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Studies on the static screening effect in a pure gluon plasma by an extensive numerical simulation

of lattice QCD is reported here. The simulation is done on a 24X24X24XN, lattice with

N, =4,6, 16 at various temperatures above the phase transition. Our results show that the hot gluon

plasma fits a Debye-screening picture very well and the potential for each representation of a qq pair
system is of Yukawa-type potential. Also, accidentally, we find that the potential tends to agree
with the naive "lowest-order perturbative prediction" when Tbecomes much larger than T, .
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I. INTRODUCTION

The nature of the quark and gluon plasma in the
deconfined phase is not understood yet. It is expected
from asymptotic freedom that the quark and gluon plas-
ma may be described approximately as a gas of weakly in-
teracting quarks and gluons, at least for high tempera-
tures. In analogy to a QED hot plasma, where the
Debye-screening picture gives a good description of its
dynamic properties, we expect that a similar picture will
also be suitable for the QCD plasma. However, from the
theoretical point of view, the justification for this is hard
to make because of the great difficulties in dealing with
the infrared divergences in finite-temperature perturba-
tive QCD even at extremely high temperatures. Nonper-
turbative qualitative results are necessary.

Debye screening refers to the long-distance shielding of
electric charge (or color charge here) by plasma excita-
tions and converts the Coulomb potential into a Yukawa
potential. A further quantitative understanding of the
screening effect is very important since it might be the
physical mechanism responsible for the color
deconfinement phase transition. ' The low-energy ele-
mentary excitations of the hot plasma can also be learned
from this study since it is related indirectly to the screen-
ing effect. In addition, the heavy-quark potential in
such a phase can provide valuable information for high-
energy heavy-ion collisions. These are also motivations

for this study.
In this paper, we will report our high-statistics Monte

Carlo simulation result for quark and gluon plasma. Our
simulation results on lattice QCD clearly support the De-
bye picture. Based on it, we made a good measurement
of the static heavy-quark potential between q and q and
the "Debye" mass of the gluon plasma.

This paper is organized as follows. In Sec. II we dis-
cuss the T dependence of the static heavy-quark potential
based on the Debye picture and the perturbative results.
In Sec. III we discuss the computation and fit of the Wil-
son line correlations (WLC}. In Sec. IV we present and
discuss our simulation results. And finally, in Sec. V, we

give the conclusions.

II. HEAVY-QUARK POTENTIAL
FROM A DEBYE SCREENING PICTURE

L{x)=—,'Tr g U„, , +,

Since the averaged value of L(X) is related to the free
energy V of an isolated static heavy quark by
L =((1/N, 3) +„L( )x)-e x(p—9' /T}, we expect that
the free energy for a static qq pair relates to I by

I {R)-exp[ (F + V~+9' )/T—]

-LL exp[ —V(T, R)/T] . (3)

The free energy of a static qq system is the interacting po-

At low temperature, the QCD [SU(3) gauge field

theory] system is confined. Quarks are found to live only
inside the hadronic matter. Thus, they are not part of the
(low-energy) eigenstates of the QCD Hamiltonian but
their bound states are. Heating of the QCD system
causes a deconfinement phase transition. The free energy
of an isolated quark changes from infinite to finite as a re-
sult of the phase transition. After the phase transition,
quarks are released from their bound states so that the
basic components (low-lying energy eigenstates) for the
QCD system becomes the quarks and gluons which form
the interacting plasma; this is the QCD plasma. In this

paper, we will concentrate on one of its static properties,
the static heavy-quark potential which relates to the dy-
namics of the hot QCD system directly. We have made
the study through large-volume and high-statistics Monte
Carlo simulation. Previous works in this field can be
found in Ref. 3.

The starting point for our study is the correlation func-
tion between thermal Wilson lines. The correlation func-
tion for two Wilson lines separated by an arbitrary spatial
displacement R = (x,y, z) is defined as (on the lattice)

PR)=(x, [L(x)L (x+R)]j,1

x N

where
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tential V which is related to the dynamics of a qq pair
qq

system. By measuring [I'(R)], we can get a qualitative
measurement on V(T, R). This provides us with valuable
information on the dynamic properties of a qq system as
well as more information about the nature of the mecha-
nism of the phase transition.

Based on an analogy to the hot QED plasma, we ex-
pect that the dynamics of the QCD plasma also fit the
Debye picture even though this system may actually in-
teract very strongly and the analogy might be very loose.
The Debye picture provides us with

V( T, R)=C ( T)exp[ —
inD( T) [R] ]/~ R[, (4)

since the 1/R leading term has been canceled out among
the two possible representations where C —

—,', C,
+ —,'C, -(1!9T )(g /4n)

Strictly speaking, whether or not the lowest-order per-
turbative results could be trusted is not clear yet because
of the severe divergence of higher orders which is not un-
derstood yet (further discussion can be found from Refs.
4 and 5). But this does lead us to a possible asymptotic
potential for T && T„

&(T) exp[ —p(T)R]
(R T)

where p(T)-2gT. It turns out that our large-volume

where mD is the Debye screening mass which is one of
the characteristics of the hot QCD plasma and C is the
coupling strength. However, since a qq pair could be in
either a singlet or an adjoint (octet) representation at least
in the weak-coupling region, there are actually two po-
tentials from the two representations corresponding to
the single correlation. Thus, we expect for the correla-
tion (as given by Refs. 3 and 4)

I /iLi ——'Tr(e ' )+ ,'Tr(e —' )

—V/T
8

—V /TS +8e
9 9

Qualitative prediction about the asymptotic behavior
of Eq. (5} for two special regions could be derived in a
simple physical but not mathematically strict way. %e
need these predictions to guide fitting our Monte Carlo
data and our fits will check these predictions. This is the
motivation for the following discussion.

Let us consider the T»T, case first. %hen T»T„
where we may assume asymptotic freedom so that pertur-
bation theory might be a reasonable approximation.
Then we could borrow some of the perturbative results to
give a naive "perturbative potential. " The lowest-order
perturbative result (on an infinite lattice or in the contin-
uum limit) gives C, , =(g /4n )F, „where F, , = ——', , —,

'

are factors from group theory so that —,'C, + —,'C, =O.
Also, the resummation of electric mass gives us
ID =mz -gT, where mz is the electric mass. If these re-
sults could be applied, and let us assume that both V, and

V, are given by Eq. (4) as Y, ,—C, ,e /R, then the
connected part of I at larger R will be given by

high-statistics simulation result agree with this naive po-
tential, a blinded "lowest-order perturbative result, " very
well.

%'hen T is not too much higher than T„high-order
terms {more coinplicated processes with multiple gluon
exchanges) of a possibly nonperturbative character be-
come more important. Even though we may still assume
the Debye-type potential for each representation, but the
T dependence of mn and C 's might become more compli-
cated. Such, in contrast with T»T, region where the
effective "single massive gluon exchange" process is dom-
inant for each representation which leads to the cancella-
tion of 1IR term, there is no more cancellation in the
leading 1/R term so that

(8)

where C —
—,'C, + —,'C, . In fact, as T~T, +, the interac-

tion becomes much stronger. It is possible for a bare
quark to be easily covered by gluons to form more corn-
plicated color states. Then its influence to the other
quark becomes less and less dependent on the representa-
tion. It is known that the leading part of the confined po-
tential has nothing to do with whichever representation it
belongs to. Influenced by this confining character, it is
expected that the potentials corresponding to the two
representations become less and less distinguishable. As
a result, there will only be a single exponential term with
I'-exp(Ce "'Ir) instead of Eq. (5) for T-T,+. Now,
the asymptotic potential becomes

V(R, T)=C(T)
RT

The above two distinctive regions [n =1 and n =2 for
V(r)-e ""Ir"] are the most interesting regions and
their existence is verified by our simulation (Sec. III}.
This is one of the major results of this calculation. Also
it is found that a transition region exists in between
where there is strong competition in the 1/R term and
1/R term. It is interesting to notice that, although the
perturbative results suffer an unexpected breakdown even
at the next order (Ref. 4) and finite-temperature QCD
perturbative theory also su8ers infrared divergence begin-
ning at 0 (g ) even at very high temperature, which
throws a shadow on the entire idea of perturbatively
computing the Debye mass, our naive prediction does
predict our lattice QCD simulations. The WLC data are
well behaved and well measured in the lattice. By fitting
them to an expected theoretical function forms such as
Eqs. (5), (6), and (8), we can get a good measurement of
the parameters such as the C's and p including their T
dependence. [Since it is more convenient to use p(T)
than mz or 2mD, we wiH define p as the screening mass
for the whole temperature range for the rest of the pa-
per. ] This is the subject of the next few sections.

III. %'ILSQN LINKS CQRRKLATIGN

Our simulation started with the computation of the
correlation function for two %ilson lines defined in the
previous section. The correlation function [I (R)] can be
well measured from Monte Carlo simulations. In this



628 MINGSHEN GAO 41

section we will discuss the measurement and fitting of
(I ). In Sec. IV we discuss the results.

In a typical Monte Carlo simulation of lattice QCD,
most of the time is spent in generating the configurations.
This is the dominant computation. In order to use the
data effectively and save CPU time, we have calculated
I (R) for all the possible R's. Traditionally, (I ) is only
measured on the axes because of the difficulties discussed
later. There are several obvious advantages for measur-
ing the whole (I'); first, the angular dependence and the
restoration of the rotational symmetry can be studied;
second, a fitting range enlarged by a factor of ~3 can be
accessed such that we can get long-range asymptotic be-
havior beyond the N, /2 limit; third, more points in the
fitting reduces the errors and helps to determine which
functional form is the best or right one.

However, the calculation of all the possible correlation
[I'(R)] is more complicated. The number of operations
for calculating one set of (I ) is about -8N, , which is
—10 for our N, =24 case. The memory requirement is
about half a mega for storing a single set of (I ). These
are large numbers for a serial-architecture single CPU
computer such as a VAX. The program needs about 30
min of CPU time to calculate a single set of (I ) on a
VAX/780. Since the problem is homogeneous with ap-
parent, intrinsic parallelism, it is suitable for parallel-
processor systems. Here, the difficulty is that the data
are possibly distributed over all the local memories asso-
ciated with different processors and the communication
overhead among multiple processors potentially degrades
the efticiency.

My program is written for the 64-node parallel super-
computer designed and built at Columbia University. '

It is a dedicated parallel processor system for lattice
QCD simulations. By creating communication buffers on
each processor, taking advantage of its two-dimensional
lattice architecture and playing tricks with the data com-
munication, ' the overhead can be eliminated. The exe-
cution time is about 2 sec. This shows how fast our
machine can be compared to 30 min on the VAX.

The configurations are generated by a mixture of a
Cabibbo-Marinari pseudo-heat-bath algorithm and a mi-
crocanonical algorithm. The number of sweeps for each
run is determined by N, and P. Typically, we run 50000
to 150000 sweeps for N, =16 case and 10000 to 150000
for N, =4,6. The WLC is measured every two sweeps.
After dropping the nonequilibrium part for each dedicat-
ed run associated with some [N„PJ, we either average
the data over all sweeps to get the set of [I (R)] and fit it
to an expected functional form to get the best-fit parame-
ters, or we use the jackknife method to get errors for the
fitted parameters by separating the data of different
sweeps into a number of pieces (5—10 typically).

Because of the cubic symmetry and the topology of the
lattice, the number of independent [I (R)] can be greatly
reduced. We can average over the reflection of axes first,
this reduces the nuinber of correlations from 24 (N, =24
in our case) to 2197 independent I"s. Then we average
and sort them further to [1(d&,dz, d3):O~d, ~dz
—d3 ~ N, /2] according to the permutation or rotation of
(x,y, z) before we start the fitting. Only 454 correlations

are left, but all information such as the angular depen-
dence is still contained in them.

Since the lattice is a three-dimensional torus, a color
charge interacts with another charge in such a way that
the charge itself and seven of its images formed by the
periodic boundaries contribute simultaneously. We have
to modify the fitting functions to take care of the effect of
all these images. We can denote the separations between
them and the test charge by R, =~R —R&, ~, i =1, . . . , 8
with Rb, =(0,0,0),(N„O, O), (N„N„O),(N„N„N, ) and
their permutations. We will see their influence later.

Our fitted parameters are obtained from the least-
square fits of expected theoretical functions with the
[I (d „dz,d, )] mentioned above. Figure 1 shows a typi-
cal fit. It is for P=8.00h (h means a hot start) on a
24 X6 lattice. We will limit the fitting range to be
R, E [R;„,R,„],where R, is the smallest of the radii
[R;:i = 1, . . . , 8 J. Since a set of (d „di,d 3 ) will uniquely
determine [R;:i = 1, . . . , 8], we actually sum over all the
possible [d;:i =1,2, 3] within [R;„,R,„].

Two criteria should be proposed before we discuss our
fitted results. The fitted results are considered as good re-
sults only when the following two criteria are satisfied:

should be small and the best-fitted parameters should
not be influenced by different selections of [R;„,R,„].
The first one is evident since it is the quality of the fits.
The second one is also very important since it reflects the
correctness of the fitting function. If the fitting function
is the right function, then it should not be sensitive to
which part of the data is used to fit the parameters. Of
course, if it is not the right one, different parts of the data
will give different parameters. The systematic depen-
dence on R;„or R,„can be used to select the better
function, this is the bottom line for the second criterion.

IV. SIMULATION RESULTS

A. Results for lattice of size 24' X 16

We have made extensive simulations here, which is so
far the largest lattice encountered. We have obtained al-
most 100000 sweeps for each one of the points at
P=6.6,6.7,6.8 (P, -6.5). Since the onset of scaling be-
gins at about N, = 10 and P=6.0, these points are expect-
ed to be very close to the continuum limit.

These points clearly belong to the deconfined phase
and are close to the transition point. So we get a good
chance to study the dynamic properties of hot QCD plas-
ma right above the transition point, which should be the
most interesting region for heavy-ion-collision experi-
ments.

As discussed previously, the toroidal boundary condi-
tion forms eight effective charges (charge itself and seven
of its images). In real fitting, the fitting function has to be
modified to include the effect. In the deconfined phase,
since the force field is a three-dimensional one so that all
eight charges formed by the periodic boundaries can feel
the existence of a color charge and contribute to the in-
teracting potential simultaneously. Then,
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I (R)=~LL Iexp g —V(R;, T)/T
i=1

(10)
Fitting range dependence (24 X16)

I
I

I
I

I I

becomes the real fitting function. In the rest of this pa-
per, all the fitting we are talking about is actually done
based on this equation with some proper potential
V(R, T). For example, Fig. 1 shows a typical fit of Eq.
(10) with a potential C exp( —pR)/R . The measured
data fit the above expectation very well.

First, let us see how can we use the second criterion to
select the right fitting function. As discussed in the first
section, the systematic dependence on the selections of
[R;„,R,„]can be used to select the right function. The
following is a good example. It is demonstrated in Fig. 2.
The lattice size used is 24 X 16 and the P is 6.80h. If we
fit (I') with a simple exponential decay function

8

I'(R)- A +B g exp( —
lMR, ),

i=1

E0
L

O
OQ

It

0

e ~ /R" (&&:n=0; o:n=1; ~:n=2)

~ I .. )I

()
()

ir

I I I I

5 10

Rm for fitting range [Rm, Rx=20.78]

WLC at P=8.000 on a 24X24X24X6 lattice

C)-
O

I
I

I I
I I I

0.101exp[K 0.091e ' '/r ] —0.101

C0
O

0
O

I I I I I I I I

10 15

separation distance

FIG. 1. A typical fitting for WLC. The circles and corre-
sponding error bars are the measured WLC while the curve is

simply a direct line segment connection of calculated WLC
points from the fitted function. (The evaluation of the fitted
function is made on a lattice of exactly the same size. )

as used by Ref. 2 for the screening mass, we get the fitted
screening masses for different selections of [R;„,R,„]
shown by the crosses in Fig. 2. These result suffer a sys-
tematic influence due to the missing 1/R" factor. This is
especially true since the simulation is limited to a finite
lattice (R,„&21 in our case which is one of the largest
separations so far found in current simulations}. The
missing 1/R" factor, (which can be written as nXlo—gR
in the exponential and expanded as a linear function since
it is relatively fiat in the region [R;„,R,„]),does con-
tribute an extra portion to the screening mass depending
mostly on R;„. By inserting the right R" factor (results
with n=1,2 are shown by circles and stars in the figure)

FIG. 2. Fitting-range dependence of the screening mass.
More exactly, fitted p is plotted as a function of R;„which
determines the fitting range to be [R,„,12v'3]. For n=0, 1,2
the corresponding fitting functions at large R are given by Eqs.
(11), (9), and (7). In real fits, the function has been modified to
include all the eight eft'ective charges.

to the fitting function, the systematic dependence is clear-
ly removed. Figure 2 shows that the choice n =0 or 2 has
a strong systematic inhuence on the screening mass while
the right choice n = 1 does not. It is clear that 1/R is the
right factor and exp( —lMR)/R is the right potential in
this case, where T-1.35T, .

Similar results are also true for both p=6.6 and 6.7
cases. Detailed results about the Debye screening mass
(inverse of screening length} will be given by Ref. 10. Our
conclusion is that the simple Debye potential
exp( —pR)/R is the leading static heavy-quark potential
for T, & T & 1.4T, . Here, TlT, is calculated by

' 102/121

exp —,(12)
8m 1 1

C 11 g2 g
2

where g =v'6/P and g, =Q6/P, .

B. Dynamic properties of the hot QCD at T- T,
and T» T, (N, =4,6)

An important discovery from this simulation is that
the long-distance asymptotic behavior at large R is
different in the regions T-T, + (T, & T &1.4T, ) and
T» T, ( T & 3.5 T, },just as expected from our discussion
in Sec. II. The comparison for fitting Eq. (10) with
[V(R)=Ce ""/R",n =1,2] is shown by Figs. 3(a) and
3(b). Here, the simulation is done on the 24 X6 lattice.
While 1lR is better for the region where T is close to T,
(roughly, T & 1.4T, ), 1/R is better for the region where
T is much larger than T, (roughly T &3.5T, ). This is
consistent with the expectation of Eqs. (7} and (9). This
verifies the existence of the 2 special regions.

In between the two regions, it is more complicated.
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Neither Eq. (7) nor (9) gives us a consistent fit. However,
it is possible to fit using the complete formula Eq. (5) with
two disjoint choices of the parameters: either —C, and

8C, tend to cancel to give 1/R or both —C, and 8C,
deviate from each other to give 1/R. Both fits are good
and strong competition between the two is evident. So,
Eq. (5) appears to be the fitting function we expected.
But errors are large and the results from the two different

choices in parameters cannot be distinguished within 2

standard deviations.
Figure 4 shows our results for N, =6 at various T's.

The lowest-order perturbative results at high temperature
are also shown by the curve in Fig. 4. A dip associated
with the phase transition exists near T-T, +. After
reaching a maximum at about T-1.5T, as T increases
from T, +, it begins to decrease towards the curve pre-

1
I I I

T/T, =1.78

0)
O

O ()

CV--
x

()
C4

T/T =3.50

2ME/T=2(N, /3) '

g

T/T = 1 0.96

T(.
s (

6

P=6/g (T/T, as labeled)

T dependence of screening mass (T»Tc)

C
(3)

Q

-(o}

Fitting range dependence (24 X6)

I
I I

e "/R" (:n=l; o:n=2;)

FIG. 4. Screening mass at various temperatures. [g =&6/P
is related to T/T, and p, =6/g, '-5.891 by Eq. (12)]. The mea-
surement is done on a 24'X6 lattice with T/T, ranging
from 1.0 to 11.0 and p( T) is defined by V (R, T)
=C(T)Iexp[ —p(T)R]I/(RT)" with n=1,2 for T-T, and
T &) T„respectively.

O

II

Rm for fitting range [Rm, Rx=20. 78]

dieted by the perturbative theory. The last two results at
p=7.0 and 8.0 are obtained by fitting with n =2 and re-
sults for p&6.0 are obtained with n =1. The result for
p=6.4 are obtained by fitting Eq. (5).

The tendency for agreement of the screening mass at
high T with the perturbative predictions (2m@) is clear.
Similar conclusions can also be drawn from C, and C,
shown below in Fig. 5. Note, there is a small difference
(-1.5 standard deviation) between the measured results

Fitting range dependence (24 X6)
T dependence of Coulomb-type coupling

I I I 1
1

1 I I I

C:
Q
(p LA

O

(b)
I

I

e "/R" (x:n=); o:n=2;) 0)
O

p 0

0.26

* for Nt=6; o:Nt=4; &:Nt= t 6

O
D
(Q
II

0
M)

Rm for fitting range [Rm, Rx=20.78]
Reduced Temperoture T/Tc

FIG. 3. Comparison with fittings Eqs. (7) and (9) for different
temperatures. This is done in analogy with Fig. 2.

FIG. 5. T dependence of the coupling strength near T, . The
measurement is done on 24'XN, lattices with N, =4,6, 16 and
C"(T) is defined by Eq. (9).
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and the curve. If we use p-xmE, we will get x -2.2 in-

stead of x=2. The discrepancy might be caused by the
finite lattice spacing error due to small N, or it might be
real if it is not caused by the statistics. It would be clear
if we could increase N, . But anyway, it shows that the
gauge theory at high temperature meets the expectation
of the asymptotic freedom. The onset of the asymptotic
region begins at about 3.5T, .

Now, let us look at the coupling strength. Near T, +,
the interaction is very strong so that it does not make a
lot of sense to distinguish the two representations as dis-
cussed in the previous section. Our correlation fits a sin-
gle exponential [Eq. (10)] with V(R)=Ce " /R very
well for this region just as expected. Further, by fitting
the correlation with Eq. (5), we can easily verify that C,
and C, turn out to be the same even though I have in-
serted a different sign for V, and V, . Also, we have no-
ticed that the coupling C here seems to be a continuation
of the coupling from the Coulomb term in the confined
potential. Figure 5 shows C (T) for N, =4,6,16 and they
all have the similar behavior. It also shows the strong N,
dependence. Result from N, =4 is about 60% higher
than the result from N, =16 [measured at the point near
the critical temperature T-T, in the confined phase
since C is roughly a constant for each N, (Ref. 9)]. While
it decreases much more rapidly for small N„ it decreases
very slowly for large N, . Part of this is possibly caused
by the scaling violation at small N, since a two-loop per-
turbative scaling function is used for calculating the re-
duced temperature T/T, .

At high T, things become different. Figure 6 shows the
results for the T dependence of C, , at those T's that are
not close to T, +. It is clear that C, has changed sign and
magnitude so that 8C, tends to agree with —C, . More
important, both C, and C, shows a clear tendency to

agree with the expectation of lowest-order perturbative
results ——', g /4m and —,'g /4tr. (The last two measured

points at high T are systematically higher than the curve,
roughly about 2 standard deviations. The difference is
most likely due to the finite N, used here since Fig. 5

shows clearly that finite N, influence C significantly. )

8

I'(R)- ~L~ exp g 8e '/R; (13)

very well. By doing three-parameter fits with Eq. (13), we

T dependence of Wilson line near Tc

I
I I I

I
I I I

Tc 7

OC

~--0

L(T) =0.27(T/Tc —1) t1
I I I I I I I I

1.05

Reduced Temperature T/Tc

C. Fq for N, =4,6 near the phase transition

We have obtained very high-statistics results near the
critical point at N, =4,6 in order to understand more
about the nature of the phase transition better. The
WLC in the neighborhood of the phase transition fits

T dependence of C, and C, (24 X6)
T dependence of Wilson line near Tc

T/T =1.78
I

I I I
I

(bj

O
C3
00

g C4

0

T/T, =3.51

T/T = 1 0.9 7

CO
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O--
OC0

T =f(
C

—C,= —(g /47')*F, =8C, , F,= —4/3

l I I
I

P= 6/g (T/T as labeled)

O
L(T) =0.14(T/Tc —1) tt

I I s l I

1.1

Reduced Temperoture T/Tc

FIG. 6. C, and C, at various temperatures above T, but not
—T, +. The measurement is done on a 24 X6 lattice and C, ( T)
and P, (T) are defined by Eq. (5). FIG. 7. The critical behavior of the order parameter ~L~.
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can get good measurements on L (T), C(T), and p,(T).
We will discuss some of them in this subsection. [C(T)
for N, =4,6,16 are shown by Fig. 5 and discussed in
IV B.]

The fitted L(T) at various P's agrees well with direct
measured L (T) and even has smaller errors. Thus, it is
perhaps a better way for measuring the magnitude of the
Wilson line than the direct measurement especially near
the critical point. L ( T) gives us P~.

The T dependence of L ( T) (or 9 ) is interesting. For
T is quite close to T, (say, T, & T & 1.005T, ), we see the
rapid variation of L during the simulation and L has the
clear visible discontinuity required by a first-order transi-
tion. Phase mixing makes the measurement of L more
complicated (no unique way to separate the two phases).
However, for T ) 1.01T„ the phase is well defined with
no mixing. L ( T) shows some critical scaling behavior for
regions of temperature where T is close to T, but not too
close. It fits the scaling function (fractional power)

L (T)-exp( —9' /T)- A (T —T, )~ (14)

very well in this region. Figures 7(a) and 7(b) show re-
sults of a three-parameter fit to Eq. (14) for each one of
N, =4,6 cases, respectively (fitted parameters are also
shown in the figures). Within errors, the fitted fractional
powers (P's) agree with each other. Note that
T/AL =62.9+0. 1 (p =5.892+0.002), and T/AL
=75.30+0.07 (P, =5.6916+0.0003) for N, =6,4, respec-
tively, agree very well with the other fitted T, from the
critical behavior of the string tension. The results are
also consistent with our knowledge obtained from the
time evolution during the simulation and other measured
quantities such as fractional confined, etc. The agree-
ment between the results from different methods is a
surprising and interesting result.

The observed scaling behavior adds some interesting
features to the deconfinement phase transition. Authors
of Ref. 11 have found similar behavior for the three-state
Potts model in d=3 from a Monte Carlo renormalization
group analysis. They concluded that the nature is a
"first-order phase transition but almost second order. " It
is possible that the first-order deconfinement phase transi-
tion is superposed by a second-order-like behavior.

D. Correlation length and the phase transition

The asymptotic correlation length near the phase tran-
sition point is given by the inverse of the screening mass.
The measured Debye screening masses have been shown
by Figs. 4 and 5 in Ref. 11 (including the measured string
tensions). More discussion on them will be given by a
further publication. ' They show a rapid increase after
the phase transition. Since L (T) also shows a rapid in-
crease in the same region (or decrease in V~ ), which
means that the q, q and other color charged entities can
be produced more and more easily, the density of screen-
ing particles increases significantly as a result. This in
turn makes the screening effect stronger and stronger.
The observed rapid increase of the screening mass after
the phase transition may well be the consequence of it.

V(T, R)=P(T)exp[ —mD(T)/R/]//R/", (15)

in two interesting regions where n —1 for T-T, and
n -2 for T&&T,. A Debye-type screening mass can be
well measured based on this potential. The T dependence
of the screening mass tends to agree well with the "per-
turbative results" at high temperature. This is consistent
with the asymptotic expectation. But it has a rapid in-
crease associated with the phase transition where density
of color charged entities rises rapidly. Since the screen-
ing mass seems to be finite when T = T, +, it may have a
discontinuity. The discontinuity of the mass gap might
be associated with the breaking of the string due to the
strong screening. How it is related to the phase transi-
tion is still an open question.

At very high temperature, an effective "single massive
gluon exchange" process seems to be the dominant dy-
namic process since both C, and C, tend to agree with
their lowest-order perturbative predicted behavior. But
near T„C*s come from multigluon exchange between
two quarks or may even come from nontrivial physics
process. Also, the distinction between the two C's disap-
pears, influenced by the confining characters.

Our qualitative results should provide lots of useful in-
formation for heavy-ion collisions and other experiments.
The screening eff'ect is possibly responsible for the J/f

One important observation from measured string ten-
sions and screening masses is that the correlation length
(which can be defined as the inverse of the screening mass
of the inverse of the string tension) is finite during the
phase transition. Even though there is an apparent dip in
0. and p (i.e., a peak in correlation length), the maximum
correlation length is still only about -7 (for N, =4). This
is clearly much smaller than N, /2 = 12 (in our case).
Thus the correlation length is not bound by the volume
and has a real, finite maximum. The finite correlation
length at the phase transition is the other important
proof that the phase transition is first order [for N, =4 at
least (Ref. 11)]. It should be divergent (-N, /2 or N, for
a finite-size lattice as would be implied by the finite-size
scaling) for a continuous phase transition. This is also an
important result from our simulation.

V. CONCLUSION

As we get closer to the critical temperature, the system
becomes more and and more nonperturbative and non-
trivial. The dynamics of the gauge theory and the behav-
ior of quark potential are poorly understood. Even at ex-
tremely high temperature, the perturbative theory for the
QCD still sufFers from a very serious breakdown problem.
It is interesting and important to do a nonperturbative
study to get some qualitative results. Our results start to
fill the gap.

Our results of WLC show that the hot gluon plasma
supports the Debye picture very well. The heavy-quark
potential V for each representation is essentially a
Yukawa-type potential. Thus, Eq. (5) is expected to be
the right correlation function and the justification for it
can be made from our simulation. Equation (5) implys a
thermal averaged potential (at large separation) of the
form
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suppression. ' The heavy-quark spectra can also be cal-

culated from our potential. Further study on physical

consequences still needs to be done.
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