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From the study of even and odd multiplicity distributions for hadron-hadron collision in different

rapidity windows, we propose a simple picture for charge correlation with nonzero correlation
length and calculate the multiplicity distributions and the normalized moments in different rapidity
windows at different energies. The results explain the experimentally observed coincidence and sep-

aration of even and odd distributions and also the anomalous energy dependence of normalized mo-

ments in narrow rapidity windows. The reason for the separation of even-odd distributions, appear-

ing first at large multiplicities, is shown to be energy conservation. The special role of no-particle
events in narrow rapidity windows is pointed out.

I. INTRODUCTION

With the increase of energy in proton-antiproton col-
lision and the improvement of detectors and data-
analyzing methods, one can study multiparticle produc-
tion in a more precise way. The study of charged-
multiplicity distributions has been developed from the
study of distributions in the full rapidity region to that in
different rapidity windows. Very recently, most interest
is turned to the properties of charged multiplicity in very
narrow rapidity windows. There is evidence to be-
lieve that the study of charged multiplicity in different ra-
pidity windows, especially in very narrow windows, is
very important in the study of multiparticle production.

Recently, two interesting phenomena on charged mul-
tiplicity in difterent rapidity windows in hadron-hadron
collisions have been announced. ' One is the anomalous
energy dependence of normalized moments of charged
multiplicity in narrow rapidity windows. It falls sharply
down with the increase of energy (cf. Fig. 2) instead of
rising monotonicly as in the usual case. This impressive
phenomenon is a challenge for phenornenological models.
The other one is, at c.m. energy &s =22 GeV for inter-
vals ~y~ ~y with y„=0.25 —2.0, even and odd multiplici-
ties follow the same distribution. From y =2.5 on-
wards, the difference between odd and even multiplicity
distributions starts to be visible. The difference appears
first at the large-n tail of distribution and grows rapidly
with increasing y . In the limit of full phase space, only
even multiplicities survive. The disappearance of odd
multiplicity in the full rapidity region is a well-known
fact of charge conservation. But, why is there the same
distribution for even and odd multiplicities in narrow ra-
pidity windows? Why does the even-odd difference start
to be visible at y =2.5 for &s =22 GeV? And why does
it first appear at large-n events'? The aim of this paper is
to answer these interesting questions, as well as to explain
the anomalous energy dependence of normalized multi-
plicity moments in narrow rapidity windows. We will use
as simple a picture as possible, in order to get some idea
on the physical origin of these phenomena.

The fact that there are both even and odd charged mul-

tiplicities in small rapidity windows tells us that local
charge equilibrium in rapidity space breaks down and
that the correlation length between positively and nega-
tively charged particles is nonzero. The existence of
short-range two-particle correlation in rapidity space has
been observed experimentally already in the early 1970s
(Ref. 8). This phenomenon can be well explained by the
cluster model. It is generally assumed that the main de-

cay mode of the cluster is decaying into two charged par-
ticles' having a particular rapidity distribution in the
center-of-mass frame of the cluster. Using this assurnp-
tion, the short-range rapidity correlation consistent with
the experimental data can be obtained, " and at the same
time, after supplementing with some other model as-
sumptions, the multiplicity distributions of final-state
particles can also be explained. '

However, up to now, the rapidity distribution of clus-
ter decay has been taken seriously mainly in connection
with short-range correlations. In discussing the multipli-
city distributions, both in total phase space and in
different rapidity windows, ' one usually uses an approxi-
mation of neglecting the cluster decay width in compar-
ison with the window size (5-function approximation' ),
and considering the two particles produced by one cluster
to lie either both inside or outside the considered win-
dow. This approximation corresponds to the assumption
of charge equilibrium in the rapidity window under con-
sideration. The limit of applicability of such an assump-
tion is unclear.

In this paper, we will make use of the idea of the clus-
ter model, assuming the following. (l) The clusters are
neutral. Every cluster decays into a positively and a neg-
atively charged particle. (2) In the c.m. frame of the clus-
ter, the probability distribution of the two charged parti-
cles is isotropic. We will avoid the use of the 6-function
approximation, and consider the influence of the finite de-
cay width of a cluster —the nonvanishing correlation
length of charge —on the multiplicity distributions in all
the rapidity windows in detail.

We will see that, provided the considered rapidity win-
dow is not very close to the total rapidity range, it is im-
proper to assume that the pair of particles, produced
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from the decay of one cluster, both either fall into the
window or lie out of the window. It is also necessary to
take into account the possibility that only one of them
falls into the window. This turns out to be the physical
reason of the experimentally observed even-odd multipli-
city distributions and the anomalous energy dependence
of normalized moments in narrow rapidity windows.

In Sec. II the cluster model we use is described and the
even and odd multiplicity distributions are calculated.
The connection between the separation of even-odd dis-
tributions, appearing first at large multiplicities, and the
restriction of energy conservation is discussed. In Sec.
III the normalized multiplicity moments in different rapi-
dity windows are given and compared with the experi-
mental data. The special role of no-particle events in the
appearance of anomalous behavior in narrow rapidity
windows is pointed out. A short conclusion is presented
in Sec. IV.

where k is a proportional constant, a —k ( =y,„)is the
kinematical limit for final-state particles at the considered
energy.

Since the correlation length is nonzero, for a certain
observation window ~y~ ~y, it is unnecessary that a pair
of correlated particles both either fall into the window or
lie out of the window. It is possible also that only one of
them falls into the window. Let q2, q„and qo denote the
probability of a correlated pair to have two, one, and no
particles falling into the window, respectively,
q2+q, +qo = l. (For the calculation of q2, q, , and qo see
the Appendix. ) For an event with N clusters, if Nd of
them have two particles falling into the window, N, and

N, of them have one and no particle falling into the win-

dow, respectively, the probability of such an event is tak-
en to be a trinomial distribution. Thus, we can write the
conditional probability for an N-pair event to have n,

„

charged particles falling into the window as

II. EVEN AND ODD MULTIPLICITY
DISTRIBUTIONS IN DIFFERENT

RAPIDITY WINDOWS

1

2( (~N) )
(2)

where y', '„is the maximum rapidity value for a single
particle in an N-pair event, y', '„—y is that value for the
center of cluster. Based on the restriction of energy con-
servation mentioned above, we make a simple assumption
that y', '„decreases linearly with the increasing of the
number N of particle pairs (clusters),

Consider a pair of correlated particles —a "cluster. "
Assuming that the momentum distribution of the two
particles at their c.m. frame is isotropic, we can write the
distribution of rapidity correlation length as'

Ps(yg ) = 1

cosh (y )

where y is one-half of the rapidity distance between the
two particles.

We can draw some inspiration on the rapidity distribu-
tions of cluster centers from the experimentally observed
rapidity distributions of final-state particles. It has been
observed experimentally' that the semi-inclusive rapidity
distribution depends on multiplicity. There is a peak at
the large rapidity value for the rapidity distribution with
low multiplicity. This peak moves toward the small rapi-
dity region as the multiplicity increases. This
phenomenon is a natural consequence of the restriction of
energy conservation. ' It tells us that, in events with
different numbers of clusters, the cluster centers have
different rapidity distributions. For events with fewer
clusters, the cluster centers are distributed more widely,
while for events with larger number of cluster, the cluster
centers are distributed more narrowly.

As an approximation, let the center of cluster distri-
bute with equal probability within the kinematically al-
lowed region with the density

Xd X, N,
(n h. IN) g N!N!N ~

Nd (ISNz d'

X5(N Nd N,—N,—)—
X 5(n, h N, —2Nd—), (4)

Summing Eq. (4) for different number N of pairs, we

get the probability for an arbitrary event to have n, h

charged particles falling into the window

P(n, h
)= QP~„„(N)P(n,h ~N),

where P~„,(N) is the probability for producing N pairs.
It can be input from experimental data or from some phe-
nomenological formula which has good fit with the data.
For convenience, we adopted the parametrization of the
three-fireball model'

64NcN~N~
Pv 'N'= & 2 4

xcv, xr a (1 —a) (N i

Nc
X exp

~ ~
+ 2(Np+Nr)

1 —a

X5(N Nc Np Nz-) .— — —(6)

Equation (6) fits well with experimental data up to
&s =900 GeV. For the value of parameter cz see Ref. 18.

From Eqs. (4)—(6), we calculated the multiplicity distri-
bution in the windows y =2.0,2. 5, 3.0 and in full phase
space at &s =22 GeV. The results are shown in Fig. l.
The values of y', '„andy,„(fullphase space) used in the
calculation are listed in Table I (Ref. 19).

From Fig. 1, we can see that even and odd multiplici-
ties, following the same distribution up to y =2.0, start
to part for y„=2.5 at large-n events. When the window

where Az is a constant, depending only on N, and is

determined by the normalization condition

g P(n, h ~j N)=1 .
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FIG. 1. The calculated odd and even multiplicity distribu-
tions in difFerent rapidity windows at &s =22 GeV.

is widened to y =3.0, the difference becomes more evi-

dent, and finally, at the full rapidity region, there are only
even multiplicities left. Thus, we have given a good ex-
planation for multiplicity distributions in different rapidi-
ty windows, assuming that there are nonzero correlation
lengths between positive and negative particles, instead of
local charge equilibrium.

It is the efFect of energy conservation that even and
odd distributions part first at large-n events. Because of
energy conservation, the average rapidity region of
charged particles is narrow for large-n events and wide
for small-n events. For large-n events, when the width of
the observation window is near to that of the average ra-
pidity region, the difference between even and odd multi-
plicity distributions becomes visible. On the other hand,
for small-n events, the average rapidity region may still
be much wider than the window, so the even and odd
multiplicities follow the same distribution. If we ignored
the influence of energy conservation on the rapidity dis-
tribution, the split of even-odd multiplicity distributions
would start simultaneously for all n events, not first for
large-n events.

III. THE ANOMALOUS BEHAVIOR OF NORMALIZED
MOMENTS IN DIFFERENT RAPIDITY

WINDOWS AND ITS ELIMINATION
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In Fig. 2 are shown the normalized moments in the
windows y =0.25, 0.5, 1.5, 2.5 versus c.rn. energy. The
curves in the figures are obtained using the above-
rnentioned formulas. It recovers both the general tenden-
cy of the slow rise of normalized moments with the in-
crease of energy and the sharp fall of thee moments in
small rapidity windows at low energies.

The main reason that normalized moments rise anoma-
lously at low energies in small rapidity windows is that
the average multiplicities (n, h ) s in these windows are
less than unity. According to definition, the normalized
moment is C,„=(n,'„)l(n,h )'. From Table II one
can see that, if we use the moments (n') instead of nor
malized moments, there will not be any anomaly in small
windows.

As we know, the advantage of using normalized mo-
ment C,

„

instead of moment ( n') (Ref. 20) is that, in the
usual case, when the average multiplicity is larger than
unity, the normalized moment increases slowly with the
increasing of c.m. energy, while moment M, = ( n ') itself
increases abnormally, almost in direct proportion to the
ith power of average multiplicity (n ). It is why one usu-

ally regards the normalized moment as a better charac-
teristic quantity for multiplicity distribution. However,
this is no longer true when the average multiplicity (n )
becomes very small, especially when it is less than unity.
In order to show clearly what happens, consider a simple
inequality
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TABLE I. Kinematically allowed rapidity regions for
different number of particle pairs.
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FIG. 2. The normalized multiplicity moments in different ra-
pidity windows. The curves are results of our calculation. Data
are taken from Ref. 6.



848 WU YUANFANG AND LIU LIANSHOU 41

TABLE II. Multiplicity moments M, = ( n ) in two rapidity windows.

&s (GeV)

22
200
540
900

1.044
3.242
3.868
3.930

0.25
M3

2.271
11.000
14.503
14.924

Mq

6.126
46.500
68.264
70.916

2.987
10.639
12.916
13.168

0.5
M3

9.409
58.374
79.952
82.723

36.427
395.044
616.259
643.140

C;

n'P„(n)
n=0

nP (n)
n=0

g n'P (n)
n=1

nP (n)
n=1

This inequality gives the lower bound of the normalized
moment by the replacement of n' by n in the numerator.
This is, of course, a very crude estimate and is not good
enough to explain all the phenomena. However, we can
see already from this inequality that, when the average
multiplicity ( n ) in window is much lower than unity, the
normalized moment C; (i ~ 2) will take very large
values. It is clear from the inequality (7) that the reason
for this anomalous growth of normalized moment in the
narrow window at low energy is due to the large proba-
bility of no particle falling into the window, i.e., large
probability for n =0. This gives us a hint that, in order
to get useful information in narrow rapidity windows, we
should give a special consideration for n =0 events. Note
that the same conclusion is drawn in Ref. 4, starting from
a different argument.

lP„',(n) = P„,(n—), a = I—

Using this distribution, we can redefine the normalized
moments as

C
g n, P'(n)

n=1

g nP„',(n)
n=1

i —1C
I IN

In Fig. 3 are shown the redefined normalized moments
C4 versus c.m. energies for four rapidity windows.
There is no longer any anomaly in small rapidity win-

dows. All the moments change smoothly with energy
and window size.

The right way for dealing with the n =0 events de-
pends on the nature of the physical problem. Here we
give a demonstration by simply omitting the n =0 events
in multiplicity distribution. Consider JV nondiffractive
collision events. Let Ã0 denote the number of events in
which there is no particle falling into the considered win-
dow. After deducting the n =0 events, the multiplicity
distribution becomes
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FIG. 3. The renormalized multiplicity moments de6ned in

Eq. (8).

IV. CONCLUSION

In this paper, we proposed a simple physical picture to
describe the even-odd multiplicity distributions in
different rapidity windows and the energy dependence of
its normalized moments. Our main assumption is that,
the correlation length of charged particles is nonzero (i.e.,
no local charge equilibrium in rapidity space), and the
probability for a correlated charged-particle pair to have
two, one, and no particles falling into the observation
window obeys a trinomial distribution. For the conveni-
ence of calculation, we have also made use of the isotro-
pic distribution for the momenta of correlated particles in
their c.m. systems i.e., Eq. (I), and equal probability dis-
tribution for the pair center, i.e., Eq. (2), but the results of
calculation do not depend qualitatively on both of them.
%e have succeeded in explaining both the coincidence
and the separation of even-odd multiplicity distributions
as well as the anomalous energy dependence of normal-
ized charged-multiplicity moments in narrow windows.
Our result shows that there is no strict local charge equi-
librium in rapidity space in the final states of high-energy
hadron-hadron collisions. It also tells us that, it is neces-
sary to give a special consideration for n =0 events in
narrow rapidity windows.
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APPENDIX: THE PROBABILITY FOR A CORRELATED
PAIR TO HAVE TWO, ONE, AND NO

PARTICLES FALLING INTO THE WINDOW

For a correlated particle pair (cluster) with correlation
length y, let P„(y ) (i =2, 1,0) denote the probability to
have i particles falling into the window. Integrating with
respect to y, we get the probability q; for an arbitrary
correlated pair to have i particles falling into the window

(N)

q; = f '"P,(y, )P„(y,)dy, (Al)
0

where, P (y ) is given by Eq. (1).
According to the assumption, the centers of the corre-

lated pair are distributed with equal probability between
—(y', '„—y ) and (y', '„—yz), the probability density be-

ing 1/2(y', „—ys ). So P„(ys)is determined by the width
of the rapidity region for the center of correlated pairs
having i particles falling into the window.

First, consider the case of y &y . When the center of
the correlated pair is between +(y —

ys ), both of the two
correlated particles will fall into the window. When the
center of the correlated pair is between y —y and

y +y~ or —(y„—ys ) and —(y„+yz ), one of the corre-
lated particles will fall into the window. When the center
of the correlated pair is at the left of —

(y~+ys ) or right
of y +y, there is no correlated particle falling into the
window.

Then, let y &y . In this case, it is impossible for the
two correlated particles both falling into the window.
When the center of the correlated pair is between y~

—y
and y +y or —(y —y ) and —(y +y ), there is only
one particle falling into the window. Outside these re-
gions, there is no particle falling into the window.

The integration with respect to y in Eq. (Al) is divid-
ed into several segments. The boundary points of these
segments are y and (y', '„+y )/2. The cases of y being
larger or smaller than (y ','„+y ) /2 correspond to
y +y bigger or smaller than y', '„—y . From simple
geometrical consideration, we get P„(y ) in different re-
gimes of y, as shown in Table III. Substituting into Eq.
(Al), we get q, .
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