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We construct quantum-mechanical models that are analogs of three-dimensional, topologically
massive as well as Chem-Simons gauge-field theories, and we study the phase-space reductive limit-

ing procedure that takes the former to the latter. The zero-point spectra of operators behave
discontinuously in the limit, as a consequence of a nonperturbative quantum-mechanical anomaly.
The nature of the limit for wave functions depends on the representation, but is always such that
normalization is preserved.

Quantum field theories in three-dimensional (2+1)
space-time, especially gauge and gravitational models,
whose study was initiated in the early 1980s (Refs. 1 and
2) have now become the focus of widespread research ac-
tivity, not only for pedagogical and mathematical
reasons, but also because of the conjectured role for
three-dimensional dynamics in planar condensed-matter
(Hall effect, high-T, ) and cosmological (strings) settings.
These models are particularly interesting since special
structures, Chem-Simons terms, that are available in
three dimensions (more generally in any odd dimension)
give rise to topologically intricate phenomena without
even-dimensional analogs.

This paper describes similar dynamical efFects in an
even simpler, odd-dimensional "field theory" that resides
in one (space-) time dimension, i.e., quantum mechanics.
The models that we study are, in the general case,
governed by a Lagrangian giving rise to Lorentz forces:

L=—q +—q A(q) —eV(q) .
2 c

A particle of mass m and charge e executes motion in
external magnetic and electric fields, t);AJ —t},A' and—8; V, respectively. We consider the simplest case,
where motion is two dimensional, i =1,2, and rotational-
ly symmetric, A '(q) =e'Jq JA (q), V(q) = V(q). More-
over, we simplify further to arrive at an explicitly solv-
able model, by taking a constant magnetic field,
A (q) = —B /2 ~ 0, and a quadratic scalar potential,
V(q) =kq /2 & 0. Thus the Lagrangian we study is

=—AX A.CS

For the corresponding limit in (2) we set trt and k to zero;
indeed phase-space reduction is already achieved when
only m vanishes:

L =—qXq ——q
B . k
2 2

As is well known, reduction of phase space alters the
symplectic structure.

For the theory (2), the symplectic structure is familiar.
With

BL . ; Bp'= . =Iq ' ——e'Jq~
t}g

the Hamiltonian is

H(p, q) = p'+ —&"q'1; B
2@i

p
'+ &Ikqk + q&ql

2 2

(7)
so that the Lagrangian, when written in first-order form,

L =p q —H(p, q)

tial terms in (2) are analogous to Maxwell (first and last)
terms in (3); the velocity-dependent, magnetic, Lorentz
interaction in (2) models the Chem-Simons term, propor-
tional to )Lt in (3}. By rescaling A~&tc/ls A and setting
p~ ~, the Maxwell terms disappear from (3), leaving the
pure Chem-Simons theory on a reduced phase space:

q2+ qXq ——q2
2 2 2

(2)

Ee' v']=0, Ep',p']=o [e' p'l=l&" .

fixes conventional commutators:

(Henceforth, we set e, c, and fi to unity. )
It is clear that (2) is analogous to the Lagrange density

X for three-dimensional, topologically massive electro-
dynamics' in the Weyl (A =0) gauge:

With (7) and (9), the Euler-Lagrange equations of (2) or
(8) are regained as Hamiltonian equations:

X A —'(P'X A}2 2 2 (3)
P '=i[H,p']= e'J pj+ e~"q" kq', ——

2P7l 2
(10)

The corresponding dynamical variables are q(t) and
A(t, x) of (2) and (3), respectively; the kinetic and poten-

1; Bj '=i [H,q'] =—p'+ e'JqJ—
m 2
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These are solved by

z(t) =q'(t)+iq'(t)

=e ' " z(0)cosQt+ sinQt
(0) .

mQ

p (t)=p—'(t)+ip (t)

=e ' / "[p(0)cosQt —mQz(0)sinQt],
' 1/2Bz k0= q+-

4m m

kH =—q
2

0 (13)

With the help of the commutator that is determined by
(5),

[q' q'1= ——e" (14)

On the other hand, the reduced theory (5) is already
described by a first-order Lagrangian; a Legendre trans-
form is not needed and the Hamiltonian is identified
from Lo:

and that terms oscillating when m ~0 should be
dropped.

While the operator structures behave smoothly in the
limit m ~0, the eigenvalues and eigenfunctions possess
interesting behavior, and it is our aim to describe this.
The states that we consider are the simultaneous eigen-
states of the Hamiltonian and of the rotational symmetry
generator that commutes with it—the angular momen-
tum.

For the full theory, the angular momentum, obtained
by Noether's theorem from (2) or (8),

M=qXp, (22)

t[M, q ]= e'Jql . (23}

In the reduced theory, the angular momentum operator,
obtained either by Noether's theorem from (5) or by im-
posing the constraint (20}on (22),

B zMo= —q (24)

generates rotations upon commutation, with the help of
(9):

the Euler-Lagrange equations of (5) are reproduced:

k
q '=i [H(),q'] = ——e'Jq J .

They are solved by

z (t) —=q '(t)+ iq (t) =z (0)e'"/ " .

(15)

(16)

also generates rotations, with the commutator (14):

i [Mo, q']= —e"q' .

The simultaneous eigenstates of M and H,

MIN, n &=niN, n ),
HilN, n ) =E(N, n)lN, n ),

(25)

(26a)

The formal steps that efFect the reduction on the opera-
tor level have already been given. From (6) and (7) we
see that taking the limit m ~0 requires constraining to
zero the quantities

E(N, n}=Q(2N+ ~ni+ I ) — n,B
2m

(27)

are given in the coordinate representation by normalized
wave functions:

BC'=p'+ —e"qi (=mq ') .
2

The constraints are second class,

(17) N!
~(N+ lnl))

Q)()+Inl)/2

[C', C'] =iBe"%0, (18)
Xrlnlein()e —(m/2)nr2L lnl( Q 2}m

(28)

and lead to Dirac brackets between any pair of operators
0& and Oz.

q
=—(r cos8, r sin8) .

Here Lz~"~ is the associated Laguerre polynomial, satisfy-
ing the differential equation

[O, , O, ]D =[0,, 02]—i[O„C;] [C, , O, ] . (19)

In this way the commutator (14}of the reduced theory is
recognized as the Dirac brackets in the original but con-
strained model. Moreover, solving the constraint (17) by
setting

B
J~J

2
(20)

B k0 +-
m~0 277l B (21)

reduces the first-order Lagrangian (8) to (5). Finally, we
note that in the limit m —+0 the solutions (11) to the
dynamical equations (10) satisfy the constraint (20} and
pass to (16). This is seen, when it is recognized that

"l(u))+( ines+ I u)) I~I~I(u))+NL ~I~I((())—(}
dW dw

(29)

X is a non-negative integer to ensure normalizability.
Moreover, single valuedness of the wave function (28) re-
quires n, the angular momentum eigenvalue, to be any in-
teger.

In the reduced theory Ho and Mo, (13) and (24), essen-
tially coincide. From the commutator (14) and the qua-
dratic expression for the Hamiltonian (13},we recognize
that 00 has the structure of a one-dimensional
harmonic-oscillator Hamiltonian. (Identify q' and —Bq
with a canonically conjugate pair of coordinate and
momentum. ) Hence the energy spectrum is
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H, ln &=so(n)i~ &,

k 1Eo(n}=—n+ —,n =0, 1, . . .

(30)

Moin &=(n+ —,')in & . (31)

To describe these eigenstates of the reduced theory by
wave functions, a polarization must be chosen to select
on which one of the two noncommuting coordinates the
wave function is to depend. For our purposes, it is con-
venient to use the holomorphic representation. We form
the non-Hermitian combination

Moreover, the angular momentum spectrum consists of
positive half-integers:

%e now examine how the various quantities of the
complete theory behave as m ~0 and whether the corre-
sponding quantities of the reduced theory are attained in
the limit.

The energy spectrum (27) diverges as m ~0:

E(N, n) — (2%+ ini n—+1)+—(2N+ ini+ I) .B k

m~O 2P7l B

(4Oa}

However, a universal subtraction can remove the infinity
in the X =0, n ~ 0 states, for which

a =&B/2—(q' iq —), (32a}
E(o, lnl) — +—(ill+ I) .B

m~O 270 B (40b)

which together with its conjugate

a =&B/2(q'+iq )

satisfies

[a,at]=l .

Therefore, if we choose states ( a l
such that

(ala =(ala=(ai&B/2re'

(32b)

(33)

(34)

a* aa ae
27Tl

Bda'da= d.q'dq2= — r dr d8 .
277l 2 ll 27T

(37)

then states l g & can be described by wave functions that
tions that depend on a:

(alp& =g(a) . (35)

The operator a t acts on these functions by multiplication,
a by differentiation; the adjoint relationship between the
two being maintained by virtue of a nontrivial measure:

(aiatig& =a1i(a),
(36)

(qlo, lnl &
m~0 2%

1/2 . Jnl/2
B
2

Thus in the limit m ~0 all states with N )0, as well as
those with %=0 and n &0 are separated by an infinite

gap and decouple from the remaining N =0, n ~0 states.
The surviving states, whose angular momentum is aligned
with the external magnetic field, are in one-to-one
correspondence with the states of the reduced theory.
They carry finite energy, provided a subtraction is per-
formed on the Hamiltonian. The infinite part of the sub-
traction evidently is B/2m; also a finite subtraction of
k/2B must be made to obtain agreement with the energy
spectrum (30) of the reduced theory. While we have no
a priori determination of this finite subtraction, we cer-
tainly can accommodate it since an infinite subtraction is
already required.

A similar half-integer discrepancy is present in the an-
gular momentum spectrum: for the complete theory the
spectrum of M comprises all integers; in the reduced
theory Mo possesses only positive half-odd-integers in its
spectrum. Here no subtraction is called for; indeed we
shall show below that this discrepancy reflects an impor-
tant difference in the action of the rotation symmetry for
the two theories.

The wave functions (28}of the surviving states become,
in the zero-mass limit,

Within the holomorphic representation, we have

&ain &=
n!

(38)

)n/e i/n/8e —(B/4)r1

& inl!
' 1/2

/n/
—a a/2

u„(x)=
1/2

k
mB 2"n &

1 /2

XH„(v'k/B x )e -'"""" (39)

Other polarizations are available —e.g., one may let
the wave functions depend on q', now renamed as
~kx/B, and realize q as (i j&k }(d/dx). The energy
and angular momentum eigenfunctions are then the
harmonic-oscillator ones, involving Hermite polynomials
H„, and frequency k/B:

1/2

(ain &e (41a)

Thus the complete wave functions do not approach those
of the reduced theory. It could not be otherwise: the
former depend on two variables q' and q (or a and a')
while the latter on only one, determined by the choice of
polarization. However, since wave functions are normal-
ized, their dependence on one of their arguments cannot
disappear. Note nevertheless that in the holomorphic po-
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2&l
(41b)

Of course the limiting relations between wave func-
tions take different forms in different representations. As
is well known, the Hamiltonian (7) is equivalent to two
decoupled one-dimensional harmonic oscillators, de-
scribed by the canonical pairs (p~, q+) and frequencies
N y'.

' 1/2

p1+
1/2

m Qco+

larization the normalization densities are related proper-
ly:

d ql&ql0, lnl}l ~ dq'dq (aa )~"~e2 B l

m~0 2m nf

supplemented by a subsidiary condition (Gauss's law),
which requires that physical states be annihilated by the
generator of the symmetry that is gauged. By extending
our quantum-mechanical model, something similar can
be achieved.

Observe that (2) and (5) are rotation symmetric—
invariant under "global" rotations:

5q'(t) = e'J—q J(t)A, A,. time independent . (47)

These transformations are generated by the angular mo-
menta of the two models, M and Mo, respectively —see
(22}—(25). Moreover, the "global" symmetry (47) may be
promoted to a "local" gauge symmetry with time-varying
A, , provided a "gauge potential" a (t) is introduced, trans-
forming inhomogeneously under time-dependent rota-
tions, thus rendering covariant the time derivative:

' 1/2
mQ

2'+
BN+=Q+

2m

1q'+ p
+2pt Qco+

{42)
Dq'=q '+a@'JqJ,
Sq'(t) = e'Jq'(t—)A.(t),
5a(t)=A(t) .

(48)

(49a)

(49b)

lnl+n
n+ =IV+

2

(43)

where u„* are the harmonic-oscillator wave functions (39)
with frequency co+. In the zero-mass limit,
co+-8/m+k/8, co ~k/B; only the minus oscillator
survives, and the limiting relation now connects the wave
functions (43} with (39), in a way consistent with the
preservation of norms:

q+ q+O, n —+ u~„~ q . 44

Alternatively, one may use holomorphic versions of (42),

Thus wave functions of the complete problem may be
presented in a "modified coordinate" representation:

&q~lN, n}=u„+ (q+)u„(q },

In this way we arrive at a U(1} or SO(2) quantum-
mechanical gauge theory, with a(t) playing the role of
the time component of a gauge potential —a Lagrange
multiplier for the rotation generator. '

Once a one-dimensional (odd-dimensional} gauge
theory is under discussion, a further Chem-Simons term
may be added to the Lagrangian. In the present context
this term is linear in the potential. (The Chern-
Pontryagin term in one higher dimension, i.e., in two di-
mensions, is a two-form; hence, the Chem-Simons term
in one dimension is a one-form. ) Thus we are led to the
following generalization of (2) and (5):

L =—Dq Dq+ —qXDq ——q +vam B k
2 2 2

=—(q '+ae'Jqj)(q '+ae'"q")
2

1 1
a~ = ~ Qa)gqg+ p&2 Co+

&a+la+ =&a+la+,

and the wave functions are simply

(45a)

(45b)

+—e'q'(q +a@ "q")——q'q'+va,
2 2

BI."=—q XDq+ va0

e'Jq'(q 1+a—e~"q )+va .
2

(50)

(51}
n+ n

&a+lN, n ) =
n+. n

Since

a~n

& allo, lnl )=

(46) [In the reduced Lagrangian, the harmonic coupling k is
absorbed in a redefinition of a; hence, it does not appear
in (51).]L" and I.o exemplify the "topological" (Chem-Simons)
quantum mechanics of our title. In the Weyl (a =0)
gauge, they coincide with the Lagrangians (2}and (5), re-
spectively, supplemented by subsidiary conditions:

we see that the relation between {46) and (38) is direct,
and proper normalization is assured by the holomor-
phic measure factor.

One important property of the field-theoretic Lagrange
densities X and Xcs, (3) and (4}, is not modeled by our
quantum-mechanical example: the field theory is gauge
invariant; equations following from (3) and (4) must be

qXp=M=v,
B—q =M =v.2—

0

(52)

(53)

Since II&(U(1))=Z we expect that in the quantum
theory the Chem-Simons coupling strength v must be
quantized. From (52) and (53) we see that this quantiza-
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tion is also demanded by the quantization of the symme-

try generator, i.e., of angular momentum.
In the full theory where M possesses integer eigenval-

ues, v must be an integer. Gauge invariance leads to the
same conclusion. Under a gauge transformation, the ac-
tion

I"= dt L" (54)

transforms as

I"—+I +vb A, , (55)

L0 = ——z i ==+a z+ va
B
2

(56)

and the effective quantum action is

where b, A. is the change of the gauge function over the
time interval, hA, = f dt (d Idt)A, . We classify gauge
transformations by requiring b, A, to be 2nD; Ã being the
winding number of the U(1) gauge transformation.
Hence e' is gauge invariant when v is an integer. Upon
setting v=n, the spectrum of the theory governed by (50)
consists of a multiplet of states with fixed angular
momentum n, but still varying ¹

In the reduced theory, the angular momentum eigen-
values are positive half-integers, and therefore the
Chem-Simons coefficient v in (51) must take a value in
that set. This appears to be at variance with the gauge-
invariance argument for quantizing v, which superficially
follows the analysis presented above for the complete
theory. However, a quantum anomaly modifies the naive
argument. It would appear that apart from the Chern-
Simons term, the Lagrangian in (51} is gauge invariant.
But let us calculate the effective action by functionally in-
tegrating over q'(t}. To effect the integration it is useful
to pass to the complex coordinates z and zt. Then L0
reads (apart from a total time derivative)

quantuxn-mechanical examples allow detailed analysis of
this limiting procedure at the level of eigenvalues and
eigenfunctions. This analysis probes beyond the formal
operator level, where intricacies are not at all evident.

In particular, the limiting procedure for these (0+1)-
dimensional "field theories" mimics some of the proper-
ties of the analogous liinit in (2+1)-dimensional gauge
theories involving Chem-Simons terms. When p~00,
the (second-order) Lagrange density (3) of the topologi-
cally massive gauge theory (in the Weyl, AD=0, gauge)
formally becomes the (first-order) Chem-Simon s
Lagrange density (4), and the limiting behavior of field-

theoretic wave functionals is exactly the same as that of
quantum-mechanical wave functions. The wave func-
tional of the Abelian topologically massive gauge theory
1s

%(Ai, Az)=exp i f (B,A, —B,A, )(}' ' A
2 x

Xexp ——' AT —V +p2AT
X

(58)

where AT is the transverse part of A', and V '= V/V .
To effect the desired limit, first the fields are rescaled,
then the wave functional (58) tends as p~ 00 to

exp i—' f (a, A, —a, A, )V ' A
p~ oo 2 X

Xexp —— AT AT (59)

Equation (59) can be written in terms of holomorphic
fields A+ =(1/&2)( A, +i A z ), as

%(A+, A ) = exp —f A A
K ~+

P,~ 00 X

. dI "= i ln det —i +a +v—f dt a .0 (57) Xexp —— A+ A
X

(60)

The determinant has been computed and one finds that
it is not invariant against gauge transformations with
nontrivial winding number: under a gauge transforma-
tion the determinant acquires the sign (

—1) . Hence
gauge invariance of exp(iI 0) requires the half-integral
quantization of v. Upon choosing v=~n~+ —,

' in (51), the
Hilbert space becomes one dimensional, with the wave
function given, e.g. , by (38) or (39).

[The above calculation of the eff'ective action for the re
duced theory shows that the eff'ective action of the com-
plete theory is gauge invariant, as anticipated by the for-
mal argument. The point is that in terms of variables (42}
the determinant of the complete theory is seen to be a
product of two anomalously behaving determinants; but
the factor (

—1) disappears from the product. ]
In conclusion, we see that the simple quantum-

mechanical models discussed in this paper illustrate the
change in symplectic structure that occurs when the van-
ishing of a parameter takes a second-order Lagrangian
into a first-order one. Being exactly solvable, these

where h is defined through

=h-'a h (61b)

and co is the time-component of the three-vector whose
divergence is the winding number density:

a„W=,e»tr(g 'd~g 'B~g 'a,g) . (61c}

In the Abelian case (61) reduces to

K +
%(A )=exp —f A A

2 X
(62)

On the other hand, the wave functional of the (non-
Abelian) Chem-Simons theory is

~p(A }=exp v f tr(—A h '8+h) —i8&zf co (h)
X X

(61a)
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Therefore from (60) we obtain

%(A+A ) ~ 4'(A )exp ——f A+A
P,~ 00 2 x

(63)

Thus, just as in the quantum-mechanical case, the wave
functional of the topologically massive theory passes in
the limit to that of the pure Chem-Simons theory times
the square root of the holomorphic measure factor.
Consequently, the normalization density possesses the
correct limit as in (41b).

The shift in the zero-point eigenvalues is another ex-
ample of the noncommutativity between phase-space
reduction and quantization, and can be formulated as an
ordering ambiguity in terms of the operators (42) that di-

agonalize the Hamiltonian (7) (Ref. 10). The field-
theoretic analog of this phenomenon gives rise to a
dependence of the Wilson loop expectation value in the
Chem-Simons theory on the method of calculation: re-
sults dimer depending on whether they are calculated
directly or as limits of the topologically massive model. "
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