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Random surface dynamics for Z2 gauge theory
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A new Monte Carlo dynamics is proposed for Z2 lattice gauge theory that reduces the dynamical
exponent for critical slowing down in three dimensions to z =0.61+0.05 in comparison with a
heat-bath exponent of z =2.1+0.2. The dynamics is based on plaquette percolation and a nonlocal
Monte Carlo update rule analogous to the Swendsen-Wang algorithm for the Potts model. Howev-

er, the acceleration mechanism for the gauge theory, unlike the spin models, is driven by the per-
colation and topology of extended surfaces, not the percolation of connected clusters.

It has been known for a long time that scalar field
theories and Brownian motion (or random paths) are in-
timately connected. A less-well-understood (but presum-
ably equally valid) connection exists between gauge-field
theories and random surfaces. For instance, in lattice
gauge theories, the strong-coupling expansion can be ex-
pressed as a sum over interacting random surfaces. It is
widely conjectured that the leading term for renormal-
ized continuum SU(N) gauge theory at large N is an as-
yet-undiscovered relativistic string, with perturbative in-
teractions in higher orders of 1/N.

Here we wish to exploit the connection between gauge
theories and random surfaces to find faster Monte Carlo
algorithms. Our approach uses plaquette percolation to
form the surfaces and a dynamics analogous to the nonlo-
cal Monte Carlo Swendsen-Wang' (SW) algorithm, which
has been shown to drastically reduce critical slowing
down.

The SW algorithm is based on a detailed understanding
of the Coniglio-Klein site bond percolation clusters and
the Fortuin-Kasteleyn mapping of the Ising (or Potts)
model into these random clusters. On the other hand,
the theoretical understanding of plaquette percolation is
less complete. It has been shown, however, that one can
identify a confining-deconfining phase transition for unre-
stricted random (or Bernoulli) plaquette percolation on a
cubic lattice. If one considers a closed (Wilson} loop,
there is a critical percolation rate p* at which the proba-
bility of forming a continuous sheet spanning the loop
makes a transition from area-to-perimeter law. Thus it is
plausible that the random surface formed by sheet per-
colation provides a mechanism analogous to the diver-
gent connectedness length in site bond percolation.

We apply these ideas to formulate an acceleration dy-
namics for the Z2 lattice model in d =3 dimensions,
which reduce the dynamical exponent from z =2.1+0.2
for heat bath to z =0.61+0.05. A very similar algorithm
can be formulated for the Z3 gauge theory as well.

Also we are optimistic that extensions of our Z2 or Z3

plaquette percolation dynamics reported here can be
found for the continuous Abelian and non-Abelian gauge
theories of particle physics. Our optimism is based on
the recent extension of bond percolation methods to con-
tinuous field theories by Brower and Tamayo (P theory)
and by Wolff [O(n) spin models] which successfully
mapped (or embedded} Ising variables into the continu-
ous field.

Plaquette Percolation. To formulate our dynamics, we
begin by demonstrating the equivalence between the Z2
gauge theory and an appropriately weighted ensemble of
percolated plaquettes.

Z2 gauge theory is defined by the probability distribu-
tion

1
PG[s) = exp Pg (s, sksktst, —1)"

6 p

where the sum extends over all plaquettes on a simple cu-
bic lattice. As a shorthand, we will write the product of
spins over the links around a plaquette P (i.e., on the
boundary, BP) as sr. By rewriting the gauge distribution
as a product over plaquettes

Po[s)= g [(1—e ~)5, , +e ~],
6 p

we can introduce additional percolation variables
np =0, 1 on each plaquette to arrive at a joint distribu-
tion:

P, [s,n]= g [ph, ,g„,+(1—p)g, ] .= 1

The percolation probability is p =1—e ~. Summing out
the percolation variables, we see that gauge theory distri-
bution Po[s] is one of the marginal distribution. If, in-
stead, we sum out the gauge spins the other marginal dis-
tribution for the percolation variables is a new kind of
"random cluster'* model, ' which we will refer to as the
random sheet model:
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P [n]= N P pg(1 —p).1

n =1 n =0
P P

(4)

The weight factor NG is the number of configurations
consistent with the constraint that all percolated pla-
quettes have s~ =1. In the case of the q-state Potts mod-

el, the analogous weight factor is just (q)
' where N, is

the number of clusters. If we change variables, s =e'
both of these degeneracy factors can be viewed as the size
of the null space under the linear constraint do. =0 mod
2. The linear form do is a discrete gradient in the Ising
case and a discrete curl in the gauge case. Finding these
solutions will be the crucial and most difBcult part of our
algorithm.

Update Algorithm. Various update procedures can be
imagined which preserve detailed balance for the joint
model and therefore equilibrium for the gauge model.
We choose the transition matrix to be the product of the
conditional probabilities for percolating plaquettes at
fixed spin PJ [n ~s] followed by the conditional probability
for flipping spins at fixed plaquette percolation PJ [s~ n]:

W(s', n'~s, n) =Pz[s'/n']Pz[n'/s] .

Our update algorithm consists of two steps: (1) Percolate—P(1+ST )

all plaquettes at probability p= 1 —e; (2) flip all
spins randomly subject to the constraint that s&=1
remains fixed on all the percolated plaquettes.

You might suppose (erroneously) that the important
length scale would relate to the size of the connected
clusters of percolated plaquettes. In fact, the connected-
ness length of these clusters diverges at a much smaller
P=0.2 relative to the critical point (P, =0.7614) of the
Z2 gauge theory. At the phase transition, P=P„almost
all the links (about 96%) forin one very big cluster. In-
cidentally, this feature is discouraging in terms of finding
an eScient "single cluster" update scheme in the spirit of
Wolff, since almost always a random link belongs to a
cluster of O(N), the lattice volume.

The correct way to define the relevant length scale is to
generalize the feature of the bond percolation model that
accounts for long-range correlations. In the random clus-
ter model, two spins are correlated if and only if they lie
in the same cluster. Equivalently one can say that the
line connecting correlated spins in homologous to zero
[see Fig. 1(a)]. This is generalized to the case of a Wilson
loop. Nonzero contribution to the Wilson loop on a
closed curve I in the random sheet model (4) can be
shown to be nonzero if and only if there is a percolated
sheet that spans the loop and lies totally inside the clus-
ter. Thus you say the loop must be homologous to zero
[see Fig. 1(b)].

To understand why this is the case, imagine the situa-
tion where there is no "percolated sheet" for a Wilson
loop. Then we can find a solution to the constraints that
changes the flux through some filament on the dual lat-
tice that winds around this loop an odd number of times.
It should be clear that the essential ingredient to gauge
percolation dynamics is the topological structure of the
percolation space. Since the 3D Z2 gauge theory is dual
to the three-dimensional (3D) Ising model, the standard

(a) (b)

FIG. 1. The dots denote the percolated domains: (a) In the
Potts model, spins at x& and y& have zero correlation, while
spins at x2 and y2 have a correlation of one, because the con-
necting line lies inside the domain; (b) in the Z& gauge theory a
Wilson loop for I

&
is zero, while the Wilson loop for I 2 is one,

because there is an unbroken percolated surface spanning I 2.
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However, since the number of rows (percolated pla-
quettes) and columns (links) of the incident matrix are
proportional to the lattice volume, we never actually
write down the matrix to avoid the algorithm being of or-
der volume squared. Instead the incident matrix is

order-disorder description of 3D confinement should be
helpful in gaining a more complete understanding of the
problem.

Computational Methods and Results As .in the
Swendsen-Wang algorithm, the percolation step (i) is
trivial. We percolate the plaquettes, which satisfy the
constraint that the link product on the plaquette is one,
s~ =1, with probability p =1—e ~. Obviously, this pro-
cess is O(N), order of lattice volume N. The attempt to
percolate a single cluster as in the Wolff algorithm leads
also to an O(N) step since the critical point is strongly
into the ordered phase of cluster percolation.

In contrast with the spin models, step (ii) to solve the
condition to find configurations with zero curl (or
equivalently to find the null space of the incidence ma-
trix) is more difficult. One must replace the Hoshen-
Kopelman (HK) cluster finding algorithm used in the
spin models with a new algorithm. It should be kept in
mind that, if we parametrize the eSciency of this compu-
tational step in terms of its complexity O(N'+~ ), the
CPU time of our algorithm will actually scale as
tcpU L'+~, where L =N' " is the linear size of the sys-
tern. As in the HK algorithm, we would again like to
find an O(N ln N) algorithm so the real algorithmic ex-
ponent is not shifted.

Our computational method can be described on the
basis of a Gaussian elimination procedure for the in-
cidence matrix:
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TABLE l. Autocorrelation time and computational complex-
ity of the algorithm vs linear size of the system.
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1.82(04)
2.85(07)
3.69(09)
4.21(15)
5.30(26)
6.60(24)

7 p

1.53(05)
2.40(07)
3.21(11)
3.73(08)
4.81(21)
6.22(25)

Sparseness
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FIG. 2. A log-log plot of relaxation time ~ vs linear size of
the system L. The diamonds are the MC data for conventional
heat bath with a fitted dynamical exponent z» =2.120.2. The
squares are the MC data for the percolation algorithm with a
fitted dynamical exponent z =0.61+0.05. The dotted line and
solid line are meant to guide the eyes.

(mod 2 arithmetic) at each step all components which are
flipped an even number of times can be dropped. Hence
our "time"-reversed Sipping procedure takes fewer com-
putational steps than the diagonalization step itself.

The relaxation time is found for the energy by measur-
ing its autocorrelations

C(t)={E(&)E(0))—{E(&)){E(0))~e

defined implicitly in terms of linked lists for the nonzero
elements in the rows BP and columns 8'1.

To reduce the size of the linked lists, we preprocess
them by eliminating entries associated with pure gauge
choices. This is achieved first by gauge fixing in a maxi-
mal tree which deletes associated links and then by itera-
tively getting rid of "dead end" plaquettes, which have
only one nongauge fixed link. To appreciate the impor-
tance of this step, let us imagine that all the plaquettes
are percolated. In this extreme case, the preprocessing
oan cut the number of rows and number of columns by a
factor of L each, leaving only those links and plaquettes
associated with a two-surface of nontrivial topology,
analogous to toroidal Polyakov loops in the case of two-
dimensional lattice with periodic boundary condition.

Finally, we manipulate the linked lists with exclusive
OR (XOR) operations that implement Gaussian elimina-
tion, mod 2. Our procedure is as follows. Consider
finding the null space defined by the equation AX =0. It
is well known' that the operation in Gaussian elirnina-
tion on the ith column can be represented by the replace-
rnent A ~AP; and X~P X, so that the upper full diag-
onalization is an ordered product, AD = AP, P2 . . PN.
The P s are the individual Jacobi transformation ma-
trices. However, in our problem the matrix of null vec-
tors is not sparse. Unlike the cluster problem of
Swendsen and Wang the null vectors cannot be orthogo-
nalized with each spin contributing to a single null vec-
tor. Thus to avoid the O(N ) problem of computing the
null vectors, we do not write this matrix down.

Instead we note that our goal is to find the spin state
after flipping each null vector with 50%o probability. By
storing the sequence of operations P&, P2, . . . , Pz, we
can reverse the order, so that the sequence carries us
from the null space back to the origina1 spins basis. It is
this "time"-reversed Gaussian elimination that we use to
flip the spins. Also since we are working in a Z2 system

and similarly for the Polyakov loop. The dynamical ex-
ponent z(w=kL'), is extracted from a log-log plot of r vs
L as in Fig. 2. Our best estimate, using L up to 16, is
z =0.61&0.05 for energy correlations and z =0.66+0.05
for the Polyakov loop correlations. As a comparison, a
similar analysis for the conventional heat-bath algorithm
is also plotted with z„b=2.1+0.2 as expected for the
Glauber dynamics. " The Monte Carlo iterations consist-
ed of 20-K heat-bath cycles followed by 100-K percola-
tion cycles, except for the 16 lattice which involved half
as many cycles.

In order to determine how the CPU time scales with
the system size, we measure the memory allocation in the
stack normalized by the volume, and we measure the
efrective "sparseness" of our matrix as the number of
XOR operations involved in adding row and column lists.
Table I shows the numerical results for these quantities.
The "sparseness" measure of CPU time scales as L +~

where (=1.4 for each sweep over the whole lattice, in
contrast with a nonsparse matrix algorithm of L3 or the
conventional heat-bath algorithm scaling as proportional
to L . Of course our data is very rough and it could be
consistent with O{N ln'(N)) behavior. More likely fur-
ther optimization is necessary to get this. The complexi-
ty of diagonalizing such irregular sparse matrices de-
pends on the order with which you select the rows and
columns. Probably we need to consider further (as in our
preprocessing) the locality of the physical problem in
some kind of block renormalization scheme to further
reduce the computational complexity.

In conclusion, we have studied a new dynamics based
on the percolation of random sheets (or random surfaces)
at their critical point that reduces critical slowing down.
The critical exponent is nearly equal to the Swendsen-
Wang number on the dual lattice for the 3D Ising model.

We can generalize this approach to Z3 gauge theory,
simply by replacing mod 2 condition by mod 3, so that it
opens up the possibility of generalizations via discrete
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embedding into the center of the SU(2) or SU(3) gauge
theories pertinent to field theories of particle physics. We
are at present investigating these applications particular-
ly with respect to the finite-temperature deconfinement
phase transition. Since this transition is believed to be
driven by disorder in the center of the group for the Po-

lyakov loop the physics suggest that our approach will be
effective. Preliminary numerical results support this con-
tention.

We would like to acknowledge many useful conversa-
tions with Robert Edwards, Roscoe Giles, Robert Kotiu-
ga, William Klein, and Alan Sokal.
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