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We formulate the Bogoliubov-Born-Green-Kirkwood- Yvon hierarchy of kinetic equations for a
quark-gluon plasma. Assuming a Bose-Einstein distribution for the equilibrium distribution of hot
gluons and ghosts and the Fermi distribution for the equilibrium distribution of hot quarks, we

solve those kinetic equations in the mean-field limit and obtain the dispersion relation in the order

g . We find that, contrary to this above assumption, the state of noninteracting quarks and gluons is

unstable; i.e., the damping constant of the color oscillations is negative. We argue that the nonper-
turbative effects at the scale -g T make the perturbative approximation to the equilibrium distri-
bution of hot quarks and gluons inconsistent with the kinetic equations already at the lowest, non-

trivial order g .

I. INTRODUCTION

Heavy-ion collisions at ultrarelativistic energies offer a
unique opportunity to explore the large-scale properties
of quantum chromodynamics (QCD), in particular the
phase structure at high temperatures and densities. It is
expected that at suSciently high beam energies the pro-
duced matter will initially take the form of a plasma of
unconfined quarks and gluons. This plasma would im-
mediately begin a complex evolution, culminating in its
decay into ordinary hadrons. This poses several new and
diScult questions about the formation conditions of the
quark-gluon plasma and the existence of any relics of
plasma formation in the final decay products, as we11 as
about the long-wavelength properties of the plasma and,
in particular, about the dynamics of the plasmon excita-
tions. The latter problem is the main subject of this pa-
per.

The thermal properties of gluons have recently been
the subject of both much controversy and intense investi-
gation. When one applies the techniques from the Abeli-
an theories to the non-Abelian case of QCD, one finds a
serious disagreement concerning the damping of color os-
cillations in a quark-gluon plasma. The quark-gluon
plasma has been investigated in perturbative QCD using
the gluon propagator, the quantity which is explicitly
gauge dependent. It turns out that, in the one-loop ap-
proximation, independently of the chosen gauge, the os-
cillation frequency of the long-wavelength excitations of
the plasma is the same and equals co= —,'gTN' . On the
contrary, the damping constant depends on the chosen
gauge and equals y=g NT/24tr (the damped plasma)
both in the Coulomb gauge and in the axial gauge'
( A =0) and becomes y = —5g NT/24tr and
y= —1 lg /NT24sr (the unstable plasma) in the covari-
ant gauges, t)„A"=0 (the Lorentz gauge), and D„A"=0

(the background gauge), respectively. Those surprising
results could have been attributed to a wrong method
chosen by the authors of Ref. 2. However, the results ob-
tained in this paper and the results of Hansson and
Zahed seem to contradict such a statement. Using the
background gauge, Hansson and Zahed have constructed
the gauge-independent, finite-temperature effective action
for gluons. This effective action contains all the infor-
mation about dynamics of the plasma in the first nontrivi-
al order in A'. In the one-loop approximation and keeping
only terms quadratic in the background fields, Hansson
and Zahed restore the perturbative results for the damp-
ing constant and the frequency of long-wavelength oscil-
lations in a gluon plasma. Again, y is negative and ex-

plicitly gauge-parameter dependent. Also the calculation
of Nadkarni, using the method of a gauge-invariant
propagator extracted from physical processes, gives
a negative value of the damping constant y
= —1 lg NT/24tr. This shows that there is at present a
severe problem in our understanding of the nature of the
plasmon within finite-temperature QCD.

The main challenge in the field of the quark-gluon plas-
ma is to specify its nonequilibrium properties and, in par-
ticular, to describe the way the equilibrium in the QCD
plasma is reached. The relativistic quantum kinetic
theory and resulting from it the relativistic transport
equations seem to be well suited for that purpose. ' We
do not address here the problem of the gauge depen-
dence of y or the problem of a correct definition of y.
Instead, our aim here is to formulate the relativistic ki-
netic theory on a quantum-field-theoretical basis by de-
veloping the Bogoliubov-Born-Green-Kirkwood- Yvon
(BBGKY) hierarchy and truncating it at the mean-field
level. This field is largely unexplored in spite of large in-
terest in developing the kinetic equations of quarks and
gluons. (For a recent review of the subject, see Ref. 9 and
references quoted therein. )
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Calculating the damping constant of color oscillations
for the non-Abelian, finite-temperature field theory, one
faces essentially three problems: (i) the gauge-invariant
definition of y; (ii) the self-consistent calculation of y; (iii)
the nonperturbative calculation of y.

In the scheme of the relativistic transport equations
proposed in this paper, one can address the last two
points. The mean-field equations, derived in Sec. II E in
the covariant gauge, consist of a nonperturbative, self-
consistent set of equations. These equations are com-
pletely general and can be used to study dynamics of the
QCD plasma far from the equilibrium. Formally, they
are gauge dependent (see Sec. II E};however, these equa-
tions contain essentially the same information about the
dynamics of the system as the equations explicitly gauge
covariant, being considerably less complicated. For
those transport equations, in the vicinity of the equilibri-
um, one can obtain the dispersion relation (see Sec. III B).
Solutions of the dispersion relations for the frequency and
the damping constant of the plasmon are the same (see
Sec. III C} as obtained in Ref. 2 provided one takes the
equilibrium distribution for the noninteracting gas of
quarks and gluons.

The dependence of the frequency and the damping
constant of the plasmon on the chosen equilibrium distri-
bution function (see Sec. III C) can be seen clearly in the
framework of the relativistic transport equations, which
are developed in this work. This feature is important due
to the expected instability of the perturbative QCD vacu-
um at the confining scale -g T (Ref. 10}. Equilibrium
distribution functions at high temperatures which are
known only for free gluons and quarks can undergo im-
portant changes, when the interactions between particles
are taken into the consideration. Indeed, the QCD lattice
simulations show important deviations from the free
quark and gluons approximation of the plasma. " Even
at high temperatures the magnetic sector of the gauge ac-
tion is nonperturbative, due to infrared divergences. '

This nonperturbative action has been studied by Polonyi
and classical monopole solutions have been shown to be
important. '

This paper is organized as follows. In Sec. II the gluon
sector of the theory is analyzed. After the first three in-

troductory sections (Secs. II A —II C), we discuss in Sec.
II D the mean-field approximation to the BBGKY hierar-

chy of kinetic equations. In the next section (Sec. II E}
we present the derivation of the hierarchy of relativistic
transport equations from QCD field equations. This
hierarchy of transport equations is closed at the mean-
field level. The mean-field transport equations are then
linearized in the vicinity of equilibrium (Sec. IIF). The
linearized version of those equations provides a starting
point in the derivation of the perturbative dispersion rela-
tion (Sec. III). The dispersion relation is written down in

Sec. III B and in Sec. III C the dispersion relation is ana-
lyzed in the limit co»~k~. In Sec. IVA inclusion of
quarks at high temperatures will be discussed. For such
a generalized kinetic theory, the dispersion relations will

be given (see Sec. IV D) in the limits T »p, p » T. Fi-
nally, in Sec. V we summarize the most important results
of our calculations.

L =Lo+LfI +LFP

Non-Abelian, self-interacting fields for gluons,
A' (p=O, . . . , 3,a = 1, . . . , N 1) a—re described by the
Lagrangian Lo.

t FQ+Qpv
0 4 p

where F„'„=B„A;—B„A„'+gf,b, A „,3„, and if,b, are
the structure constants of the SU(N) group. Lo possesses
the local SU(N) gauge symmetry. L&„ is a gauge-fixing
term which is introduced in order to eliminate the un-

physical degrees of freedom of the fields A. Throughout
this paper we employ the covariant gauge, for which

Ls„=— (8"3„' }
1

20!

Moreover, in the covariant gauge one has to introduce
Faddeev-Popov ghosts, the unphysical fermionic fields

c,c interacting with gluons. They are described by the
Lagrangian FFp.

In the perturbative calculation, this theory contains
three- and four-gluon interactions, as well as the interac-
tion of the field A with the ghosts.

B. Statistical average

The effective QCD Lagrangian is a function of quan-
tum fields A and c. Solving field equations for A and c in
a system as complicated as the quark-gluon plasma is an
impossible task to perform. On the other hand, a statisti-
cal description of the hot plasma seems to be physically
more appropriate and, moreover, it offers the possibility
of simplifying the original quantum-field-theoretical
problem. In this kind of description, one has to intro-
duce suitable statistical function, e.g. , the statistical aver-
ages of the quantum operators

(0)=TrPO,

which are built from the quantum operators A, c, and the
density operator p. Such a statistical formalism can be
employed, as will be explained in Sec. II E, even though,
in general, p is unknown. The resulting equations for the
averages of quantum operators can be treated as func-
tional identities which yield the solution describing the
system.

In this paper we follow a di6'erent strategy. We shall
assume a precise form of the density operator, the grand
canonical density operator

—P(H+p~ Q )
e

P —P(H+I „g")
Tre

where H is the Hamilton operator and Q" are the charge
operators commuting with H. In the case of gluons we

II. GLUONS IN THE MEAN-FIELD APPROXIMATION

A. QCD Lagrangian

An effective QCD Lagrangian for hot gluonic matter
consists of three terms:
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take p„=O. For the quarks in the symmetric nuclear
matter, we assume @=pe Q

"=
—,')u&, because we consider

only quarks u and d. In the limit T~O, the statistical
averages become (0)=(0ioi0), where i0) is the state
of minimal energy. In this limit, the averages (0)
reduce to the averages of the usual, zero-temperature
field theory. One should mention that this way of intro-
ducing the temperature destroys the Lorentz covariance
of the theory and, consequently, we work in the plasma
rest frame. The statistical averages, calculated with the
help of this operator, are expected to yield a good ap-
proximation of the equilibrium state. This is required for
a proper description of the near-equilibrium dynamics of
the quark-gluon plasma. However, it should be stressed
that the kinetic equations of Sec. II E are completely gen-
eral and their form does not depend on any particular
choice of the statistical operator.

C. The field equations

In Sec. IIA we wrote the effective Lagrangian L of
self-interacting gluons. Using Eq. (1) and differentiating

I

it with respect to the components of fields A or c we ob-
tain field equations, which will be used below to derive ki-
netic equations. However, before we write these field
equations explicitly, we would like to make a comment
about the way we obtain kinetic equations in the mean-
field approximation. In this approximation, one restricts
the number of possible statistical averages of quantum
fields by selecting only those which involve two quantum
fields. It is then assumed that these statistical averages
are symmetric; i.e., one neglects the statistical average of
the commutator of two fields: ([A„',A„"])=0. This
follows from the symmetry in Lorentz and color indices,
which is assumed for the equilibrium distributions.
Hence, in the equilibrium, the average of two fields will

take the form ( A „'(x)A „(y)) =5' A„„(x—y), where

A„„(x—y) is a symmetric tnatrix in Lorentz indices

(A&„=A„&)which due to the translational invariance of
the equilibrium distributions depends only on the
difference x —y. Consequently, one neglects the genuine
noncommutability of quantum fields in the Lagrangian
(1). In this way one obtains

g„„CI+ ——1 a„a, A,"(x)= gf, ,B„A('(x—) A „,(x) 2gf, , Ag'(x)B—„A„,(x)1

a

+gf, , At'(x)B, A„,(x) g f,b,f—,d, At' (x)A„d(x')A„(x) gf,b, B„—cb(x)c, (x),

Clc, (x) gf,b, B„(A—4(x)cb(x))=0,

Clc~(x)+gf, b, A,"(x)Bgc,(x)=0 .

(2)

(3)

(4)

Notice that Eq. (2), besides the first power in A, con-
tains also the products of two and three fields. Similar
features can be seen in the Eqs. (3) and (4). These cou-
pling terms lead in the statistical description to the ex-
istence of an infinite hierarchy of coupled integro-
differential equations.

D. The BBGKY hierarchy and its truncation

As mentioned above, Eq. (2) after averaging takes the
form

&A)=V[&AA), &AAA), &
' )].

On the right-hand side, this equation contains three un-
known functions: ( A A ), ( A A A ), and ( c c ) . In order
to solve Eq. (5) one should construct, in addition, the evo-
lution equations also for these functions. It turns out
that these additional equations' contain still higher-
order statistical averages:

( A A ) = 9'2( ( A A A ), ( A A A A ), ( Ac tc ),( c tc A ) ),
(c c)=Q((c cA), (Actc)),

( AAA ) =V3(( AAAA ), ( AAAAA ),
(AAc c), (Ac cA), (c cAA)) .

One can continue the above procedure infinitely, adding
more and more equations for the averages appearing on
the right-hand side of the equations obtained till then. In
this way one gets an infinite set of equations for infinitely

many functions: ( A ), ( A A ), (c c ), ( A A A ), ( Ac c ),
(c cA ), ( A A A A ), . . . . This set of equations is called
the BBGKY hierarchy. If we were able to solve equa-
tions of this hierarchy, i.e., knowing all correlations of a
system, we would be able to describe dynamics of the sys-
tem completely. The solution of this problem would
reduce the whole macroscopic thermodynamics of the
system to its microscopic characteristics. Unfortunately,
from the mathematical point of view, this is a very com-
plicated set of equations. In four dimensions one cannot
even say if there exists a solution, and, if so, then whether
the solution is unique. Consequently, we have no answer
to the fundamental question of statistical physics: Is the
macroscopic behavior of the system uniquely determined
by microscopic, dynamical laws?

Hence, in order to obtain any solution we have to pro-
pose a truncation scheme which cuts the kinetic equa-
tions of the BBGKY hierarchy. One may achieve this by
approximating the averages of many fields by the corre-
sponding products of the averages of a smaller number of
fields. This procedure becomes clear when we rewrite the
averages of field operators using the correlation functions
A„(Ref. 14):
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& A (1)A (2) & =R~(1,2)+ & A (1)& & A (2) &,

& A (1)A (2) A (3) &
= %3(1,2, 3)+ g R~(1,2) & A (3) &

sym

+& A(1)&& A(2)&& A(3)&,

& A (1)A (2)A (3)A (4) &

= R„(1,2, 3,4)+ g %3(1,2, 3) & A (4) &

sym

+ g %'q(1, 2)%2(3,4)
sym

+ g &q(1, 2)& A (3) & & A (4) &

sym

+ & A (1)&& A (2)&& A (3)&& A (4)& .

Numbers 1 —4 in the above equations stand for the color
and Lorentz indices as well as for the coordinates. The
functions R„stand for the n-particle correlation func-

tions for the fields A. Truncating the hierarchy at the
level of the two-particle correlation functions means put-
ting %'„=0 for n )2. If, in addition, one neglects the
higher-order correlations between the gauge and ghost
fields, then one gets a closed set of equations for a finite
number of unknown functions. Physically, one expects
that the first two correlation functions are essentially
sufficient for the description Of the system. On the other
hand, neglecting the two-part;icle correlation functions
corresponds to neglecting quantum fluctuations, i.e., to
the classical limit.

E. The hierarchy of kinetic equations

Kinetic equations are obtained from the field equations
(2)—(4) by performing statistical averaging and taking the
Fourier transform. In addition, we put a=1; i.e., we
choose the Feynman gauge. In this gauge the left-hand
side of Eq. (2} takes the form of the dispersion relation for
free gluons and the lowest-order equation for fields A be-
comes

4 d 1—k~g„& A,"(k) &
= igf, b, f I"& A„s(l)A„,(k —1)&+2igf, b, f I"& A„„(k—l)A, (l) &

(2n ) (2~)
d41

igf, l —f I "& A„s(k —I) A,"(I)&

(2n )

d41) d412
g f b f d, f— f & A„b(k —I, )Ag(1, I~)A„„(12)&-

(2m ) (2m )

+igf, s, f l„&c„(l)c,(k —I)&,
(2n4)

where

(6)

A„,(k)= f d x exp(ikx)A„, (x) . (6a)

The corresponding equations for the ghost fields can be obtained acting with operators „and on the product
& c (y)c (x) & and taking the Fourier transform

d 1k & cb(p)c, (k) & =igf, d, k"f 4 & cb(p)cd(k —I) A„,(l) &,
(2m )

d41
p'&cb(p}c.(k) &

= ~gfdb, f,—I"& A„,(p 1)cd(1)c,(k) & .—
(2m )

Operators c&(p} and c,(k) are defined similarly as A„,(k) [Eq. (6a)].
In the same way, one can derive equations for the average of the two gluon fields:

d41 d41
& A„,(k)A i(p)&= igf ~, f I„&—Ag(l)A„, (k l)A q(p)& Zigf—b, f —41"& Af(k —l}A„(l)A h(p) &

(2m. ) (2n. )

+igf, b, f I„& A„b(k —I)A,"(I)A q(p) &

d 1

(2m )

d 1, d 1
+g f,„,f d, f f & A„b(k —1, )Ad(l, —12)A„,(12)A h(p)&

(2m. ) (2m )

+igf, b, f 1„&c~(1)c,(k —l)A I, (p)&,(2'�)'
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d I d41
p (A, (k)A „(p))= ig—f„b,f 1„(A„,(k)AIL'(1)A, (p —I)) 2—igf„b, f I„(A„(k)Ag(p —1)A,(l))

(2m ) (2m)

+igfbb, f 41 ( A, (k}A„b(p —1)A,"(I))
d41

(2n. )

d 1, d 1~
+g fbb, f d, f f (A„,(k)A„b(p —I, )Ag'(I, —I~)A, (12))

(2m } (2m )

+igfbb, f I ( A, (k)cbt(l)c, (p —I)) .
(2~)'

If we use the truncation scheme described in Sec. II D, i.e., if we neglect the correlations of three and more gluon
fields, and if, in addition, we apply the Vlasov approximation to the statistical averages containing fields A and e,

(ctcA ) =
& Actc) =&etc) & A ),

then we obtain three equations for the three unknown functions ( A ), ( A A ), ( c c ):

d 1 d41kg„,( —A,"(k))=igf b, f &
I"( A„b(l)A„,(k —I))+2igf,b, f I"(A b(k —l)A„(l))

d41
igf,b,

—f I ( A„b(k —1)A,"(I))
(2m )

d I, d'I,
g'f.b,f,d, f— ,f, g ( A„b(k —I, )Af(1, —12))( A„,(12})(2~)' (2~)'

—2( Aqb(k —Il ))( Aq(11 —12))( A„,(12))

d1
+&gf,b, f '41 (cb(1)c,(k —I)),

(2n4) (9)

d41
k (cb(p)c, (k)) =igf,d, k"f (cb(p)cd(k —I))( A„,(l)),

(2m )

4

p (cb(p)c, (k)) = tgfdb, f —
~
I"(A„,(p —l))(cd(I}c,(k)),

(2m )

(10)

d4Ik'(A„, (k)A~b(p))= igf b, f —~I„Q (Af(l)A„, (k —1))(A „(p))—2(AIL'(l))(A„, (k —1))(A „(p))
'

sym

d41—2gf. ,f, l" g &Ag(k —1)A„,(l))(A „(p))—2(AI,'(k —l))(A, (l)&(A „(p)&
'

(2m),y

d'1
+igf b, f 41„+(A„b(k —I)A,"(1))(A b(p)) —2(A„b(k —I))(A,"(1))(A b(p))

(2m )

d 1, d 12
+g' f b,f d, f ~ f 4 g (A„b(k —Ii)Af(Ii —lp))(A„, (12)A b(p))

(2m) (2n ) y

2& A„(k I )&( A "(I,—I ) && A„(l }&& A „(p}&

+igf,b, f 1„(c,(l)c, (k —I))( A „(p)),
(2n )
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d'I
p (A„,(k)A q(p)) = i—gfhb, f 41„+(A„,(k)At'(I))( A, (p —I)) —2(A„,(k))( Ar,'(I})(A, (p —I}) '

(2n. )

d41
2—igfhb, f 4 l„g ( A„,(k)AIL'(p —I))( A, (1})—2( A„,(k))( Ag(p —I) )( A, (l))

(2m )

d'1
+igf~~,f,l. '

g (A„.(k)A„b(p —1)&(A,"(I)&—2(A„,(k)&& A„&(p —I)&& A,"(I))
(2m.),y

dl, d12
+g'f~b, f d,f,f, g & A„.(k)A„,(p —I, )) & Ag(i, —1,)A.,(1,))

(2m ) (2n )

-2& A„.(k)&( A„,(p —I, )&& A"(I, —I ))( A ,(I ))
4

+igf,f,1.& A„.(k)&&c,'(l)c, (p —I) & .
(2~}'

In the equilibrium we assume that (i) ( A ) =0, i.e., no classical fields are present, and (u) the equtnnrtum aistnouuons
depend only on the relative coordinates, i.e.,

( A (x) A (y) ) =A(x —y), (c (x)c (y) ) =C(x —y) .

In this case, Eqs. (9) and (10) are satisfied identically and Eq. (11) reduces to

d41 d1k'A, (k)= g2NA— „(k)f,A"„(k I)+g~—NA„„(k)f A"(k —I) .
(2n ) (2n )

The above equation introduces a correction to the free mass-shell equation k =0 for the fields A.

(12)

F. Perturbation of the equilibrium distribution

Let us suppose that by some unknown mechanism the system has reached an equilibrium state. In this case, if we
would know the equilibrium distribution functions A and C, then we could use the above transport equations to study
the behavior of hot gluons near the equilibrium. Let 5A be a perturbation of the field A, induced by the coupling to
some exterior, physical system. Assuming that this perturbation is small, we can restrict ourselves to terms linear in
5 A. Then, using the features of the equilibrium distribution functions (Sec. II E), one obtains

d'I„.d41
kQ„, (k) =igf,b—,f I"AQ„„s,(l, k I)+2igf, b, f —I"AQ„„s,(k —l, l)

(2m) "" ' '
(2m)

d41 „,d41
igf, b, f — I„AQI„'&,(k 1,1)+g N—f A~(k —l)Q„,(k)

(2m ) (2m )

d I d4I
g'N f—,A"„(k l)Q„,(k)+ig—f,b,f,1„(cbt(l)c,(k —I)),

(2~) " "' ' '
(2m)

(13)

where (5A,")=Q," and AQ„„,b(k, p) = ( A„,(k)5A „b(p) ) + (5A„,(k) A„&(p) ). In deriving this equation we have as-
sumed that the equilibrium distribution functions ( A, Ab ) are 5 matrices in color indices. The functions (c c ) and
AQ, occurring on the right-hand side of Eq. (13), are given by the equations

d41
k (cbt(p)c, (k) ) =igf, b, k„f (c&(p)cd(k I) )& Q,"(I)—,

(2m }

d41p'(c, (p)c, (k) ) = igf„,f 4
1„—(cd(l)c, (k) )a QP(p —I),

(2n )

k Ag„~,p(k, p) = igf, ~, [(p k)qA „~—(p)+(2k +—p)"A„~(p)g„„—(2p +k)~ ~(p)]Q, (k +p)

+g'N f A„"(k I)AQ, „—(k,p) g'N f —„A"(k —I) AQ„,„(k,p)

—g f,s,f,dIA„(p) ~ AQ„"sd(k —I,p+I) —g f,b,f,idA~(p) f 4 AQ„bd(k —l,p+I)(2n) " ' ' '
(2~)

d41
g fgh, f,sdA~(p) f —

4 AQ„„bd(k —I,p +I),
(2m)
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p AQ,~g~(k, p)=igf, h, [(k —p)iA„(k)+(2p +k)"A„„(k)g i —(2k +p)~,i(k)]Q, (k +p)
d41 d 1

g—N f A„"(p l—)AQ„,&(k,p)+g N f A"(p —l)AQ„„,„(k,p)
(2n. ) (2m. )

(15)

4 d 1+g foal„f,d,A„~(k)J ~ AQ„"bd(p l, k—+I)+g fear„f„dAI„'(k) f AQ„bd(p l, k—+I)
(2~)' (2n)

+g f&.,f„,A„(k)I,AQ„.„(p l, k—+1),
(2n )

where (c c )a =C are the equilibrium distribution func-
tions for fields c and

A„,(k) = mg„—„5(k '[nb( ~ko~ )+8(—ko)],

A„„(k)=f d x exp(ikx}A„„(x) . (15a)
where nb(k) is the Bose-Einstein distribution function.
Similarly, for the ghost distribution function, one finds

It should be noticed that due to Eq. (8) the zero-order
terms in Q [Eq. (15)] cancel. Thus, we have obtained the
set of integral equations, which is complete, provided we
know the equilibrium distribution functions A and C.

One has also to find a method of solving Eq. (15). One
method would be to approximate the solution perturba-
tively, i.e., expanding the solution in the power series of
g. Then, the correlation function AQ has the form
AQ =g g„" 0(g )"AQ'"'. One can evaluate AQ'"+" by
inserting AQ'"' and A„„,which are calculated in the or-
der (g )", into the right-hand side of Eq. (15).

III. THE DISPERSION RELATION IN THE ORDER g

A. Equilibrium distribution functions

To obtain the dispersion relation in order g from Eq.
(13), one has to insert the equilibrium distribution func-
tions for free fields into the right-hand of Eq. (13), as well
as into Eqs. (14) and (15). In addition, one should keep
only terms proportional to g in Eqs. (15).

The equilibrium distribution functions are defined as
the statistical averages of two fields, A or c. Substituting
for the field operator A,"(x) in ( Ag(x) A&(y) ) its expan-
sion in the creation and annihilation operators,

d'kA~(x)=, f g [e"(k,s)a, (k, s)e2~k, ,
+e"'(k, s)a, (k,s)e'""],

one obtains, in the Feynman gauge (a =1), the free distri-
bution function

e(k) =~s(k') [nb( lko I )+8(—ko) ]

The ghosts are described by the boson distribution func-
tion' because they represent another way of writing the
functional determinant depending only on the fields A.

B. Dispersion relation

Having defined the equilibrium distribution functions,
one can solve Eqs. (14) and (15}. We shall describe the
procedure on the example of the equations for AQ. On
the left-hand side of Eqs. (15) stands a singular operator
(p or k ), acting on the function AQ(k, p). Dividing the
right-hand side of the first of Eqs. (15) by kz, one obtains
the solution for AQ up to the addition of an arbitrary
solution of the homogeneous equation: k AQ(k, p)=0.
This arbitrariness can be removed using the second of
Eqs. (15). In this way, one can find the function AQ
uniquely. However, there is still the problem how to
avoid the zeros of k, which occur in the denominator.
One has to turn around those singularities in such a way
that the retarded response of field distributions to the
small perturbation of the current appears in Eq. (13). We
shall come back again to this question in Appendix A 1.

Finally, inserting expressions for AQ and c c into (13),
one obtains the dispersion relation

k'Q'„(k) —II,„(k)Q"'(k)=0

The polarization tensor H, which occurs in this equation,
is the correction of order g to the zero-order dispersion
relation: k Q'(k) =0. This tensor has the form

—41„1 +kqk —k g„——,'1 g„„+2klg„—2l„k —21 k„
H„„(k)=ig N, " " 5(l )[nb(~lo~)+8( —Io)]

(2m ) (1+k)
(17)

and satisfies the transversality condition

k "II„„=O, (18)

on the mass shell (k =0). This property of the tensor
cancels the quadratic divergences, which seem to occur in
(17). If in Eq. (17) one takes the distributions for T=0,
then, using Eq. (18), one can write

II„„(k)=(k g„,, —k„k,)H„(k),
where H„(k)=—,'[II„"(k}—H„"(0}]. The tensor for T =0
is called the "vacuum"-polarization tensor, because it de-
scribes an influence of the vacuum fluctuations on the
propagation of the oscillation. We shall deal now with
the part of the tensor, which is connected with the
thermal excitation, i.e., with the "matter part" of the po-
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larization tensor. For large temperatures this term will

dominate in the dispersion relation (16}. For finite tem-
peratures, the tensor II still satisfies the transversality
condition (18), even though expressions for II are not
Lorentz covariant. Let us now separate the polarization
tensor into longitudinal and transversal parts:

T

k, k k, k
II,-, =rr, 6,,- — ', ' +II, ',' .

g2

D (ko, Ik I )=o,
then the oscillation frequency m is the solution of the
equation

ReD (ra, ~k~ }=0,
and the damping constant is given by

ItnD (cg,
~
k

~ )

Using Eq. (18), one can write the identities

koIIoo=k, .H o ko2H=k gz .

The tensor H has two eigenvalues. Consequently, one ob-
tains two dispersion relations: One for the 1ongitudinal
oscillations

» the limit co » ~k~, using those relations, one obtains

kP+g NT ~ 1 k
2n +1 ko

for the longitudinal oscillations and

ko —k —HL (k)=0

and another one for the transversal oscillations

ko —k —Hr(k)=0,

where HL =(ko/k )Hoo and IIr =
—,'(II;;—III ).

C. Dispersion relation in the limit co »
~ k~

(19}

(20)

k
9 3 „& (2n+1)(2n+3} ko

L

for the transversal oscillations. Similarly, for the damp-
ing constant y one derives

g NTco " 2n+5 ky=
4m „0(2n+1)(2n+3) ko

After performing the integration on Io and the angles
in Eq. (17}and leaving only the terms containing the dis-
tribution nb(l), one obtains

1

8 ReD(~, lkl)

in the case of the longitudinal oscillations and

(23}

—g2Nko2
HL = Hb,

k

g N HL
H7 = (Hb+Gy)—

2 2

where

(21)

(22)

NT~ 2+2 6n +7 k
16m „o (2n+1)(2n+3) ko

co „o2n+1 ko

a, =f" ', 21 1—
2'

ko k+ ~& ko
ln + L( 1}+ L—(I )

+ IkoM (1) nb(l ),

(1+k+ )(1 —k )L(l)=ln
(1+k )(1 —k+ )

(1+k+ )(1 —k~ )
M(1) =ln

(1+k )(1 —k )

These are precisely the expressions obtained in the per-
turbative calculations. ' We shall calculate those in-
tegrals at large temperatures in Appendix A1. Having
the dispersion relations (19) and (20), one has to unfold
them, i.e., to express ko by ~k~. We shall do this in the
case when the real part of ko is much greater than its
imaginary part (ko =co—iy, co&)y). In this case, if the
dispersion relation has the form

Gb= f 41+ L(i) nb(l)—
5(ko —k ) HL

2m' k 2

ko+k
k = Ikl, k~ =

for the transversal ones.
Following Weldon, ' an existence of the solution of the

dispersion relations (19) and (20) in the limit T &)co »
~ k~

suggests the existence of longitudinal "electric" and
transverse "electric" and "magnetic" oscillations with
the above-calculated frequencies. However, because of
the negative sign of the damping constant y, those oscil-
lations would have the growing amplitude. This instabili-
ty is due to the energy transfer from the heat bath into
the unstable modes and leads eventually to the destruc-
tion of the assumed colored equilibrium state as defined
in Secs. II E and III A. Hence, contrary to our earlier as-
sumption, that state is not an equilibrium one. In the
limit

~
k

~
~0 the above relations reduce to

CO CO CO
T 5 XT

L T P 3
& L T 24

i.e., we reproduce the results of Ref. 2.
The above result on y puts doubts on the validity of

the perturbative approximation for the equilibrium state.
Clearly, the zero-order approximation of the distribution
function leads to instability. This conclusion agrees with
the results of Nadkarni, which indicates the instability
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of the perturbative QCD vacuum. Additional arguments
were given recently by Weiss' who noticed that QCD at
T~ ao reduces to a three-dimensional gauge theory with
an adjoint scalar field. Three-dimensional QCD is a
confining theory and the characteristic scale of con-
finement is of order -g T. Hence, at this scale one may
expect the nonperturbative confining properties in the
QCD which will modify the equilibrium distribution.
Further evidence comes from the presence of infrared
divergences in the iong-wavelength limit, at the scale
-g T (Ref. 17}. According to DeTar, the free distribu-
tion function for gluons at this momentum scale is
modified in the nontrivial way, even though for larger
momenta it constitutes the good perturbative approxima-
tion. "

At this point one should discuss details of the calcula-
tion of co and y. Both quantities are given by the in-
tegrals of a function containing the factor nb, i.e., the free
boson distribution function. The real parts of the polar-
ization functions III and IIT are given by integrals of the
form

IV. QUARKS

A. Lagrangian and the field equations

The introduction of the massless quarks into the theory
changes the effective Lagrangian (1). The total Lagrang-
ian now contains a new term

N~ —%„(x)y"a„q„(x)——a„q „(x)y"q „(x)
A=1

+ —,'g+„(x}A,,y„%'„(x)A,"(x)

where k, denotes the Gell-Mann matrices and NI the
number of quark flavors. The addition of the quarks to
the theory also changes the field equations. A new term
appears now on the right-hand side of Eq. (2), denoting
the quark current:

f——g g V„(x)A,,y„%„(x).
A=1

The new equations for the fields 0' and %' are

(24)

g N nb /P, I., k0,
0

Consequently, any nonperturbative modification of the
distribution function in the nonperturbative domain"-g T" would give a correction to the real part of the
polarization tensor of the higher order g T . Hence the
plasmon frequency co would not change. However, those
nonperturbative corrections could easily change the re-
sult for y, which is given by an integral over a finite inter-
val in the nonperturbative domain "-g T ":

k+
g N f„dl ni, (l)Pz(l, ko, k),

where both k+ and k are of the order g T (see also Ap-
pendix A 1).

iy "a„O(x) = —g—,
'

A,,y„%(x) A,"(x),
ia„V(x)y"=g—,

' %(x)iL, y„A,"(x) .
(25)

B. BBGKY hierarchy equations for quarks

Transport equations for (%(x)%(y)) can be derived
from the field equations for quarks. Acting on
(0'(x)ql(y)) with iy„a"„ to the right and with iy a" to
the left, one obtains

i ya"„(4( x)%(y)) = —
—,'A,,y„( A,"(x)4(x)%(y)), (26)

i ( +(x)+(y) )y„a "» = -,
' &, ( +(x)+(y) A."(y) )y„. (27)

On the right-hand side of those equations one finds un-
known averages of three fields. The evolution equations
for those averages contain unknown averages of still
higher order. This procedure gives rise to a new class of
equations within the BBGKY hierarchy. Equations (26)
and (27} are similar to Eqs. (7) for ghost fields. We shall
also use the Vlasov approximation for statistical averages
containing fields A and 4:

( A%%) =(%%A ) =(%%)(A ) .

In this approximation, Eqs. (26) and (27) take the form

iy„a"„(%(x)%(y)) = —
—,'A,,y„(%(x)%(y)) ( A,"(x)),

(28)

( q ( )q U» &r a, =,x. & +( )+( ) )y ( A,"(y) & (29)

Let us now assume that in equilibrium the structure of
(V(x)+(y)) in color indices is proportional to the unit
matrix of dimension N XN. Then, the quark current, as
given by Eq. (24) and as occurs on the right-hand side of
Eq. (2) is equal zero. Hence, an introduction of quarks
does not change conclusions of Sec. II E, i.e., the trans-
port equations for the statistical averages: ( A ), (c c ),
and ( AA ) remain unchanged. Consequently, also the
results of Sec. II F, for the near-equilibrium behavior of
hot gluons do not change.

C. Dispersion relation

Let us apply a sma11 perturbative 5A to the equilibri-
um field distributions and look how the quark current
[Eq. (24)], modifies propagation of the perturbation.
Similarly as for the ghost fields, one can write down equa-
tions for the function (%%) in the approximation of
small Q =(5A ), i.e., leaving only terms linear in Q.
Hence, Eqs. (28) and (29) take the forin

r„a~(q( }%(v}&= —
—,').r„&q(x)V(3') &s &Q."(x)&

After taking the statistical average in the field equations,
one obtains a new term on the right-hand side of Eq. (2},
which results from the quark current (24):

f
—,'g Trl, ,y„g ( 4 „(x)+„(x)) .

A=1

Hence, in order to close the BBGKY hierarchy, one
should construct equations for the function ( 4(x)%(x) ).
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i(q(x)%(y))y 8"=-'k.(P(x)q(y))„y (Q."(y)),
where ( %%)„denotes the equilibrium distribution func-
tion for the quark fields. In order to find the dispersion
relation to order g, it is enough to take for ( %% )a the
distribution function for the free quark fields.

Because of the translational invariance of the system in
equilibrium, the distribution function (%(y)'P(x)) de-
pends only on the difference x —y. The calculation of the
equilibrium distribution function for quarks is more
complicated than for gluons, because the function
('P@(x —y) )a possess the structure of the N X N matrix
in color indices and the 4X4 matrix in spinor indices.
The structure in color indices was discussed in Sec. IV B.
The structure in the spinor indices can be found from
Eqs. (26) and (27) with g =0. In momentum space they
take the form

&++(k)&=yg"[n1(Iko —pl)+8( —k )]5(k ), (30)

where nf denotes the Fermi-Dirac distribution function.
The dispersion relation (16) for the above equilibrium

distribution function (30) can be obtained following the
reasoning of Sec. III B. However, the polarization tensor
0 is now a sum of the two terms —the gluon term, given
by Eq. (17) and the quark term II~:

As seen from the above equations, the equilibrium distri-
bution function for free quarks has the structure

(%%(k))a =y„k"f(k),
where f (k) is a function containing the factor 5(k ).
One can calculate this function, by inserting into
( Trq'(y)%'(x) )a the expansion of 4 and 4 in the creation
and annihilation operators. Finally, performing the
Fourier transformation, one obtains

d41 (k +1)„l„+(k+1),l„(k+1)l—g„„II~,(k)= 4ig —It! f "" ' " ""
[n (~lo —p~)+8( —lo)]5(l ) .

(217) (k + I) f 0 (31)

For T ))p, this tensor has the same form as the polarization tensor calculated to order g by Weldon. ' The tensor H
is transverse, which assures the cancellation of quadratic divergences. The logarithmic divergences must be included in
the renormalization of the factor g . The terms containing 8( —10) in Eq. (31) can be removed, because we are interest-
ed only in the dominant terms at high temperatures.

D. Dispersion relation in the limit ra » ~k~

We separate the longitudinal and the transverse parts of the tensor II, similarly as we did for gluons (Sec. II B). The
longitudinal part can be written in the form

g Nfko
H

II)
2

where

and the transversal part has the form

g Nfko
11$=— f f(H+G)—

41 —k —k ko —2lkO (!—k )k+
21+ L (I) [n&(l —ju)+ni(l +v)]+ ln n&(I —p)

4k +

ko+2Iko (I +k+ )k+ ln n!(1+ju)

dl k(, —k (I —k )k+ (I +k+ )k
Gz= f 21n[n!(I p)+n!(I+—p)]+ ln n&(1 —p)+In n!(I+p)

o

We now study the large temperature limit T »p, ko, ~k~.

One can calculate the real and imaginary parts of the fre-
quency similarly as for the gluons alone. It turns out that
the addition of quarks changes only the multiplication
factor in the real part of the dispersion relation. Hence,
in the expressions for co (see Sec. III C) one has to change
the factor g N into g (N +N&/2). In the imaginary part
of the dispersion relation the quark term appears with a

I

lower power of the temperature [ImII~=Oz. (1)]. Conse-
quently, the expressions for y, as written down in Sec.
III C remain unchanged. Also the conclusion about the
instability of the quark-gluon plasma remain unchanged.

One can also study the system in another part of the di-
agram p-T. Suppose that the system is in the region of
large baryon densities: i.e., p) T&) &k~ko~. The real
part of the dispersion relation changes and for the longi-
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tudinal oscillations one obtains

k2

f7g N p
12&k

Similarly, for the transversal oscillations one finds

(32)

long-wavelength limit, which would be consistent with
the condition co &&y. However, there are still the unsta-
ble, longitudinal modes with the frequencies given by Eq.
(32) and with the negative damping constant given by Eq.
(23).

V. CONCLUSION

2N 2
g IP

24m.

7g N~p1—
24m k

On the contrary, the imaginary part of the dispersion re-
lation does not change. As one can see from the above
expressions, there are no transverse oscillations in the

I

In this paper we have derived in an alternative way the
dispersion relation for gluons and quarks in the covariant
Lorentz gauge. The equations of the BBGKY hierarchy
have been derived for the functions ( A ), ( A A ), (c c ),
(%V), . . . , which are not gauge covariant. The main
argument for constructing equations in this way is their
simplicity. The analogous equations for the gauge-
covariant functions are much more complicated and,
thus, already the equation for

I „, x ——,x + —= ( I exp[ —,'y2)(x) jF„(x)j Iexp[ —
—,'yB(x)]F„,(x) j

contains the averages of fields A to all orders, in addition
to the covariant quantities F„,. Hence, one cannot
directly close the equations of such a theory using only
the covariant averages. The same problems arise when
dealing with the covariant equation for quarks. On the
other hand, the alternative approach based on gauge-
dependent averages is simpler and contains essentially the
same physical information. From the gauge-dependent
averages one can, using their moments, calculate physical
quantities such as the currents and the energy-
momentum tensor. Recently, Elze' has proposed an al-
ternative approach which emphasizes the gauge covari-
ance and employs a simpler Wigner function than used in
Ref. 2. In principle, in his approach one may hope to go
beyond the classical approximation but, unfortunately,
no results concerning dispersion relation have been de-
rived as yet.

In this paper we have constructed the BBKGY hierar-
chy for gluons and quarks. In order to close those equa-
tions, we have used the well-known mean-field approxi-
mation; i.e., we have neglected the correlation functions
for three and more gluon fields, as well as for the cou-
pling of gluons with quarks and ghosts. Within this ap-
proximation, we have obtained a well-defined, self-
consistent set of equations. One should notice that those
equations do not result from the perturbation approxima-
tion in powers of g.

We have used the derived transport equations for the
calculation of the dispersion relation in the order g for
gluons (Sec. III 8) and quarks (Sec. IV C). When solving
the dispersion relation, we have explicitly chosen Bose-
Einstein distribution function for gluons and ghosts and
Fermi distribution function for quarks; i.e., the equilibri-
um distribution functions for the noninteracting gas of
quarks and gluons. Calculated in this way, the frequency
and the damping constant of the long-wavelength excita-
tions of the plasma agree with the g perturbative calcula-
tion. Hence, contrary to our earlier assumption, the
equilibrium of the quark-gluon plasma cannot be approx-

imated by the state of noninteracting hot gluons and
quarks. The perturbative approximation to the equilibri-
um distribution of quarks and gluons is inconsistent with
the kinetic equation in the mean-field limit. This intro-
duces an additional difficulty in the calculation of the
plasmon decay rate on the top of the known difficulty
with the gauge dependence of the response function. In
this context application of the above proposed method is
advantageous because, contrary to the method of the
imaginary-time finite-temperature QCD (Refs. 1 —3), one
can easily generalize the relativistic transport equations
and dispersion relations also for the case of other distri-
butions.

It has been suggested that the interacting gluons, even
at high temperature, may take exotic forms of ordered
condensates of color-singlet states. ' ' If this conjecture
is true then the description of the quark-gluon plasma
solely in terms of quark and gluonic excitations is inade-
quate in the infrared region. Consequently the equilibri-
um distribution functions should be modified and the
relevant quantities should be looked for nonperturbative-
ly.

Actually, the transitions in various regions of (ko, k)-
space between different possible regimes in the conden-
sate remain unknown. Recently, DeTar and Polonyi' '
have suggested nonperturbative efFects in the long-
wavelength limit, i.e., at the scale -g T, due to the ex-
istence of the composite color-neutral objects. According
to this idea, the free distribution function at this momen-
tum scale is modified in the nontrivial way, even though,
for large momenta it constitutes the good perturbative
approximation. As discussed in Sec. III C, the real part
of the polarization tensor is given by an integral of the
distribution function from 0 to ao. Hence, in the leading
order the corrections to the distribution function in the
finite nonperturbative domain "-g T" do not change
the plasmon frequency ~. On the contrary, the imagi-
nary part of the polarization tensor, which determines
the damping constant is given by an integral in the
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domain "-g T " and is very sensitive to such nonpertur-
bative infrared corrections.

Hence, we believe that no quantitative conclusions
about the sign and magnitude of the plasmon decay rate
can be made before the nonperturbative structure of the
equilibrium distribution function is understood and the
nonperturbative calculation of the damping rate from the
mean-Geld equations is done. Solving this problem would
largely help in understanding puzzling features of the col-
lective behavior of the quark-gluon plasma using the
finite-temperature @CD.
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APPENDIX

I. Calculation of the integrals for large temperatures

In Secs. III C and IV D we have obtained integrals con-
taining the distribution functions nb and nf. Now we
shall work on the large temperatures expansion of those
expressions. In this limit, i.e., for T &&p, we can assume
nf(l p)=nf—(1+p)=nf(1). The real parts of those in-

tegrals were calculated in Ref. 16. In order to obtain the
temperature expansion of such expressions one has to ex-
pand the distribution function as

n;(I}= g cr;(m)e
m=1

where of(m)=( —1) +', ob(m)=1.
Finally, for ko & k, one obtains the leading-order terms

ko k+
ReHb = 1 — ln +const,

2k

ko
ReHf = 1 — ln +const,

T'
ReGb = +const,

3

T'
ReGf = +const .

6

In order to calculate the imaginary part of those expres-
sions one should make an analytical continuation to
avoid the cuts at the real axis. In order to obtain the
correct expressions from the point of view of causality,
one has to continue the frequencies into the upper half
plane (ko=ko+ie) This is con.nected with the prescrip-
tion of avoiding the singularities 1/p, that we have dis-
cussed in Sec. III B.

The singular expressions in the above integrals take the
form

A simple calculation shows that

k+
ImHb =f [(21—ko) —2k ]nb(1)

Sn.k

ko k+ kT k+
ln —1 + ln +const,

4n. 2k k 4~

5(ko k—)T
ImG„= f dl ns(l)

8~k2

5(ko —k )T k+
ln +const,

k

IrnHf -1, ImGf -1 .

E= f(l)
0 exp[P(l —p)]+ 1

Let us now change the variables x =Pl,

E=T Tx
0 exp x —p +1

and perform the integration by parts:

~ F Tx exp x —p
[exp(x —Pp)+1]

where F is the primitive of f. Changing again the vari-
ables y =x —Pp one obtains

i.e.,

K= F(T(y +Pp))e~
try (e~+ 1—)

F( T(y +Pp, })e~ tr„
(e~+ 1)

If in the above expression we make an expansion of the
function F(T(y +pp, )) around y =0, then we obtain the
leading powers of Pp in the expansion of K. Using this
procedure for the integrals obtained in Sec. IV D we ob-
tain

7pReH = +const, ReG = +const .

In the leading terms of the expansion,

ko
IrrMf = =Oz.(1), lmGz =0 (e ~") .

16~

2. Calculation of the integrals in the limit p ))T

For fermionic integrals in the limit p, )&T one has to
use the Sommerfeld expansion. Let us discuss an expres-
sion of the form

ln „1n( (+xi.
p does not occur in the imaginary part of those integrals.
Hence, one can neglect the imaginary part of the quark
term also in this area of the p-T diagram.
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