of the daisy
chain model are compared with the results of the pro-
gram LINACBBU. We have included 20 bunches in the
train to illustrate the fact that there is no blowup for
bunches sufficiently far back in the train. The wave num-
ber of the first wake mode is taken to be 475 m ™!, Q =35,
and other parameters are as given in Table I. For bunch
2, the agreement is of course exact. For bunches 3-9,
there is some observable discrepancy, due to the effects of
wakes at more than one bunch spacing. However, the
overall agreement is very good. Note that in this exam-
ple |oL 4| =2.5, where o is defined in Eq. (4.3) and L 4 is
the effective length.
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FIG. 5. Comparison of the results of the daisy chain model
(plotted as O’s) with the results of the program LINACBBU (plot-
ted as X’s). In each case, the value of the envelope function
la,(s)| at the end of the linac, for each bunch number n, is plot-
ted. The transverse offset x,(s)=a,(s)e".
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IX. EXAMPLES OF MAIN LINACS AT 114 GHZ

Taking T,=80 nsec, 7=0.4, k=190 V/(pCm), and
6,=186 MeV/m in Eq. (7.2) gives the single-bunch load-

ing

noz(6.7X10_3)FAzo' , (9.1)

and, from (7.1), the relation between bunch charge and
bunch spacing

1=(0.12 m)—l—OALla .
For a given charge Ne per bunch, the single-bunch load-
ing and bunch spacing are roughly half of what they were
for the 17.1-GHz example. Since the bunch spacing is
closer (and also the wake frequencies are lower), the wake
extends over more bunches than in the 17.1-GHz case,
for a given value of Q. Thus, the daisy chain model
would not be applicable except for extremely low Q’s.
However, the effect of odd versus even g, where q is the
number of half-wavelengths of the dominant wake mode
between bunches, is more significant and can be used to
advantage.

It is also of interest to examine the trade-off between
the number of bunches and the charge per bunch. Sup-
pose we fix the total charge nNe accelerated per rf pulse:
i.e., the total charge in the bunch train. For large N and
smaller n, we would obtain more luminosity per pulse.
However, it may be necessary to go to smaller N and
larger n, to help alleviate the problem of pair production
at the interaction point.3!

We first consider an example with parameters as shown
in Table III. The linac length, energy, and focusing func-
tion are the same as for our 17.1-GHz examples. The
bunch spacing is chosen to be four rf wavelengths, and
the corresponding bunch charge from Eq. (9.2) is
0.88X 10'°. The single-bunch loading from Eq. (9.1) is
about 0.6%. With the Jower charge per bunch and weak-
er wake fields, it is possible to have more bunches; for
this example, we have chosen 20 bunches. In order to
take advantage of odd ¢, we have tuned the frequency of
the fundamental transverse mode so that there are 5.5
wavelengths of this mode between bunches (i.e., g=11).
The resulting tuning curves, for Q =20 to 60, are depict-
ed in Fig. 6. As in the 17.1-GHz examples, a spread of
+19% about the central frequency is shown. We see that
the tuning tolerances are comparable to, although some-
what less tight than, those in the 17.1-GHz example of
Fig. 2.

9.2)

TABLE III. Parameters for main linacs at 11.4 GHz.

Number of bunches 20
Number of particles per bunch 0.88% 10
Bunch spacing / 41 =10.5 cm
Initial energy of linac 18 GeV
Final energy of linac 500 GeV
Linac length 3000 m
Initial B function 3.2 m

(kg=0.3125 m™ ")

10
»
w
58
Z
)
[as]
4 6
-
<
w
O 4

5

E
x 2

326 328 330
Ky (m-1)

FIG. 6. Maximum transverse amplitude x,,,, (normalized) of
all bunches as a function of the frequency of the fundamental
transverse dipole mode, for values of Q =20-60, at 11.4-GHz
accelerating frequency. The central frequency, where
Ae/Aw =5.5/4,is 328.52 m~'. The spread shown about K is
+1.0%.

A. Comparison of even versus odd g

For comparison with Fig. 6, we show in Fig. 7 the tun-
ing curves for exactly the same parameters, except that
we have tuned the fundamental transverse-mode frequen-
cy to make g even. In particular, ¢ =10 in Fig. 7(a), and
g =12 in Fig. 7(b). As expected, the tuning tolerances for
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FIG. 7. Maximum transverse amplitude x,,, (normalized) of
all bunches as a function of the frequency of the fundamental
transverse dipole mode, for values of Q=20-60, at 11.4-GHz
accelerating frequency. In (a), the central frequency, where
Ai/Aw =5/4, is 298.66 m~!. In (b), the central frequency,
where A¢/Ay =6/4, is 358.39 m~!. The spread about the cen-

tral frequency is £1.0% in both cases.
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FIG. 8. Maximum transverse amplitude x,,,, (normalized) of
all bunches as a function of the frequency of the fundamental
transverse dipole mode, for values of Q=20-60, at 11.4-GHz
accelerating frequency. In (a), /=0.21 m, N=175X 10'°,
n=10, and the central frequency, where krf/kwl=10.5/8, is

313.59 m~'. In (b), /=0.0789 m, N=0.65X10'°, n=27, and
the central frequency K¢, where k,f/)kwl =3.5/3,is278.75m "

The spread shown about K¢ is +1.0% in both cases.

both these cases are tighter than in the g =11 case shown
in Fig. 6.

B. Examples with same total charge but different spacing

Next we examine two cases that are identical to that in
Fig. 6 except that the same total charge is distributed
differently among bunches, while still satisfying Eq. (9.2).
In the first case [Fig. 8(a)], we choose / =28\ =~0.21 m.
The charge per bunch, in accord with (9.2), is 1.75
X 10'°. To keep the total charge in the train the same,
we choose the number of bunches n =10. We tune the
frequency of the fundamental transverse dipole mode so
that we have 10.5 wavelengths of this mode per bunch
spacing. In the second case [Fig. 8(b)], we choose
I =31,~0.0789 m, resulting in N=0.65X10" and
n =27. The frequency of the fundamental transverse
mode is tuned to have 3.5 wavelengths per bunch spac-
ing. Note that in both of these cases, we have kept g odd,
as it is in the example of Fig. 6. We see that for the given
values of Q, the tuning tolerances for the three cases
shown in Figs. 6, 8(a), and 8(b) are not drastically
different, although those in Fig. 8(a) are somewhat tighter
than for the other two. Figure 8(a) has the smaller num-
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ber of bunches, with more charge per bunch and larger
bunch spacing. In all three cases, there is less than one
e-folding of the wake between bunches, and we are in a
regime where the effect of greater charge per bunch dom-
inates the exponential decrease of the wake, to produce
somewhat larger blowup in Fig. 8(a).

C. Comparison with wake-zero-crossing model

The quantitative agreement between the wake-zero-
crossing model and the LINACBBU program is good, pro-
vided the bunches are near enough to the zero crossings.
Consider the case N=1.75X10'", n =10, I =84,~0.21
m, with a single-mode wake damped to Q =60 and with
frequency tuned to 299.1059 m !, which is 0.15% above
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FIG. 9. Comparison between wake-zero-crossing model and

program LINACBBU, for an example at 11.4-GHz accelerating

frequency, with /=0.21 m, N=1.75X10'°, n=10. The wake

includes a single model with Q=60 and frequency 299.1059

m~!, which is 0.15% above the point where Ae/Aw =10/8.

Results are given for the second, sixth, and tenth bunch in the
train. The solid line shows the bunch offset obtained from
LINACBBU (normalized by dividing out the adiabatic damping
factor) as a function of effective distance along the linac. The
dotted line shows the envelope of the bunch offset, from the
wake-zero-crossing model.

1000
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the point where A;/Ay =10/8. From Eq. (5.7), we ex-

pect the wake-zero-crossing model to give reasonably
good agreement for

| 8K,
3
This is borne out by Fig. 9, which compares the results
from the program LINACBBU with the prediction of the
wake-zero-crossing model. The solid curve shows the
transverse oscillation of the bunch as a function of
effective length, according to LINACBBU. The dotted
curve shows the envelope of bunch oscillation, according
to the wake-zero-crossing model. The motion of the
second, sixth, and tenth bunch in the train are shown.
The simple linearized model overestimates the wake

slightly, leading to the small observable discrepancy with
the LINACBBU result.

<0.18% . (9.3)

X. CONCLUSIONS

We have demonstrated that it is possible to control the
potentially severe multibunch beam breakup in the main
linac of a TeV linear collider. The solution that seems
most generally applicable for the regime of interest is a

combination of two cures: (1) using damped acceleration
cavities that reduce the Q’s of transverse dipole modes,
and (2) tuning the frequency of the fundamental trans-
verse dipole mode so that bunches may be placed near
wake zero crossings. Simple analytic models for the limit
of a very strongly damped wake and for the limit of
bunches in the linear region about the zero crossings were
presented and were shown to agree well with the results
obtained from the Green’s-function integrals, in their
respective regimes of validity. The other two cures exam-
ined, namely, (3) a cell-to-cell variation of transverse-
mode frequencies, and (4) a bunch-to-bunch spread in the
focusing function, could also be useful in combination
with one or both of the first two cures.
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