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A potential with three parameters is used in a light-cone equation for a quark-antiquark pair.
Spin dependence is not included. The nonrelativistic limit is the potential of the quark model of
Eichten et al. Numerical methods are used to solve the eigenvalue problem. The parameters and
quark masses are varied to obtain a reasonable fit to masses of low-lying hidden-flavor mesons. Ad-

ditional masses are calculated for higher states and for flavored mesons.

Also, properties of the

pion are calculated from a wave function obtained with the numerical method. Spectroscopic as-
signments are problematic because the light-front formulation breaks rotational invariance. A need
for an improved treatment of angular momentum eigenstates is indicated.

I. INTRODUCTION

Relativistic quark models can take many forms."?
Here we consider a confining potential in the context of a
light-front bound-state equation.’”> The eigenfunctions
determined by the equation represent states that are
stationary with respect to light-cone ‘“time” ¢-+z. Only
a single quark-antiquark pair, the valence-meson Fock
state, is included.

The equation is solved numerically, with a combination
of quadrature® and finite-difference” methods. Symmetry
arguments are used to make a tentative assignment of
eigenstates to spectroscopic levels. The quark masses and
the three parameters of the potential are then adjusted to
fit various meson masses.?

Since wave functions are also obtained, properties oth-
er than mass can be calculated. We focus on the pion
and calculate its electromagnetic form factor, root-
mean-square (rms) radius, and decay constant.

An outline of the remaining sections is as follows. In
Sec. II we give a brief development of the light-cone
equation and, following the introduction of the potential
model, we reduce the equation to dimensionless form.
Quadrature and finite-difference formulas are then used
to convert the equation to a matrix eigenvalue problem
which is solved by standard means. In Sec. III we
present and discuss the results. These include the deter-
mined parameter values, meson spectra, and pion proper-
ties. Finally, a short summary and additional remarks
are given in Sec. IV.

II. THE LIGHT-FRONT EIGENVALUE PROBLEM

A. General form

We define light-cone coordinates* in terms of Cartesian
coordinates x‘ and time x°:

1

xET=x%x3, r,=(x ,x2) . (2.1

Similarly, light-cone components of momentum are
defined as

pE=p’tp’, p=0p'p?). (2.2)
The light-cone time is chosen to be x *. From the scalar
product of position and momentum,

px=%x+p*+%x'p+—xl-pl , (2.3)
we see that p~ may be interpreted as the light-cone ener-
gy. On the mass shell it must satisfy
__m’+p}
p = —pT_ )
with m the particle mass.
Given a light-cone Hamiltonian H/ ., the formal state-

ment of the eigenvalue problem is

H{V(P)=P V¥(P),

(2.4)

(2.5)

where W is an eigenstate that depends on the total
momentum P. The Hamiltonian is the sum of a kinetic-
energy operator K and potential-energy operator V. Al-
though K is diagonal in particle number, V usually is not.
Therefore, in general, Eq. (2.5) is a many-body problem.
An explicit representation of the action of K can be

written in terms of Fock states of n particles
|n:p,...p,). The Fock-state expansion for a state W'is
\P=2f[dx]n[d2kl]n¢n(x ‘xmkll”.kln)
Xlnp, - p,) (2.6)
with
x;=p; /P*, k,=p,;—xP,, 2.7)
n n dx i
[dx],=4m8 1= x; | [] —= (2.8)
i—1 i=1 7r\/x
and
X n n o d?%k
[d*k, 1,=47"8 | 3 ki | 1 5 (2.9)
i=1 i=1 4m

Helicity labels are suppressed. The momentum fractions
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x; and transverse momenta k; are frame independent.*  where M =V P2 is the total mass. The second term in
The action of K on this expansion is KV has canceled the term of the same form in P~ W. The
2 2 total mass M takes the role of the eigenvalue. The poten-
z kiitm; tial operat i ified ici i -
b> _ perator remains unspecified. An explicit choice typ
i=1 i ically leads to integral operators acting on the Fock-state
wave functions ¥,,.

XYulxy X kyy Ky)lnepy - oo py ) Boundary conditions on ¥, follow from the require-
p: ment that the expectation value of the kinetic energy be

+ P—+‘I/ . (2.10) finite. The conditions are

K¥=-0-3 [lax], %],

The eigenvalue problem (2.5) can now be written as

n k3 +m?
20

i=1 i

Unlx,=0=0, Ikyl¥nlic 1= =0 (2.12)

S [ldx1,[d%,],

To describe mesons in a simple way, we truncate the
Xy (xy -+ X, kypky)lnepy oo py) Fock-state expansion to only the valence state of a
quark-antiquark pair. The single remaining wave func-

+PtV¥=M?>¥, (2.11) tion must then satisfy the equation

]

2 k2 +m?
2

i—1 1

¢'(X1,X2,k11,k12)+1’+f[dx']z[dzkl]2U(x1:x2,k11,k12;xl1’x’2, 1o kiP(x ], x5,k k)

=MZ*Y(x,x,k;,k;,) . (2.13)

The kernel U is derived from a matrix element of the potential-energy operator. Conservation of momentum implies
that

x,=1=—x,=x, k,;=—k;,=k, . (2.14)
Therefore, we can write (2.13) as

2 2 2
ki mj m;

-0 T x "1 Y, k) +P [ dx'd?k U (x,kpx, k)Y(x', k) =M(x,k,) . (2.15)

The kernel U is proportional to U. We now turn to a discussion of a model for this kernel.

B. A model for the potential

For the purposes of this study, the choice of model for the potential is guided by a preference for simplicity and the
need for confinement. Here simplicity means ease of calculation and a minimum of parameters. Since only the quark-
antiquark Fock state is considered, coupling to multihadron states is not included.

The form chosen for the kernel U (x —x’, k, —k)) is

g /m* _ 2ma’/m?
g2 +@my)?  [q2+(2my )]

Uly,q)=— +C8(y)d(q,) , (2.16)

with 7 =1(m,+m,). In the nonrelativistic limit, Eq. (2.15) then reduces to a momentum-space Schrédinger equation
that contains the Fourier transform of the potential of Eichten et al.:’

V=—§+a2r+c. 2.17)

Thus, in this limit, rotational symmetry is recovered. A potential with one less parameter, but no nonrelativistic rota-
tional symmetry, has also been considered.°

The choice of U is not unique. Part of the motivation for the particular form selected is that the Fourier transform
from k, to r, can be calculated. This provides a means to reduce the three-dimensional integral operator in (2.15) to a
one-dimensional operator. The equation then becomes

Vi e e
x(1—x) x 1—x Yixor,
+rt,., 2ﬁg — ’ GZrl = ' ’ 2
—P fo dx TKO(Zmrllx—x |)+;T—|x—_;c,—IKl(2mrl|x —x'|) {¥(x I ) =M Y(x,r;) (2.18)



41 MESON PROPERTIES IN A LIGHT-CONE QUARK MODEL 939

with V2 the transverse Laplacian and the K, modified Bessel functions.
Some simplifications of the eigenvalue problem can be made. In the center-of-mass frame, P is equal to M, the ei-

genvalue, but we assume that

P =m +m,=2m .

(2.19)

We define a dimensionless coordinate p, masses u;, and coupling g’,

2
m-:

]

p=mry, p=—), g'= ,

a
m

m

and a dimensionless eigenvalue
M?*—mC
4m ?

E=

(2.20)

(2.21)

In terms of these new variables, and the azimuthal angle ¢, we have

woom
X 1—

1
pZ a¢2

2 1, ,
—;fodx

19

p 9p

9
P o

-1
x(1—x)

2gK o(2p|x —x'|

)+ —5L K, (2plx —x']) |¥(x",p,6)=4EW(x,p, ) .

Y(x,p, )

ED_ (2.22)
|x —x'|

There are then only three dimensionless parameters: g, g', and u;=2—pu,.
Standard separation of variables applies to the ¢ dependence. We find

imé

=1 _1
(x,p,P)= Vs u(x,p) i

with m an integer. The new function u obeys the equation

2, m'—¢

P
-2 4
ap2 p2

1
x(1—x)

2 2
1231 4 25
x 1—

2 rt,,
—;fodx

u(x,p)

The appropriate boundary conditions are

u(0,p)=u(1l,p)=0, u(x,0)=u(x,0)=0. (2.25)

To actually obtain solutions to this eigenvalue problem,
numerical techniques are required.

C. A numerical method

There are a variety of numerical methods for
momentum-space integral equations.>'' Caution is re-
quired when the kernel is singular, as it is in this case.
The best method that we have found for the problem at
hand is the Gauss-Chebyshev-Lobatto (GCL) method.®
It converts the singular integral over x into an approxi-
mate sum and the integro-differential equation (2.24) into
a coupled set of differential equations. A standard finite
difference formula completes the conversion into a matrix
eigenvalue problem where the matrix can be arranged to
be symmetric. The matrix problem is readily solved by
standard means.

The advantage of the GCL method is that no integrals
need be done explicitly. This is because it is based on the
following  Gauss-Chebyshev (GC) and Lobatto-
Chebyshev (LC) quadrature formulas:®

26K o(2p|x —x'|) +—EL—

(2.23)

K,(2plx —x']) |u(x",p)=4Eu(x,p) . (2.24)

lx —x’|

(2.26)

h(ty)

+Sg(Dh(1), GC,
=1 Wt

+S;(Oh(t), LC, h(x1)=0,

(2.27)

where 7 denotes the principal value,

Uy_ (1) 7Ty(1)

Sc(ty=r—r, S, ()=,
¢ L (= nuy (0

o) (2.28)

with Ty and U, Chebyshev polynomials of the first and
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second kind. The quadrature points

t :COSM y =cos—kl
k 2N K N
are the roots of Ty and Uy _,, respectively. The second
set of quadrature formulas, Eq. (2.27), applies to the
singular part of K; the leading behavior of K,(z) at
small z is 1/z. Both Ky(z) and (1/z)K,(z) also contain
logarithmic singularities, but these were found to be han-
dled well by the standard formulas, Eq. (2.26), in tests
with an analytically integrable function.
To apply these quadrature formulas, we change vari-
ables from x to t =2x — 1, define a new eigenfunction

(2.29)

The contribution of the singular part of (2.24) can then be

written as

I d' _ hn\t'p) g 1 dr  hy(t'p)
—1V1—¢? (t—1')? —-1vV1—¢2 t—t

(2.32)

This reveals an indeterminant aspect of the chosen ker-
nel, which we fix by choosing the principal part of the in-
tegral on the right. Use of the singular GC formula ob-
tains

fl dt’ “hm(t',p)

=1V 1= (t—1')?
h(t,p)=V 1=, |12L (2.30) 7 < Pnltop)
m\L,pP m 2 P . F E +SG t)h ( ,p)
k=1 l—tk)
and define the nonsingular part of K: +SG(Z)%hm(t,p) . 2.33)
= 1
K, (z)=K,(z)—— . 2.31
1(2) 1) z 23D The GC formulas convert the complete equation (2.24) to
J
1 @  m |, s I P
_— t’
1—2 | 9 p? 21+0)  201—1) |'m 0P 4
Vii—¢? T & ' T < Q 1
— — t—t, Dh, (t,p)+g — K (plt—t, )+ ————= |h,,(t;,p)
- gNk§1 pl k kP ng — 1] (p k (t—1, )2 kP
+g’S&(t)hm(t,p)+g’SG(I)%hm(l‘,p) =, h,(1,p) . (2.34)

The regular and singular parts of K| can now be recombined, except for the terms containing S;.
terms, the most troublesome is the one that contains the derivative of A

Of these remaining
- Fortunately, it can be eliminated; this is done

by choosing collocation points at the zeros of S, which are the zeros of Uy _,. Also, S; can, with use of various iden-
tities, be reduced to a simple form at these collocation points
Selpo=——"N_ (2.35)
1=yj
Equation (2.34) then becomes
2_1 2 2 2y1/2
1 ¥ Mz My M) (1=y/)
_— 4 + + - lS’ ( ) hm( ’ )
=2 | a2 p 214y | 21—y &PV yrp
(1=y))'? 7 ¥ p
———= 3 [(gKolply,—t ) +g’ K (ply,—t.D) | (ti,p)=Eph,(yp) - (2.36)
T N =1 l)ﬁ — I |

Note that the collocation points chosen for the GC formulas are the quadrature points of the LC formulas.
Similar expressions are obtained in working with the LC quadrature formulas. In that case the collocation points are
chosen to be the quadrature points of the GC formulas. The equivalent to (2.36) is

(1—ep)72
— L n, 1,0

ykrp §mhm(t1,p) . (2.37)

"‘%T (plt;—y ) | A

Thus the pairing of GC and LC quadrature formulas yields 2NV — 1 equations with 2N¥ — 1 unknown functions of p at

2_ 1 2 2
1 ¥ mTq [ H2
-5t + + —g'S;(t
1—tf | 3> p? W+ 21— &Ll
(1__[12)1/2 - N
- Kolplt,—yl)+g’
- Nk:1g0p11 Vil P
the points
ko |fk+nss k odd
H=CSINT pks K even .

(2.38)
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The full set of equations can be collected into a symmetric matrix equation. To obtain the symmetry, define a new func-

tion

1+1¢

g (t,p)=(1—t) Vo (t,p)=(1—1t)"*u,, P

(2.39)

Let the individual functions of p form a vector g,, (p) with components

(8 (P) ]k =8m(zksp) -
Then Egs. (2.36) and (2.37) can be written as

A8n(P)=Emn8m(p)
where 4 is a matrix with the following elements:

2
1| m—s pi I

(2.40)

(2.41)

Ng'

2(1+ZI)

1 _ZIZ ap2 pZ

g

—(1=z)"4(1—z})'/* FKO(Plzz_Zk D+

0 otherwise .

We complete the conversion to a matrix problem by in-
troducing a set of N, +2 points p;, at equal separations h,
such that

p;=ih, i=0,...,N,+1. (2.43)
The second-order derivative is replaced by the central

difference approximation’

d? 1
aprinaeP)| =53

]

[8m (zkspi +1)— 28 (2;,p;)

+8m(zispi—1)] - (2.44)

The boundary condition (2.25) at infinity is approximated
by forcing the wave function to zero at the last point

pmaprNp+l . (2.45)
One need only be careful that p,,, is sufficiently large.

The eigenfunctions are now approximated by the ordi-
nary eigenvectors

(8m(z1,p1), - - - 8m Zan —15P1)

8m(z1,p2)s - - - ’gm(ZZN—hpr)]T (2.46)
With this choice of ordering, the full matrix is block di-
agonal except for two codiagonals from the first and last
terms in the finite-difference formula. It is in fact a sym-
metric banded matrix of bandwidth 2N +1. Thus the
matrix eigenvalue problem is ideal for application of
the International Mathematical and Scientific Library
(IMSL) routine EVESB (Ref. 12) which was designed for
this type of matrix. It was by this routine that the eigen-
values were calculated.

Accuracy of the results was improved by employing ex-
trapolation to large N. The error was found to be rough-
ly quadratic in 1/N, and two estimates, at N=5 and

2(1—21)

g _p
N |Z[_Zk|

, 1=k,
(1—z})'"

K,(plz;—z|) |, 15k, one odd, the other even ,

(2.42)

f

N=10, were used as the basis for extrapolation.
When the quark masses are equal, the size of the ma-
trix can be reduced. In this case, we have

m,=m,=m, pu,=1. (2.47)

The eigenfunctions can be chosen to be eigenstates of
reflection in t:

gn(—t,p)==xg, (t,p). (2.48)

Because of this symmetry, roughly half of the entries in
the eigenvector (2.46) may be discarded. The diagonal
blocks are only of dimension N for the even case or N —1
for the odd. However, in the even case, g, (0,p;) must be
replaced by g,,(0,p;)/V'2 to maintain the symmetry of
the matrix.

III. DISCUSSION AND RESULTS

A. Determination of parameters

A complete classification of states according to angular
momentum cannot be done. We interpret m as the z
component of orbital angular momentum, but states with
definite particle number cannot, in general, be eigenstates
of total angular momentum. Assignment of states to ex-
perimentally observed particles is therefore problematic.

Assignment of states is least difficult when the quark
masses are equal. Reflection in t =2x, —1 corresponds to
the interchange of momentum fractions x,; and
x,=1—x,. Thus the symmetry (2.48) and the structure
of the ¢ dependence in (2.23) imply that the complete
eigenfunction represents an eigenstate of particle inter-
change:

Yi(x2,p,6+m)=E(—=1)"Pi(x1,p,6) .

We assume that mixing of low-lying states with different

(3.1)
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total angular momentum / is small. The assigned / value
must not be less than m. Also, since particle interchange
is equivalent to inversion of the ordinary relative momen-
tum, the parity (—1)' should be equal to +(—1)".
Therefore, the lowest even, m =0 state is treated as the
1S state. The lowest odd, m =0 and even, m = %1 states
should be 1P. Assignment of excited states is more
difficult since, for example, some even, m =0 states are D
states rather than S. For the strange mesons, the inequal-
ity in quark masses means that (2.48) is not directly avail-
able to aid in assigning P and D states, but because the
quark masses turn out to be nearly equal, the eigenfunc-
tions themselves can be classified as approximately odd or
even. Assignment of charmed and bottom mesons is not
attempted, except for the ground states.

Some dimensionless eigenvalues are presented in Fig. 1.
They are values appropriate for a description of char-
monium. The figure illustrates the assumed spectroscop-
ic assignments. The m =0, 1D state was assigned based
on the known charmonium spectrum and nearness to
other 1D states.

Note that states with different m but the same / are not
degenerate. To obtain a single value as the eigenvalue for
that /, we calculate an average weighted by the degenera-
cy at each m.

A fit to meson masses'> of levels calculated in this way
has been done. Since states other than 1S are quite
suspect, a precise optimization of parameters was not at-
tempted. The momentum dependence of the coupling
constant g was modeled via the parametrization'*

4S(1.81)
3§(1.77)
1———0(1‘73) 2P (1.75)
2~——P(1'65) 1D(1.63)
1D (1.59)
2S(1.55)
1P (1.49)
1P (1.38)
1S(1.17)
m=0 m=0 m=%t1 ma=%1 ma=¢t2
even odd even odd even
FIG. 1. Spectroscopic assignments for various low-lying

states. The eigenvalue § is indicated by the position of the line
and by the number written in parentheses. The values are ob-
tained from numerical solution of Eq. (2.24) of the text at values
of g, g’, and u, appropriate for charmonium. The labels “odd’
and “even” refer to the symmetry under interchange of momen-
tum fractions, and m is the z component of angular momentum.

—_ &
2In(M /A)

with g held constant for any one system and M taken to
be the 1S mass. The mass scale A was chosen somewhat
arbitrarily to be 0.5 GeV. The values of g\, a, and m,
were adjusted to give a close fit to the 2S-1S and 1P-1S
mass differences in the c¢ system. The constant C was
fixed by the J/y¥ mass. The other quark masses were
determined by fits to the appropriate hidden-flavor 1S
mass. The light up and down quarks were treated as
identical. In the case of the bb system, where the 15 mass
is unknown, an estimate!® of 35 MeV for the Y —7, split-
ting was used to give 9.451 GeV as the 15 mass. The re-
sulting parameter values are

m,=m;=0.277 GeV, m;=0.410 GeV ,
m,.=1.651 GeV, m,;=4.933 GeV ,

g (3.2)

g0=3.670, A=0.500 GeV ,
a=0.442 GeV, C=—1.024 GeV .

The quark masses obtained are reasonably consistent
with accepted values.'® The coupling constant g for char-
monium is 1.01. For comparison, the parameters of the
model of Eichten et al.® are g=0.52, a=0.427 GeV, and
m.=1.84 GeV. Therefore, the short-distance behavior of
the potential is changed but not the long-distance behav-
ior.

B. Spectra

Calculated masses for various quark-antiquark systems
are listed in Tables I-III. Experimental values are also
listed if available.!> In most instances, the calculated
meson masses are not unreasonable, given the primitive
nature of the model. The worst deviations occur for the
excited states of the bb system where the differences be-
tween the calculated and experimental values grow to al-
most 600 MeV. However, it is excited states that are par-
ticularly difficult to interpret. Clearly, a better under-
standing of angular momentum eigenstates is needed.

C. Pion properties

With an approximate pion wave function now in hand,
various properties can be calculated. We consider the
form factor, the rms radius and the pion decay constant.
Similar calculations with model wave functions have been
done by Dziembowski!” and others.'?

The electromagnetic form factor is given by*

F(q?=0?%

_ rldx
=l e

d*k,
s P*(x,k, +(1—x)q,)¥(x,k;),

(3.4)

where q, is the transverse photon momentum. The
Fourier transform from k, to r, yields

_ 1 1 —ixq,T
F(QZ)_ZT—IO dxfdzrle S g(x,r)|? (3.5)
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TABLE 1. Calculated meson masses compared with experimental values for hidden-flavor states of / (up and down) and s quarks.

Only isospin-zero /T mesons are listed.

IT systems S5 systems
Mass of centroid (MeV) Mass of centroid (MeV)

State Particle Mass (MeV)?* Experiment Model Particle Mass (MeV)? Experiment Model
1'S, 7 548.8+0.6 724° 724 7'(958) 957.50+0.24 1004° 1004
138, ®(783) 782.0+0.1 ¢(1020) 1019.41+0.01
28 1320 1589
1'P, 1(1170) 1170+40
13P, fo 1400) =~ 1400 fo(975) 976+3
13P, f1(1285) 1283+5 1291 1221 f1(1420) 1422+10 1430 1443
13P, f,(1270) 1274+5 f5(1525) 1525+5
13D,
1°D, 1511 1744
1°D; @3(1670) 1668+5

2Reference 13.
®Used in fit.

Substitution of (2.23) and use of (2.39) reduces this to

2) v dt
Fen f V-2
o 1+t
Xf() dP-Io - [go(t,P)]z ’
(3.6)

where J, is an ordinary Bessel function. The LC quadra-
ture formula (2.26), with all the z, as quadrature points,
and the trapezoidal rule, lead to the approximation

Correct normalization of g, is determined by requiring
F(0)=1. The numerical wave function can be used
directly here to obtain an approximate form factor. The
size of h used for this calculation was 0.1; this limits Q to
being less than 3 GeV. A plot of Q2F(Q?) in this
momentum range is given in Fig. 2. Data!® are also in-
cluded for comparison.

The calculated form factor yields a reasonable approxi-
mation to the data. This does not mean, however, that
perturbative quantum chromodynamics does not apply in
the same region. The hard processes included in pertur-
bative calculations* may well be represented in the model
potential. Note, though, that the large-Q? behavior of

-1 N, 1+2z, 2F(Q?) is not constant as it is for the perturbative re-
FlQ*= IZN 2 P D) 2 [g0(zk>pi) ) sQult.“Q P

k==t There is no natural definition of the rms radius r,,, in

(3.7) the light-cone formulation. We have chosen two possible
TABLE II. Same as Table I, but for ¢ and b quarks.
¢C systems bb systems
Mass of centroid (MeV) Mass of centroid (MeV)

State Particle Mass (MeV)? Experiment Model Particle Mass (MeV)? Experiment Model
1'Sy  7.(2980)  2979.6+1.7 3068" 3068 9451
138, ¥(3097) 3096.9+0.1 Y'(9460) 9460.3+0.2
2'S,  71.(3590)  3594.0+5.0 3663° 3680 9829
23S, $(3685)  3686.0+0.1 Y(10023) 10023.3+0.3
3's, 3986 9930
338, 1¥(4040) 4040.0+10.0 Y(10355) 10355.3+0.5
4's, 4039 10007
4 351 Y(4415) 4415.0+6.0 Y(10575) 10580.0+3.5
1°P,  xo(3415)  3415.1+1.0 X50(9860)  9859.8+1.3
13P, x1(3510) 3510.6x0.5 3525° 3476 X51(9895) 9891.9+0.7 9900 9781
1°P,  x,(3555)  3556.3+0.4 X52(9915)  9913.2+0.6
23P, Xbo(10235)  10235.3+1.1
23p, 3872 X1(10255) 10255.2+0.4 10261 9807
23p, X»2(10270)  10269.0+0.7
13D, P(3770) 3769.9+2.5
1°D, 3800 9877
13D,

#Reference 13.
®Used in fit.
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TABLE III. Same as Table I, but for flavored mesons.

Mass of centroid (MeV)

System State Particle Mass (MeV)? Experiment Model

51 1's, K 493.67-497.72 793 784
138, K*(892) 892.14+0.3
28 1430
1P, K (1270 1270+10
13P, K (1430 1429+7
13P, K ,(1400) 1401+10 1418 1300
13P, K3(1430) 142642
1°D,
1°D, K,(1770) ~1770 1611
13D, K¥(1780) 1776+4

o 1S, D 1864.5+0.6-1869.3+0.6 1974 2046
138, D*(2010) 2007.1+1.4-2010.1%0.6

5 1S, D, 1969.3+1.1 2077 2094
138, DX(2110) 2112.7+2.3

bl 1S, B 5277.6+1.4-5279.4+1.5 5318 5346
135, B*(5325) 5331.3+4.7

#Reference 13.

definitions. One uses the expectation value of 7|,
2

[8o(zx,p))*  (3.8)

N—1 Np

(1) — 2y172
ems ={r1) 16N ,21 ,2,

and the other, the expansion?
F(QH)=1-XQr,,)?+0(Q%, QOr..<<1, (3.9
which yields
Fims = lim QV 6[1—F(Q)] . (3.10)

Of course, the numerical calculation cannot resolve
F(Q?) at very small Q, but in graphical form the limit in
(3.10) is obvious to better than two-place accuracy. The
results obtained from these definitions are

rill =0.82 fm, {2\ =0.54 fm . (3.11)

1.0 +
0.8

0.6 1

Q?F?

0.4

Q? (GeV?)

FIG. 2. Pion form factor F(Q?) multiplied by Q2. The line
was obtained from Eq. (3.7) of the text. The data are from Ref.
19.

The experimental value?! is 0.66 fm.
The pion decay constant f_, defined by the matrix ele-
ment of the weak current,?

Olay T —yd|at)y=v2f pT, (3.12)

can also be expressed in terms of the numerical wave
function. We find

fx ——f P(x,0)dx

172
1

3
2

Lo 1
fodx‘/’_)go(x,p) Y (3.13)

To approximate the value of (1/Vp)gy(x,p) at p=0, we
combine different Taylor expansions about p=~h to obtain

3 3
- ‘/71" go(x,h) ‘/ﬁgo(x,zh)

Lg (x,p)
—go(x,
‘/p p=0

v3 ——go(x,3h) . (3.14)

The integral is done with the LC quadrature formula
(2.26). The result is £, =57 MeV, which is to be com-
pared with an experimental value of 93 MeV.

Inclusion of spin wave functions of the type used by
Dziembowski!” does not improve the results. In fact, the
results become much worse. This is in spite of consider-
able similarity between the Fourier transform of the mod-
el wave functions in Ref. 17 and the dynamically deter-
mined wave functions used here. A repetition of the cal-
culations described in Ref. 17 indicates considerable sen-
sitivity to the model wave-function parameters.

IV. SUMMARY

To summarize, we list some of the key steps and re-
sults. The form of the potential is specified by Eq. (2.16).
The wave function is factored according to (2.23); the
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function u# must then satisfy the dimensionless equation
(2.24). The eigenvalues £ in this equation are related to
meson masses M by (2.21). Equation (2.24) is solved by a
numerical method based on Gauss-Chebyshev and
Lobatto-Chebyshev quadrature formulas (2.26) and
(2.27). The values determined for the parameters of the
potential and for the quark masses are listed in (3.3). Re-
sults for meson spectra are given in Tables I-1II, and an
indication of spectroscopic assignments is given by Fig. 1.
The model is successful in that reasonable quark masses
and coupling constants were obtained. Reasonable re-
sults for pion properties were also obtained; the form fac-
tor is shown in Fig. 2.

The major difficulty in the use of this model has been
the spectroscopic assignments. The light-front approach

breaks rotational invariance, except about the z axis.
Enough symmetry is retained to suggest assignments of
low-lying states. Unfortunately, states of equal / are not
degenerate, and averaging must be used to obtain a single
mass value. A better treatment of angular momentum is
needed.
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