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Critical coupling for dynamical chiral-symmetry breaking
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We study chiral-symmetry breaking in a model of quantum chromodynamics (QCD). In our
study we make a critical analysis of an approximation that is often used in QCD and other theories
to simplify the Schwinger-Dyson equation for the fermion self-energy. Solving the Schwinger-
Dyson equation numerically, without employing the approximation, we And that chiral symmetry is
restored when the running coupling constant at zero momentum transfer falls below 0.890.

I. INTRODUCTION

The possibility of dynamical chiral-symmetry breaking
(DCSB) is an important consideration in many theories.
In QCD one can understand the small value of the pion-
to-proton mass ratio and the success of the current alge-
bra and PCAC (partial conservation of axial-vector
current) formalism if one assumes DCSB. In extended
technicolor theories DCSB is also important for there the
nonzero value of the bilinear technifermion condensate
entailed by the assumption of DCSB leads to nonzero
quark and lepton masses. These results are significant
and provide a compelling reason to study the
phenomenon of DCSB itself in detail and to try and
determine which aspects of a given theory are responsible
for the dynamical breakdown of chiral symmetry.

The most obvious means of studying chiral-symmetry
breaking is to use the Schwinger-Dyson equation whose
solution is the propagator (S) (or self-energy X) for a fer-
mion in the given theory. This is because trScc (gt/i),
the bilinear fermion condensate, and so one is able to
study the condensate (a nonzero value of which signals
DCSB} directly once the equation has been solved. The
problem with this approach, stated here using the termi-
nology of QCD but relevant generally, is that the
Schwinger-Dyson equation involves the exact gluon prop-
agator and also the exact quark-gluon vertex, each of
which can be calculated only by solving other
Schwinger-Dyson-type equations. The equation for the
quark self-energy is therefore not a closed equation and
presently any tractable study of DCSB using this method
necessarily requires that some approximations and trun-
cations be made.

In QCD (on which we shall now concentrate) an often
used approximation is to write the (Landau gauge) gluon
propagator in the form'

a( — /A ) p v

g D" (q) =4m —g""+
q

where a( —
q /A ) is the QCD running coupling con-

stant. This would be an exact result if there were no
ghost contributions but in Landau-gauge QCD it is an
approximation. The QCD running coupling is calculable

for —
q &&A but in the infrared and intermediate

momentum-transfer regimes it is not. One cannot
proceed to solve the equation therefore until some ansatz
is made for the running coupling at these smaller momen-
tum transfers. For our purpose we choose here

2

a
A 2

ln 1+e+
A

with A, =12/(33 —2NF), which is obviously just a simple
extension of the form used with success to fit the spectro-
scopic data of the lb and y systems in Ref. 3.

It is also necessary to make some ansatz for the con-
nected quark-gluon vertex I "(p,q ). Gauge invariance in
QCD requires that I'" satisfy a Slavnov-Taylor identity.
Neglecting ghost contributions (as we did for the gluon
propagator} this identity reads

(p —q) I "(p,q)=S '(p) —S '(q) . (1.2)

This constrains the longitudinal part of the vertex. Writ-
ing

S '(q)=/A(q ) —B(q ) (1.3)

it is easy to see that a solution of this identity is

I "(p,q)=transverse part

k"+ A(p )y"+ [[A(p ) —A(q )]g

—[B(p ) B(q )]) (1.4)—

D""(p—
q )I „(q,p )=D"'(p —

q ) 3 (q )y „. (1.5)

Using Eqs. (1.1) and (1.5) we obtain the following closed,
approximate Schwinger-Dyson equation in QCD:

(with k =p —q). This is not a solution of the vertex equa-
tion (as can be seen by direct substitution) but it does
represent an improvement over simply using the bare ver-
tex. Assuming. that the "transverse part" in Eq. {1.4)
vanishes in the Landau gauge then
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[3 (p') —1 g —B(p') = —i f g'D""(p —
q )y

A(q )

A(q )g —8(q )

2 dq a((p —q)/A)
(2~) (p —

q )

A(q )8(q )

A (q )q +8 (q )
(2.2)

II. COMPARSION OF THE EXACT
AND APPROXIMATE KERNELS

After a Wick rotation to Euclidean metric, Eq. (1.6)
yields the following pair of nonlinear, coupled integral
equations for the quark wave-function renormalization
and self-mass function:2, 2 16m f d q a((p —q)/A)Ap) —1]p=

(2m) (p —q)

X +2P'P
(p —

q )'

A (q )

A (q )q +8 (q )
(2.1)

(1.6)

We remark that this is also the vacuum field equation
that arises in a global color-symmetry model of QCD.
In this connection its role in DCSB is even more trans-
parent because the general solution of thi. s equation de-
scribes a set of degenerate physical vacua, each element
of which represents a distinct, admissible vacuum state.
Only one of the states can be physically realized, howev-
er, leading to a situation where the vacuum state does not
have the symmetry of the Lagrangian and consequently
the appearance of Goldstone bosons.

In this paper we search for a chiral-symmetry phase
transition in QCD using Eq. (1.6). This problem is ad-
dressed in Ref. 6 but therein, after Wick rotation to Eu-
clidean metric, the angular integral in Eq. (1.6) is approx-
imated and the integral equation converted into a
differential equation. We show how this approximation
aff'ects the solution of the Schwinger-Dyson equation and
discuss whether the conclusions that one draws when em-

ploying it can be trusted. The relevance of our analysis
extends beyond the immediate problem of a chiral phase
transition that we address here because this approxima-
tion has been used widely in studies of QCD (Refs. 1, 4, 6,
and 7). It has also been employed in the study of quark
and lepton mass generation in extended technicolor mod-
els. '

In Sec. II we discuss the approximation of the kernel in
Eq. (1.6) and its implications in detail, comparing the ap-
proximated kernel with the exact kernel numerically to
explicitly reveal the differences. We use the approxima-
tion to simplify the kernel in the integral equations and
solve the resulting equations in Sec. III. The result
should agree with the solution of the differential equation
that can be derived from these approximated equations,
so we also solve this differential equation numerically.
Comparing the results provides a check on our integral
equation code. In Sec. III we also present the solution
obtained from the exact integral equations: i.e., without
approximating the kernel. We summarize and discuss
our results in Sec. IV.

It is clear that, when the angular integrals are evaluated,
these equations reduce to one-dimensional integral equa-
tions over the magnitude-of-momentum variable. The
kernel in Eq. (2.1) is

a((p q) /A )
gp~q =

(p —q)'

where

+2p'p 'q q'p q

(p —q)
(2.3)

fdQ= f dcosin co f d8sin8 f dP

and

K„(p,q)—=0 (2.5)

Kg(p, q)=2m'a 8(p' —q'), +8(q' —p')2 2 1 2 2

p q
(2.6}

which yields A(p ) =1 as the solution of Eq. (2.1) and a
single nonlinear integral equation for 8(p ): Eq. (2.2}
with A(q )=1. This is the situation in QED (Ref. 9)
when fermion loops are not included in the photon polar-
ization tensor.

The approximation that is usually made in models such
as the one we are considering here is to assume that for
a(q }%const Eq. (2.5) is still correct and that Eq. (2.6) is
modified only by the replacement

a~8(p q)a(p /A )+—8(q p)a(q /A )
—(2.7)

[with the understanding that 8(a b)8(b —a):—0]—. In
Figs. 1 and 2 we plot the function

f(u U)=K'""'(u U) —K' ~""(u U) (2.8)

with u =p/A and U =q/A, for the kernel of the A and 8
equations, respectively, with e = 1.0, 2.0, N„=O, and
u =1. The figures illustrate how the approximation un-
derestimates the kernel for p =q. One observes that the
peak value of f{u,U) increases with [a(0)—a( ~ }] as
does the domain on which the function is nonzero. This
demonstrates that, assuming a monotonically decreasing
running coupling, the approximation is most reliable
when [a(0)—a(ao)]-0: so, for an asymptotically free
theory [a(~ )=0] the approximation is valid only if
a(0)-0.

In the present model, with the coupling defined in Eq.
(1.1), this approximation enables one to derive the follow-

and the kernel in Eq. (2.2) is

fd& a((p —q)'/A')
(2.4)

p

It is not difficult to establish that when a(q )=a (a
constant}
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ly; however, it is not too diScult to show that, in the ul-
traviolet asymptotic regime,
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7.0— b(x)l„
—4m A. a

x(lnx )'
(2.11)
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ing differential equation for b(x) =B(A x )/A:

0=b "(x)+13(x)b'(x)+A y(x)
b (x)

x+b (x)
with

2x +x(x +2/)lng+2g' (in/)2

x ging(x+ ging}

and

x+g 1ng
y x

x g(lng)

(2.9)

where g=r+x and v =1+@. This differential equation is
equivalent to Eq. (2.2) with the approximated kernel pro-
vided the following boundary conditions are applied:

b'(0}=- and b( oo ) =0 .
2b(0)in'

(2.10)

The complexity of this differential equation (DE) means
that a complete solution can only be obtained numerical-

FIG. 1. The function in Eq. {2.8) is plotted for the kernel of
Eq. (2.1) with u =1 and XF=0. The tallest peak is obtained
with @=1.0 while the other is the result with a=2.

with Ir=(in@ ) (qq)„, a renormalization point invari-
ant. The constants here are not fixed by analysis of the
asymptotic behavior of the DE but rather by matching
the asymptotic form to the operator-product-expansion
result. '

III. SOLUTION OF THE INTEGRAL EQUATIONS

We have solved Eqs. (2.1) and (2.2) using the approxi-
mations of Eqs. (2.5)—(2.7) for NF=0, 4 and a large
range of values for r ( =1+@}searching, of course, for a
critical value of a=a, below which (qq) =0. In this
case the kernel has a simple analytic form and so it is
necessary to discretize only the solution functions. To
solve the equations we employed a simple iterative pro-
cedure whereby an initial guess was made for the solu-
tion, (Ao(p), Bo(p)), on a discretized momentum grid in
the domain [0, 1000A] (chosen so that the solution ob-
tained was independent of the cutoff). This guess was
substituted into the integrands of the integral equations
and provided an iterate (A, (p), B,(p)) upon evaluating
the integral. This iterate was then resubstituted to pro-
vide another iterate (A2(p), 82(p)). Writing F for A or
B, then, at each p element of the grid, the next guess was
determined as follows: if

(p}l &1,
Ico(p) I

with co(p)=Fo(p) —F, (p) and c, (p)=F, (p) —F2(p), then
a geometric progression was fitted to the first three
iterates and the next guess Fo(p) was taken to be

co(p)Fo(p') =Fo(p)

14.0-

12.0-

10.0-

8.0—
0

IA

6.0—

otherwise the next guess was taken to be

Fi(p)+F2(p)
Fo(p) =

2

This procedure was repeated until

I
A (p) —A, (p)l IB (p) —8, (p)l

sup '

A, (p)
' 8,(p)

&10 ',

4.0—

2.0—

0 -2.0 -1.0 0
ln(u)

1.0 2.0

FIG. 2. The function in Eq. (2.8) is plotted here for the ker-
nel of Eq. (2.2), again with u =1 and NF=0 The tallest peak i.s
again obtained with the smaller value of a=1.0 with the other
curve being the result for a=2.0.

when the solution was accepted to be ( A, (p),8, (p) ).
We found, as one might expect, that for ~&&~, the

procedure converged rapidly to a stable solution with
A(p )=—1, 8(p )+0 [with UV asymptotic behavior
matching Eq. (2.11)] and (qq)%0. As we increased r,
however, the procedure took longer to converge to a solu-
tion and it became important to ensure that many grid
points were placed in the domain [O, A]. We settled on
the criterion that a solution was only accepted if, to five
significant figures, 8(p ) was constant over the first 15
grid points so that we could be sure the grid spacing was
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not relevant to the solution. In each series of runs,
characterized by a particular value of XF, there was al-

ways a value ~b above which this criterion could no
longer be satisfied. This determined when we discontin-
ued a particular series. The value of ~b could be in-

creased by placing a finer grid mesh in the domain [O, A],
a procedure that could be continued until the point sepa-
ration reached machine precision. In our calculations"
this meant that we obtained the largest value of ~b when

the first nonzero grid point was 10 ' A, there were 42
points in [0, 10 A] and 86 points in [O, A] out of a total
136 points set in [0, 1000A]. All of the results reported
herein were obtained using this grid.

Two measures of DCSB are 8 (0}%0and the renormal-
ization point invariant a%0 and in our analysis we have
concentrated on these two order parameters. The results
of our calculations are summarized in Figs. 3 and 4 where
we have plotted —I/in[8(0)] and —1/1na as functions
of a(0) for NF=0, 4, respectively. In each case we have

plotted the last data points calculated before the limit of
numerical precision was reached. To the first, third, and
fifth data points (measured in order of increasing a) we
fitted a function

0.25—

0.20-

0.15—

0.10-

0.05-

875 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

a{0)

FIG. 4. Same as Fig. 3 but with NF =4.

—1/1nB(0) 0.642+0.036,
=0 587+0 004

h(a)=p(a —a, )r, (3.1) and

with P, a„and y the fitting parameters. The values we

obtained for these parameters are presented in Table I. It
is clear from the plots that this curve is a good represen-
tation of the data for a =a, . Such a function is familiar
from the study of phase transitions in statistical mechan-
ics. Using this analogy we identify y as the critical ex-
ponent and a, as the critical coupling associated with our
two order parameters —I /lnB(0) and —I/lna, zero
values of which signify a restoration of chiral symmetry.
From the table we estimate that

0.25—

0.20—

0.15—

a, (0}=0.782+0.003 .

This means that chiral symmetry would be manifest in
the model if a(0) was less than this value.

This result was obtained using the approximations of
Eqs. (2.5}—(2.7) and we are interested in whether it de-
pends in any way on these approximations. We will ad-
dress this question shortly. However, before proceeding,
we remark that the value of the critical coupling we have
obtained differs from that reported in Ref. 6 where the
difFerential equation of Eq. (2.9) is studied (although in a
different form). (Qualitatively, we are in agreement:
when the kernel is approximated there is a critical cou-
pling below which chiral symmetry is restored. ) The cri-
terion that we have adopted as signifying chiral-
symmetry restoration (the zero of the functions plotted in
Pigs. 3 and 4) is different to that adopted in Ref. 6
wherein chiral symmetry is assumed to be restored when
the solution procedure used to solve the DE breaks down.
This is analogous to our supposing that chiral symmetry
is restored at rb.

0.10—

0.05—

TABLE I. Parameters obtained in fitting the function in Eq.
(3.1) to the data presented in Figs. 3 and 4 obtained with the ap-
proximated kernel.

875 0.80 0 85 0.90 0.95 1.00 1 05 1 10 1 15 1 20

a{0)

FIG. 3. The results obtained by solving Eq. (2.2) with the ap-
proximate kernel. 0 mark the data points for —1/ln8{0) and

mark the data points for —1/lnK. The smooth curves
through the points show the fitting function of Eq. (3.1) with the
parameter values described in the text. These results are for
NF =0.

NF =0 1

ln8(0)
1

lnK
1

lnB(0)
1

lnK

0.617

0.245

0.667

0.267

a,

0.779

0.783

0.782

0.786

0.664

0.584

0.668

0.590
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To check our results, i.e., to confirm that our solution
procedure for the integral equation yielded correct re-
sults, we solved the DE in Eq. (2.9} numerically using
fourth- and fifth-order Riinge-Kutta procedures. To
solve this DE it is necessary to know the value of the
solution function at some large finite value of x along
with the first derivative of the function at that point. It is
then a simple matter to integrate the DE in to x =0. The
function we had obtained by directly solving the integral
equation provided both the function value and an esti-
mate of the first derivative of the function at all points
x E[0,1000]. To confirm this function as the correct
solution we took the value of the function x =950 along
with the estimate of its first derivative and used these
quantities as the ultraviolet input for the DE.

We integrated the DE in to x =0 to obtain the solution
of the differential equation, varying the value of the first
derivative of the function (which we could only estimate
from our numerical solution of the integral equation) un-
til the solution function satisfied the infrared boundary
condition of Eq. (2.10). We found that there was always a
value of the first derivative at the ultraviolet boundary for
which the infrared boundary condition could be satisfied
and that as the mesh spacing was decreased the DE solu-
tion approached that returned by our integral equation
code; i.e., Bd'(p)~B "(p) Vp. This result confirmed that
our integral equation solution procedure was indeed
working correctly.

In solving the DE we observed that for large values of
a(0) agreement between the two solutions was obtained
with a relatively coarse mesh but as a(0) was decreased
the mesh had to be made finer if the DE solution was to
agree with the solution obtained from the integral equa-
tion. (If the mesh was too coarse the DE solution was too
large at each p. )

Taking the integral equation solution now as the
correct solution function we see that numerically solving
the DE only yields the correct solution if the grid is made
progressively finer as a(0) is decreased. Obviously, again,
a machine precision problem arises in this approach but
the projection technique could be used to determine the
critical coupling nevertheless. The fact that such a pro-
jection technique was not used in Ref. 6 may be the cause
of the discrepancy between our results and theirs. The
fact that our DE solution agreed with our integral equa-
tion solution for a large range of v values makes us
confident of our results.

We now present the results obtained by solving Eqs.
(2.1) and (2.2) with the kernel evaluated exactly; that is,
without approximating the angular integrals in Eqs. (2.3)
and (2.4}. In this case we broke the kernel into two parts:

E(u, v)=E' ""(u,u)+ f(u, u)

with E'99""(u,v) defined in Eqs. (2.S)—(2.7) and f(u, u)
defined in Eq. (2.8). In solving the equations we calculat-
ed f(u, u ) on a (nu = 131X nu =261) point grid with one
v point placed at each u point and one placed between
each pair of u points. When evaluating the integrals we
interpolated this correction function off the grid using a
cubic spline. Apart from this difference the solution pro-
cedure was exactly the same as discussed above in con-

0.20—

0.15—

0.10—

0.05-

87S 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

a(O)

FIG. S. The results obtained by solving Eq. (2.2) with the ex-
act kernel. Again C3 mark the data for —1/1nB(0) and 6 the
data for —1/1nx with the smooth curves being the 6tting func-
tion of Eq. (3.1) with the parameter values given in the text.
These results are for NF =0.

nection with the approximated kernel.
Our results are presented in Figs. 5 and 6. The values

of the fitting parameters obtained through fitting Eq. (3.1)
to the data are presented in Table II. From the table we
estimate that

and

—1/1n8(0)

y 1~1„„=0.513+0.038,

0.25—

0.20—

0.15—

0.10—

0.05—

875 0.80 O.S5 0.90 0.95 1.00 1.05 ] ]P 1,]5 ] 2P

a(o)

FIG. 6. Same as Fig. 5 but with NF =4.

a, (0)=0.890+0.005 .

from which we see that a, =0.890. The approximation
then has the effect of reducing the critical coupling by
=12% but not of changing the nature of the model. The
presence of a chiral phase transition persists even when
the kernel is calculated exactly.

It is not difficult to understand why the critical cou-
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TABLE II. Parameters obtained in fitting the function in Eq.
(3.1) to the data plotted in Figs. 5 and 6 obtained using the exact
kernel.

NF =4

1

lnB(0)
1

ln~
1

lnB(0)
1

lnz

0.459

0.178

0.519

0.207

0.892

0.896

0.884

0.887

0.567

0.486

0.611

0.540

IV. SUMMARY AND CONCLUSIONS

pling should be increased when the kernel of the integral
equations is treated correctly. Suppose we were to substi-
tute 8' ~"", the solution of the integral equations with
the approximated kernel, into the integrand of Eq. (2.2).
[We neglect Eq. (2.1) here because q A(q )=q even
when the kernels are treated correctly. ] In this integrand
we have the exact kernel which is uniformly greater than
the approximate kernel and so the value of the integral
(which was equal to 8't't'"" when the approximate kernel
was used) is now greater than 8'»""(p ) at each p .
There are two ways that this can be compensated for in
the nonlinear integral equation and 8'""' found from
8' "". In the case where we are approaching the critical
coupling 8'~~"" is uniformly small and so the nonlinear
term B(q ) in the denominator of the integrand is unim-

portant for almost all q . The integrand can therefore be
made stnaller by decreasing B(p ) at all p . Clearly,
for a given value of a(0), this would lead to
8'""'(p ) &8'~~""(p ) at all p . Hence, one expects that
as a(0) is decreased 8'""' will become identically zero
before 8'~""" which corresponds to an upward shift in
the critical coupling when the exact kernel is used.

The alternative to this scenario is only important when
one considers a(0)~ ~. In this case 8(q ) is uniformly
large and the nonlinear term dominates in the integrand
for a large range of q . The integrand is then made
smaller by uniformly increasing 8(p ) which yields a
solution of the exact integral equations in which
8'""'&8'"~""at all p . This situation is discussed else-
where '2

This presents a severe problem in realistic models of
QCD with some sort of confinement mechanism included
through a very strong (perhaps infinite) coupling at zero
momentum transfer. The approximation dramatically
changes the effective coupling having the effect of
suppressing the confining part of the gluon propagator.
Conclusions based on results obtained from the approxi-
mate equation are therefore likely to be incorrect, cer-
tainly insofar as they are used to constrain the gluonic
sector of QCD; for example, one would anticipate that a
larger than necessary ratio of the confinement parameter
to A&CD would be required in spectrum analyses when
the approximation is used.

In the present investigation, however, we are in the re-
gime where the approximation does not represent the
true situation so poorly. In our investigation of the res-
toration of chiral symmetry we have studied the limit
a(0)~0 and, as we have remarked, the discrepancy is
not so severe in this regime. This explains why the actual
value of the critical coupling a, (0)=0.890 is only 12%
greater than that obtained when the phenomenon is in-
vestigated using the approximate kernel. Qualitatively,
the approximation leads one to the same conclusion as
the exact calculation: that there is a minimum value of
the running coupling at zero momentum transfer in the
QCD model below which chiral symmetry is manifest
and the spectrum is completely different to what is ob-
served empirically.

In the context of exact QCD we believe our calcula-
tions demonstrate that the existence of DCSB is intimate-
ly related to the form of the running coupling constant
near —

q /A =0. They suggest that one does not neces-
sarily need to have confinement (in the sense that the run-
ning coupling is infinite at zero momentum transfer) to
have DCSB but only a strong [a,(0)-1000Xa, ] cou-
pling theory. This observation suggests that the
deconfinement and chiral-symmetry phase transitions in

QCD need not necessarily occur at the same coupling.
Our final remark in closing is simply a note of caution.

Approximating the kernel in the Schwinger-Dyson equa-
tion provides a computational simplification that may
lead to qualitatively correct results. We believe, however,
that the results presented herein demonstrate that the ap-
proximation should not be employed for the purpose of a
quantitatiue analysis of any phenomenon.

We have shown in Sec. II that the often used approxi-
mate kernel for the Schwinger-Dyson equation badly
misrepresents the true kernel for p =q. This approxima-
tion underestimates the strength of the coupling for p =q
and the discrepancy becomes worse as a(0) is increased.
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