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Penguin-mediated exclusive hadronic weak 8 decays
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We estimate a number of exclusive two-body charmless decays of B+ and B mesons. Some of
these are mediated predominantly through one-loop gluon exchange, while others have a compara-
ble or larger contribution from the doubly Cabibbo-suppressed tree diagrams. The rates for several

decays are in an observable range and should test the standard model.

I. INTRODUCTION

Recently rare 8-meson decays have been a subject of
both theoretical and experimental interest. Penguin dia-
grams give rise to charmless 8-meson decays. ' The pro-
cesses can be mediated by a photon or a gluon. The
photon-mediated process such as B~E'r (Ref. 3), and
B~K'l+I (Ref. 4) have been extensively discussed be-
cause of their clean signature. The corresponding pro-
cesses at the quark level involving gluons, b~sg and
b ~sqq, have also been considered. However, the exper-
imental signature for such a transition is a charmless ex-
clusive mode such as 8 —+Em, etc. The estimates for
these processes involve matrix elements of four-quark
operators, and these have not received much attention in
the past. In this article we propose to study some of
these charmless modes that have clean signatures. An
added complication here is that charmless hadronic de-
cays can also arise through the tree Harniltonian with
b~u transition. A careful study of the modes reveals
some in which the penguin diagram clearly dominates,
while in others the tree contribution can be significant.

The calculation proceeds in two steps. First we obtain
the effective short-distance interaction including the one-
loop gluon-mediated diagram. We then use the factori-
zation approximation to derive the hadronic matrix ele-
ments by saturating with a vacuum state in all possible
ways. The resulting matrix elements involve quark bilin-
ears between one meson and a vacuum and between two
meson states. These are estimated using relativistic
quark-model wave functions. Such a technique has been
used extensively by Bauer, Stech, and Wirbel for 8 and
D nonleptonic decays and results are in good agreement
with the experiment.

II. EFFECTIVE HAMILTONIAN

We shall first discuss the gluon-mediated penguin con-
tribution. Dictated by gauge invariance, the effective
Aavor-changing neutral current J„contains two terms.
The first, proportional to 6&, we call the charge radius,
while the second one, proportional to 62, is called the di-
pole moment operator:

J„=(g,/4tr )(Gt /&2)s '
,'A, —,

X [Gi(q r„q„tj)L—+iG2tr„~'(m, L+mt, R )]bj

Here 6& 2 are functions of Kobayashi-Maskawa angles
and quark masses:

G, —QV„G", (xk), Vk —Ut, k Uk» k=u, c, t, . . . ,

G ", = (x„/12)(1/y„+ 13/y„' —6/y„')

+ [2/3yt, (xk /6)(4—/yt, +5/yk —3/yk )]lnxk,

(2)

(3)

+s' r„bLq Rr„qg »Lr„bgq R—r„qR

«. =(a, /6m)(GF/&2)G„a, =g, /4' .

(4)

(5)

Here q runs over all quark species, although only u, d,
and s are relevant for our discussion. Charmless decays
can also arise from the standard tree level interaction
with b ~u transition. This is given by

Heff tis L r„uL u Lr„bf, il =4U„& U„*,GF/&2 (6)

Present limit on U„b/U„, &0.2 gives rise to the con-
straint il/a. & 2. 5, where we have used a, (m„)=0.256
and 6& = —5.91Ub, U,'„which corresponds to m, =80
GeV.

where xk =mk /m ~ and yk = 1 —x&.
Note that when the gluon is on shell (i.e., q =0), the

Gi contribution vanishes. In the q %0 cases both terms
participate. For a gluon-exchange diagram (i.e., for the
process b —+sqq) we find that the Gi contribution dom-
inates over 62, and we neglect 62 in what follows. We
also evaluate G, at q =0, as in Eq. (3). At larger q, G,
develops a small imaginary part, which is important for
discussion of CP violation. In this article we shall restrict
our attention only to the branching ratios.

From the current (1) via one-gluon-exchange diagram
we find the following effective Hamiltonian (local 4-quark
operator):

~ ff=n(s Lr bLq Lr„qj, »Lr„bkq L)
—
qL
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The effects of the tree-level interaction could be large
in general. We find however that there are certain modes
of B decays in which the penguin diagram clearly dom-
inate. In others the tree diagram is comparable or quite
large. We evaluate the rates arising from these contribu-
tions independently and present our results in Table I.
We shall define U„i, /Ui„=0. 1(, where —2((&2. The
modes where we find that the penguin contribution clear-
ly dominates are

B+—+E m+, E +p

K "(~ +p +),

y(K+, K'+),
B' y(KO, K"),

K "(~',p') .

The penguin Hamiltonian is a pure I=O operator. In
contrast, the doubly Cabibbo-suppressed tree-level Ham-
iltonian is an equal mixture of I =0 and 1 operators. If
U„b turns out to be very small and the penguin diagram
dominates all the two-body decays, then we would have
AI =0 rule. We find, assuming AI=O, the following iso-
spin relations between the decay modes:

PB+ K +)=I'(B K+ )

=21 (B+ K+ ) =21 (B K )

I(B+ K+/)=I(B K $),
r(B+ K'p') =r(B' K'p )-

=21(B+ K+p') =2r(B' Kop'),
(8)

I (B' K "~+)=r(B' K"'~ )-
=2r(B+ K'+ ')=2r(B' K" ')

I'(B+ K'+Q) =KB K' P),
I'(B+-+K' p+) =I'(B +K'+p )—

=2I (B+-+K'+p ) =2I (B ~K' p ) .

Departure from these relations will clearly show the im-
portance of doubly suppressed Cabibbo transitions.

III. FACTORIZATION APPROXIMATION

From experience we know that nonleptonic decays are
extremely difBcult to handle. For example, the XI=—,

'

rule in E~~m. decays has not yet been understood in a
satisfactory way. Enormous theoretical machinery has
been applied to E~mm. decays producing only up to
50% agreement with experiment. For energetic decays of
heavy mesons (D, B) the situation is somewhat simpler.
Here the direct generation of a final meson by a quark
current is (probably) a good approximation.

According to the current-field identities, the currents
are proportional to interpolating stable or quasistable
hadron fields. The approximation now consists in taking,
for one current of the current product, only the asymp-
totic part of the full hadronic field: i.e., its "in" or "out"
field. Then the weak amplitude factorizes and is fully
determined by the matrix elements of another current be-
tween two remaining hadron states. That is the reason
why we call this approximation the factorization approxi-
mation.

Note that in the replacement of interacting fields by
asymptotic fields we neglect only the initial- or final-state
interaction of the corresponding particles. In the case of
B decays in Eq. (8) this is justified by a simple energy ar-
gument that one very heavy object decays into two light
but very energetic objects whose interactions might be
safely neglected.

Note also that 1/N, expansion argument provides
some theoretical justification for the factorization ap-
proximation, because factorization follows to leading or-
der in a 1/N, expansion.

Each one of the B decay modes [Eq. (7)] can receive
three different contributions from each Hamiltonian. As
an example we give the amplitude for 8+~I( +m ob-
tained from H,~:

& [B+(p) K+(k)m' (k')]=L(ir )(K+ lsy„b lB+ ) (n'lqy"y, q l0)

+L(K ') &K 'lsy„y5u 10& [&~'lu y"b IB+ &+(2m~/mbm, ) & ~'I u y"b IB ' &]

+L(B+)(K+ lsiyr„u l0) (Ol u y"y5b lB+ )(1+2m' /mI, m, ), (9)

where the coefficients L(n ), L(K+), and L(B+ ) contain
the coupling constant ~, color factors, flavor-symmetry
factors, i.e., flavor-counting factors, and factors coming
from Fierz transforming the operators (4). Note that the
mass ratios (2m'/mbm, ) in Eq. (9) come from Fierz

transformation and application of the quark equation of
motion on the left-right current X current parts of the
effective weak Hamiltonian (4). The factors, proportional
to L(n ) and L(K+) come froin the quark decay dia-
grams, while the L(B+ ) corresponds to so-called annihi-
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TABLE I. Branching ratios for charmless two-body decay modes of the 8 meson. Decay rates from

the penguin and tree Hamiltonians are contributed separately. The calculation of Ref. 8 based on the

penguin operator and experimental limits are also presented. Some of the zeros stand for extremely

small rates.

Branching
ratio
mode

K*+~'
z "~+
K'+y
K*+p'

Ref. 8

(10 ')

1.20

Contribution
rom H~g
(10- )'

0.06('
0
0

0.01('
0

0.05('
0
0
0
0

Contribution
from H~~

(10 ')

0.53
1.06
1.12
0
0

0.29
0.58
3.12
0.62
1.24

Present
experimental limit at

90% C.L. (10 )

9.0
8.0
7.0

13.0

rCO~O

K+~
K'y
go 0

E+p

K
z'+~-
K*oy

0 0

0.44

0.78

0
0.06(

0
0.01(

0

0
0.10('

0
0

0.01(

0.53
1.06
1.12
0
0

0.29
0.58
3.12
0.62
1.24

49.0
58.0

44.0
67.0

(K'+(k)~sy„u ~0) =igz, ez(k), g, =g +,

(p'(k )Iud„ulO) =~gp'e„(k'), gpo= —g . ,
o 1

(lob)

(10c)

(P(k')~sy„s~0) =ig&e„(k'), (10d)

(K+(k) ~s) P ~B+(p) ) =(q+k)g'+'k')
+kg' '(k' ), k'=p —k,

(10e)

(K*+(k)isy„(1 —y, )b iB+(p) )

=le„g~E ( )(kp+k } (p —k ) V(k')

+E„{k){m,—ms)A, (k' )

—(e k')(p+k)„A2(k' ), (10f}

lation diagrams. These are different for each decay mode
as indicated by the dependence on final-state meson. To
obtain the amplitude for (B~K"+meson) decay modes
one has to replace L with L * in Eq. (9). We proceed with
the following definitions of the coupling constants and
Lorentz decomposition of the typical hadronic matrix
elements:

(K+(k) sy&y5u ~0) =ik„f», f& =1.2f„=0.154 GeV,

(loa)

Any other hadronic matrix element needed to evaluate
branching ratios of decays (8) can easily be obtained from
the definitions (10). We shall use form factors at zero
momentum squared obtained by Ref. 8 and assume that
momentum dependence of the form factors f'+'(k' ),
V(k' ), etc. , from Eq. (10), is well described by a single
pole with mass =mz, since masses of excited b-quark
meson states (0+, 1+,1, . . . ) are very similar to m~.

Explicit evaluation of a few modes for an illustrative
purpose is in order.

A. 8+~K g+

Let us first consider the contribution due to H,z. For
this decay L (n.+ ) =0 due to the flavor symmetry of the
Hamiltonian (4). Nonvanishing contributions come from
the L(E ) and L(B+ ) terms. Since the hadronic matrix
elements from the annihilation diagram L (B+

) is propor-
tional to a very small quantity [(mx —m „)f '

mz~f' '] we sha—ll neglect it in further calculations.
The second term in (9}gives the branching ratio

B (B+~K m+)=a)[(fx/ms)f'+' ~(m )]x

&& A, 'x. (1+2m' /mbm, )

where the f '+' form factor and phase-space factor A, are

(K+(k)p (k')isy„(1 —},)uiO)

=(p (k')~s) „(1—y )u~K ( —k)) . (10g)

f'+' (mx )=f'+' (0)/(1 —mx/ms)=0. 336,

){.„x= ( 1 —m „I ms
—mx /ms ) —4m ~x Imp .

(12)

(13)
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The factor a, which will also occur in the other rates is
defined by

8 T(8+ K+~0) ( U /U )2(~/3m 3 )2gl/2

X[f m3 mx fza {m

a, =
—,', (a, 6 ) /Ub, ) =0.04 . (14) +3'(ms —m„)f' ~' ~(mx }]

8. B+—+K+@

The penguin contribution is now computed easily by
using AI =0 rule, and therefore

8 (8+ K+n )= '8 (8-+ K n+)
2

(15)

The tree contribution, neglecting the annihilation dia-
gram, comes through L(n. ) and L(K+ ) terms:

Note here that the total 8 decay width is estimated
from the leptonic branching ratio and is I ~"
=41 Ub, I (GFmb/192m ).

Now if we consider the tree Hamiltonian, we see that
only the annihilation diagram proportional to L(8+) is
present, giving extremely small contribution.

(16)

Using definition fez'(m ) =f&z'(0)/(1 —m „/m& )

=0 37.9, and U„b /Ub, =0.1(, we find the value

8 (8+ K+n )=0.06X10 (17)

Similarly we find that for B ~K+m. , K'+m modes
the tree contributions are potentially quite large, depend-
ing on the value of g .

C. B+~K p+

Flavor symmetry gives L(p+)=0. Terms proportional
to L(K ) and L(B+) give, in principle, a nonvanishing
contribution. Since we believe that this mode is impor-
tant, as a test of our method we give some more details.
First, according to Eq. (10) the amplitude is

A (8+~K p+)= 3tc[ke(k—')][fz(mz —m )[A'+ +(mz) —A + +(mz)]

+fz(m —mz)[A'0 +(mz) —A, +(mz)]] .
K p K p

(18)

D. B+~K+P
In all modes where P is present, the tree Hamiltonian

contribution is flavor forbidden because one needs three s
quarks in the final state. From the penguin diagram in
this case fiavor symmetry gives L (8+ ) =L(K+ ) =0. The
nonvanishing contribution comes from the term propor-
tional to L (P):

8 (8+~K+/)=a, (g~/msm~) [fxs'(m4, )] A~x, (19)

Ay~ =(1—my/ms —mx /ms ) 4mxmy/m—s,
(20)

f~s '(m
~ ) =0.394 .

The couplings g&,g are determined from the

P,p~e+e experimental rates:

g&=3m&I (g~e+e )/(4ma Q, )=0.0575 GeV, (21)

g o =3m I (p~e+e )/(4ma )=0.0141 GeV (22)

The difference [A ' —A ] in the above expression is less
than 0.1 in the model of Ref. 8. Thus the branching ratio
is vanishingly small. From the tree Hamiltonian, we find

L(p ) =L(K )=0 and the contribution from the annihi-
lation diagram is also small as is the penguin contribu-
tion. We thus find that this mode should not be found if
our approximation scheme is correct. The same situation
occurs for B K+p mode.

We then find

8'(8' K'P}=1.50X10-'. (23)

=a)(g, /mern «) [f' s+~(mx )]'&«'x « (24)

The g, constant is determined from Eq. (10b). The

other two unknown quantities from Eq. (24) are

,=(1—m„/mz —m «/ms) 4m~ «—Imz,
(25)f' ~' ~(m «)=0.343 .

The tree Hamiltonian in this case gives a negligible am-
plitude.

F. B+~K p+

The same arguments as in Sec. III D give here
L*(p+ ) =L'(8+ ) =0 and

B+ Koo +

In this mode flavor symmetry and current conservation
gives L '(n+ ) =0 and L '(8+ ) =0, respectively. The
branching ratio from L'(K" ) is

8 (8+ K' m'+)
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B (B+~K* p+ ) =a, (g «/ms ) A.
K p

X [2V + +(m, )+[3(1—m /ms) /A, «+m, /4m —l]A + +(m, )I,
p B K P B K p K P p B

V +~+(mz«)=[V + +(0)/( ms+ m )](1—m «/m2', ) '=0.0560 GeV

A +&+(mz«)=[A +&+(0)/(mz+m )](1—m «/ms) '=0.0482 GeV

„=(1—m « Ims —m /ms ) 4m—«m Im23 .
K p

(26)

(28)

(29)

Here as well as in the E* p mode the tree contributions
are extremely small.

G. 8+~K*+/

Here the same argument as in Sec. IIIC holds; i.e.,
flavor symmetry gives L *(K'+ ) =L*(B+) =0. The
branching ratio is

X(1—m&/ms) '=0.0621 GeV (31)

(m p ) = [ A (0)/(m +m, )]

X (1—m
& /ms )

' =0.0552 GeV ', (32)

~„*/=(1—m~«Ims —myIms)' —4m', m~y/my~ . (33)

We have illustrated our method of calculation in the
above examples. The results are presented in Table I ~

BP(B + K «+y )
—~ (g /m )2/3/2

X I2V «s(m~)

+[3(1—m~/mq) /A,

+m~/4m «
—1]A «(m~)I

(30)

V~«s(mp)=[V~«(0) /(m~ +m «)]

IV. DISCUSSION

We have considered a large number of two-body
charmless decay modes of the 8 meson. Although in

principle they can receive contributions from the penguin
or tree diagrams, we found a number of modes where one
of the contributions clearly dominates. Many of the
branching ratios are in the interesting range of a few
times 10,which should be accessible very soon, as seen
from the present experimental limits. We further find a
few modes that are highly suppressed, receiving a negligi-
ble contribution from both Hamiltonians. The lack of
observation of these would test our method of computa-
tion. When the contributions are comparable, one, of
course, should add the amplitudes and square. We have
not done so because we do not know the magnitude and
sign of U„b, and there might be different final-state phases
on these amplitudes. A clean test is provided by those
decays where one of Hamiltonian dominates. In the case
where the tree Hamiltonian dominates, one could even
estimate Ub„. As our knowledge of these decays im-

proves, we believe more ambitious methods might be
used to calculate the amplitudes.
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