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Baryon magnetic moments with confined quarks
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Within a rather general framework for confined quarks in a baryon, we derive an approximate ex-

pression for the effective quark masses and quark magnetic moments. Use of the additive quark
model with the spin-flavor SU(6) wave functions may be justified for the relativistic quarks and lead

to a good agreement between theory and experiment for the baryon magnetic moments.

The naive quark model is remarkable in qualitatively
explaining the observed magnetic moments of baryons
composed of u, d, and s quarks. ' However, recent accu-
rate measurements of p(:- ) and p(X+ ) indicate that the
model predictions are far from satisfactory. Moreover,
with m„( md, which is required by the hadron elec-
tromagnetic mass differences, the model can hardly ex-
plain the small but important discrepancy between the
famous spin-flavor SU(6) ratio p(n)lp(p)= ——', and its
observed value. Despite many theoretical attempts to im-
prove the model some discrepancies between theory
and experiment seem to persist. The difficulties encoun-
tered in simple quark models are possibly due to many
effects such as the neglect of orbital angular momentum,
quark-antiquark pairs in the baryon wave functions,
quark-quark correlations, meson currents, etc. Among
others, the quark confinement is probably one of the most
important effects, and here we will concentrate on this
effect. In fact there is no strict justification for the naive
assumption that the quarks behave in response to the
external electromagnetic field as if they are free Dirac
particles and have magnetic moments e /2m~ (m~ and e~
being the quark mass and electric charge, respectively).
This is because, when quarks are probed by the external
electromagnetic field, i.e., by the soft photon carrying
small momentum transfer, the quarks are not free but
confined in a baryon. Therefore it is necessary to study
how the confined quarks respond to the external elec-
tromagnetic field. In the MIT bag model as well as its
improved version, which treat the confinement by essen-
tially introducing a vacuum volume energy, the relativist-
ically confined quarks and their magnetic moments are
studied. However, within the widely used quark poten-
tial models (e.g., Ref. 4) in which the confinement is im-
plemented by a confining interquark potential, we still
need convincing discussions on baryon magnetic mo-
ments for relativistically confined quarks. In this paper,
within a rather general framework for the confined
quarks, we will derive an approximate expression for the
effective quark masses and magnetic moments, clarify the
applicability of the SU(6) formula for relativistically
confined quarks, and calculate the baryon magnetic mo-
ments.

At present we are still unable to write a fundamental
equation of motion for the quarks confined in a baryon
from first principles of the strong-interaction theory—
QCD. Instead, we will assume that a baryon, composed
of three quarks q, , q2, and q3, satisfies the equation

(H, +H2+H3+ p,pp3V)Q=Mtt i',
where H; =a; p;+P;m; (i= 1,2,3) is the free Dirac Ham-
iltonian for the ith quark, m; the quark mass, and V is the
confining potential, which is postulated to transform as a
Lorentz scalar. Here the relativistic wave function g has
64 components, four each for quarks q„qz, and q3, and
the Dirac matrices a, and P; operate on the spinor com-
ponents of g for quarks q;. Ma is the baryon mass eigen-
value (in the baryon rest frame where p, +p2+p3=0).
We further assume that when the ith quark with electric
charge e, is probed in a given external electromagnetic
field A„=(Ao, A) the Hamiltonian is obtained by the re-
placement H, ~a; [p; —e; A(x;)]+e;Ao(x;)+P;trt;.

We now examine the effect of the vector potential A
on, say, quark q, (in the following we will ignore the sca-
lar potential Ao). Let P=(z~), where (b and g are, respec-
tively, the upper and lower components for quark q&

(each having 32 components). Before introducing the
external potential A, Eq. (1) can be written as two cou-
pled equations:

(Mtt H2 H3)$=(c—r, p, —)y+(mi+P+3V)P, (2)

(M H H)y=(o—
p )—t(}—(m, +PzP3V)y . (3)

Formally, using Eq. (3) we can express y in terms of ((}

and then eliminate y in Eq. (2):

y=(M +m H H+13g V) '(o—'—p )(b

(Mti —m, H2 H3 f2133 V—)$— —

=(tr, p, )(Mit+m, H2 H+p3g V)—3—

X(o, .p, )P .

When quark q& is probed in the external field the momen-
tum p, in Eq. (5) will be replaced by pi —e, A(x i ) and we
then have
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(Me —m, H—
2

H—
3

p—2p3V)p=[cr (p, —e, A)](Ms+m, H—
2

H—3+pzp3V) '[a, -(p, —e, A)]1'

=(Ms+m1 H—
2

H—1+pg3V) '[cr1.(p1 —e1A)] 1f}+ .

=(Me+ m1 H—
2

H—3+p2p3 V} '[(p1 —e1 A) —e1cr1.H]$+ (6)

where the operator cr, .p, = —in& V, commutes with H2
and H3 but not V, and the ellipsis denotes terms contain-

ing the gradient of the confining potential V, V but not
the magnetic field H. Equation (6) indicates that the in-

teraction of the confined quark (q, } with an external
magnetic field H will contribute to the baryon mass an
additional term —p, H, as if the confined quark has an
effective mass (operator) m, and a magnetic moment

(operator) p, 1

m, =
—,'(M21+m, H2 —H—3+p2p3V), p, =(e,/2m, )o, .

This —
p& H term can be treated as perturbation and the

baryon mass shift will be obtained by taking the expecta-
tion value over the wave function p, b,MI1"= —

p1 H
where p&=(p~p1~((})/(((}~/) and p is the solution of Eq.
(5). Furthermore, it can be seen that the introduction of
p2~p2 —e2A(x2) and p, ~p, —e, A(x, ) in Eq. (6) will
not affect this interaction term of quark q, with H. The
baryon mass shift due to interactions of all three quarks
in the baryon with the external magnetic field H will be
given by EM21"+b,M21 '+b, M21

'= —(p, +@2+@3)H,
where p2 3 and m z 3 are defined in the same way as for p,
and m1 in Eq. (7). This indicates that the baryon mag-
netic moment is given by the vector addition of the quark
magnetic moments. But each expectation value p;
should be taken over its own corresponding wave func-
tion. Namely, (f corresponds to p, but not )u2 and p3.
Note that the term on the right-hand side of Eq. (5) can
be converted into two terms one being (1/2m, )p, P and
the other containing the spin-orbit operator

av
cr, V, VXp, = g,

12 12

av
X p1+ rr1' X p1

13 r13

12= 1 2 13= I 3}

This is again due to the fact that o. , p, commutes with
82 H3 but not V. For the ground-state ( S-wave) baryons
the spin-orbit forces make no contributions; therefore,
Eq. (5}actually becomes

[M21
—m, H2 H3 pg3V ——(1/—2m, —)p, ]/=0 .

The operators in Eq. (8) do not contain the Pauli matrix
cr, ; hence, P can be written as the product of a spatial
wave function and a two-component Pauli spinor (note
that here the "spatial" and the spinor only refer to quark
q, ). Accordingly, the expectation value of p, 1

taken over

p will be factorized into two parts: e1/2m1 (concerning
the spatial wave function of q1 only) and cr1 (concerning

m
&

=MB —m2 —m3 .B (10)

For convenience in the following we will use the form of
Eq. (10) but remembering where the parameter m; may
also stand for m =H, in relativistic cases.

We emphasize that Eq. (10) [or Eq. (9) in general] is de-
rived based on the assumption that the confining poten-
tial in Eq. (1) is a Lorentz scalar. If a Lorentz-vector
confining potential were used the expression for the
effective mass m1 would be very different (even in the
nonrelativistic limit). An important point is that the
baryon mass Ms in Eq. (10) should not be regarded as the
physical baryon mass mB but the baryon mass before tak-
ing account of the hyperfine splittings. This is simply be-
cause the eigenvalue Me in Eq. (1) only receives contribu-
tion of the scalar (spin-independent) confining energy. As
nowadays widely expected, the spin-dependent mass split-

the Pauli spinor of q, only). This may justify the use of
the spin-flavor SU(6) wave functions. Namely, even for
the relativistic quarks we can still use the 56 representa-
tion for the ground-state (S-wave) —,

'+ and —', + baryons to
calculate the baryon magnetic moments which are the
vector addition of the quark magnetic moments, as have
been shown above.

The relativistic effects and complexity are contained in
the expectation values of the effective quark masses, e.g.,
[see Eq. (7)], m, = ,'(Ms+—m, H2 H—2+@—2P3V). By
using the expectation value taken over P for Eq. (8),

M11
—m, H2 H—

3 Pz—P3V —(1/2m—, )p, =0, we can

eliminate p2p3V and get

m1 =Ms H2 H3——(1/—4m1 )p1=Ms H2 H3—, (9—)

where the last step is due to (1/4m1 )p', «H2+H3
[which holds not only in the nonrelativistic limit but also

for relativistic quarks with, say, p;-(m; ) -(300—500
MeV } ]. For relativistic quarks the expectation value

H; =a; p;+P;m, receives contributions from both the in-
trinsic quark mass (e.g. , the current-quark mass) and the
kinetic energy. It is certainly difficult to find the true
value of H, in terms of the fundamental parameters in
Eq. (1). However, if the kinetic energy in H; is not sensi-
tive to baryon species then H; may be approximately
treated as a fixed mass parameter for quark q;, in all
baryons composed of u, d, s quarks. We may write
H; =m, ' and regard m as the constituent mass of quark

q;, Eq. (9) then becomes m1 =M21 —m2 —m3. Ideally,
only in the nonrelativistic limit (with a very smooth
confining potential) p, ~O, H2~m2, H3~m3; we can get
from Eq. (9) an exact relation
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tings for hadrons are probably due to the gluon exchange
between quarks. ' If using the color hyperfine splitting
term 5H =C g,. (i s; s /m;mj (s; and m; being the spin
and mass of the ith quark, and C being Aavor indepen-
dent) to calculate the mass splittings for the ground-state
—,
'+ and —,

'+ baryons, we will get the following M~ from
the observed physical masses m~:

Mz= m~+ ,'(m—a—m~), M~ =m~+ —,'(ma —mz),
(11}

M 0 =M~, M- =m =+ —,'(m, —m- ) .

With (in MeV) ma
—

miv =294, m, —m- =217,
we get Mz =1085.3, M„=1086.6, MA =M 0=1262,
M&+ = 1258 M& —= 1266 M p

= 1460 M = 1466.
These baryon masses are those in Eq. (1) and will be used
in Eq. (10).

Using

2m~ 2m ~

with m, =Ma —mz —m3 [Eqs. (9) and (10)] for each
probed quark (qi ) in a baryon, then adding the magnetic
moments of three probed quarks over the baryon wave
function given by the spin-flavor SU(6) group (see the for-
mula in Table I}, we calculate the baryon magnetic mo-
ments, which are shown in Table I. The quark mass pa-
rameters m; in Eq. (10) are chosen to be (in MeV)

m„=364, md =387, m, =529 .

In fact we use observed )M(p) and p(n) as inputs to deter-
mine m„and md, and then use )u,(:- ) as the input to
determine m, . The obtained )M(A) and )M(X+} are in
agreement with data. In the calculation of p(Q ) we
use

Mn =mn —
—,'(ma —miv)(m„/m, ) =1614 MeV,

where m„/m, =0.63, a value obtained from fitting the
X—A mass difference with the hyperfine splitting formula
used above.

Moreover, )M(p) and p(n) are fitted with m„(md, but
our md —m„ is considerably larger than that of -4 MeV,
as determined from the hadron mass differences.
This can be partially explained by observing that our
masses in (12) should actually be the values of
mz 3 =Hz 3+(1/8m i )pi when two spectator quarks q2
and q3 are the same kind [e.g., m„'=H„+(1/8m))pd,
md =Hd+(1/8m„")p„, see Eq. (9)] and that the obtained
spectator mass difference md —m„' from (12) is actually
enlarged by the kinetic energy difference of correspond-
ing probed quarks, in addition to the constituent quark
mass difference Hd —H„.

In fact, our m„' and md are determined by using

8 1 1 1
)M(p) =- +

9 2(M& —m„' —md) 9 2(M& —m„' —m„')

(13)

4 1 2 1
)tt(n) = ——

9 2(M„—m„' —md ) 9 2(M„md —m—
d )

(14}

With observed values of p(p) and )M( n ) we flnd
md& =Mp —m„' —m„' =357 MeV and m„"=M„—md —md
=312 MeV. If taking, say, p„=pd =(350 MeV), we will

get (1/8m[)pd =43 MeV and ( I/8m„")p~ =49 MeV, and
therefore md —m„' =Hd —H„+6 MeV. This may indi-
cate that md —m„' should indeed be considerably larger
than the constituent-quark mass difference. However,
our value of m&

—m„' =23 MeV is still too large and this
may be due to the crudeness of our approximate expres-
sions for quark masses and magnetic moments. In any
case, with m„(md the ratio of )M(n)/p(p) is improved.
This is in the right direction and is not a trivial result.

The derived effective quark mass formula Eq. (10) coin-

TABLE I. Comparison of experimental (Ref. 2) baryon magnetic moments (in nuclear magnetons)
with three theoretical results: the naive quark model (NQM), the SO model 'Ref. 5), and our approach.
Inputs are indicated by asterisks.

p(B) Formula NQM SO Our: Experiment

p(p)

p(n)

p(A)
p(x+)
p(x )

p(:-')
p(:" )

p(XA)

p(O )

3pu 3pd

3pd 3pu

ps

3pu 3 ps

3 ps
1

3 ps 3pu

3 ps
v'3 v'3

Pd 3 Pu

3ps

2.79*
—1.91
—0.61

2.67
—1.09
—1.43
—0.49

—1.63

—1.83

2.79*
—1.91
—0.61

2.06
—0.79
—1.25*
—0.50

—1.38

2.79
- 1.91*

—0.61

2.48
—0.98
—1.25*
—0.50

—1.53

—1.69

2.793
—1.913
—0.613+0.004

2.42 +0.05
—1.157+0.025
—1.250+0.014
—0.69 +0.04

—1.61 +0.08
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cides with a purely empirical formula proposed by So-
gami and Oh'yamaguchi (SO) but there is an important
difference that SO assume M~ to be the physical baryon
mass whereas in our derivation Mz should apparently be
the baryon mass when switching off the hyperfine split-
tings. This difference leads to significant changes in the
values of calculated magnetic moments. As can be seen
in Table I, SO succeeded in fitting p(p) and p(n) with

m„&md, also p(A) and p(:- ) (using m„=291 MeV,
md =314 MeV, m, =456 MeV) but gave a rather awful
result for p(X+). Our results turned out to be much
better for p(X+ ), p(X ), and p(XA).

We emphasize that the obtained mass parameters in
(12) are actually the values of m ( =H; ) for u, d, s quarks.
With these values we now check the approximations
made in our calculations. We are not trying to specify
the quark mass (m; ) values in Eq. (1) but just considering
two special cases. First, as noted previously, all the ap-
proximations made in Eqs. (9) and (10) would become ex-
act in the nonrelativistic limit where p; « m; and
m =H, =m;. Unfortunately, with m„' =md =350 MeV
obtained in (12), the nonrelativistic quark momenta are
required to be p„d «(350 MeV), which is in contradic-
tion with the fact that the baryon, e.g., the nucleon, has a
radius of about one fermi. Therefore the nonrelativistic
case does not seem to be realistic in the physical world
and the use of quark magnetic moment being

p~ =e&/2m~ is not truly justified for nonrelativistic
quarks. Second, for relativistic quarks we consider an ex-
treme case in which the quark masses in Eq. (1) are taken
to be the current quark masses which are much smaller
than the confinement energy scale, e.g. , m, =m 2 =m 3 =0
for the nucleons. In this case in Eq. (9) H2=~pz~,

H3=~p3~, and ~p, ~=~p2~=~p3~. With the parameters of
m ( =H; ) given in (12) we then have m

&
=350

MeV=~p, ~. Therefore the inequality (1/4m, )pf &&H2
+H3 in Eq. (9) is indeed valid. Furthermore, using the
expansion [see Eq. (7)]

1 1

M~+m]
H2 +H3 —

p2p3 V1—
M~+m )

1

M~+m )

H2+H3 —
p2p3 V

1+
M~+m )

H2+H3 —
p2p3 V

M~+m]
(15)

with inequalities such as

[(H2) —(H2) ]/(M~+m) ) =[(~p2~ ) —pq]/M~ &&1,

etc., we may justify the approximate equality

(I/2m, )= I/2m f, which has been used in the calcula-
tions for quark magnetic moments. We then expect our
approximations to be generally good for confined quarks
with relativistic motion.

In conclusion, within a rather general framework for
the quarks relativistically confined in a baryon and
probed in an external magnetic field, we find an approxi-
mate expression for their effective masses and magnetic
moments, i.e., m, =M& —m z

—m 3 and p, =e, /2m, for
the quark q&, where Mz is the baryon mass without
hyperfine splittings and where rn =H, —:a; p;+p;m; are
expected to be approximately independent of baryon
species and may be regarded as the constituent quark
mass parameters. With this expression we may justify
the SU(6) quark model formulation for relativistically
confined quarks and obtained a fairly good fit for the
baryon magnetic moments.
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