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Eighth-order QED contribution to the anomalous magnetic moment of the muon
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We report a calculation of the eighth-order QED contribution to the muon anomalous magnetic
moment a„"' coming from 469 Feynman diagrams, all of which contain electron loops of vacuum-

polarization type and/or light-by-light scattering type. Our result is 126.92(41)(a/m) . The error
represents the estimated accuracy (90% confidence limit) of the required numerical integration. We
also report an estimate of the tenth-order contribution to a„. Combining these with the lower-order
results and the latest theoretical value for the electron anomaly a„we find that the QED contribu-
tion to the muon anomaly is given by a„D=1 165 846947(46)(28) X 10 ', where the first error is

an estimate of theoretical uncertainty and the second reflects the measurement uncertainty in a. In-
cluding the hadronic and electroweak contributions, the best theoretical prediction for a„available
at present is a„'""'"=116591920(191)X10 ",where the error comes predominantly from the ha-

dronic contribution.

I. INTRODUCTION AND SUMMARY

The anomalous magnetic moment of the muon a„pro-
vides one of the most stringent tests of the renormaliza-
tion program of the standard model, the unified elec-
troweak sector in particular. This is in strong contrast to
the anomalous magnetic moment of the electron a„
which is rather insensitive to strong and weak interac-
tions, and hence offers the best testing ground for the
"pure" quantum electrodynamics.

Much of the theoretical analysis is identical for elec-
trons and muons except that the effect of the electron on
a„and that of the muon on a„via vacuum polarization,
are quite asymmetric. The electron, being much less
massive than the muon, cannot readily create a virtual
muon-antimuon pair. Thus muons (and all heavier parti-
cles} have little observable effects on a, . The muon, on
the other hand, can create a virtual electron-positron pair
with relative ease. Indeed, in the fourth and higher or-
ders, diagrams containing electron loops dominate. Simi-
larly, the effects of strong and weak interactions are
much more important in a„ than in a, .

In testing the theoretical prediction for a„experimen-
tally, it is crucial to know all these contributions precise-
ly. We have therefore carried out an extensive calcula-
tion of terms contributing to a„, and managed to reduce
the theoretical error from the previous value of 10X 10
to 2X10, which is of the same order of magnitude as
the weak-interaction effect on a„. A preliminary result of
this calculation was reported in Ref. 1. It has provided a
strong motivation for the new muon g —2 experiment
E821 which is in progress at the Brookhaven National
Laboratory. When this experiment and associated exper-
iments needed to improve the hadronic contribution to
a„are completed, our theoretical results will enable us to
test the prediction of the standard model at the one-loop
level. In addition, it provides useful constraints on possi-
ble muon internal structure as well as supersymmetric

where m2 and m3 are the masses of other leptons. For
the electron and the muon we have

a, = A &+ A2(m, /m„)+ A&(m, /m, )

+ A3(m, /rn„, m, /m, ),
a„= A &+ A2(m„/m, )+ Az(m„/m, )

+ A3(m„/m„rn„/m, ) .

(1.2}

(1.3)

The renormalizability of QED guarantees that A „A2,
and A3 can be expanded in power series in a/~ with
finite calculable eoeScients:
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and other theories.
In this paper we present a detailed account of our cal-

culation of the eighth-order QED contribution to a„. In
addition we report an estimate of the tenth-order QED
contribution. The long delay in the publication of the
eighth-order result was caused by the unavailability, until
the last couple of years, of computing power which could
adequately handle some of the huge integrals involved.
Our evaluation of the hadronic effect on a„was reported
elsewhere.

The QED diagrams contributing to the anomalous
magnetic moment of a charged lepton (electron, muon, or
tauon) can be divided into three groups: (i}diagrams con-
taining only one kind of lepton; (ii) diagrams containing
two kinds of leptons; and (iii} diagrams containing all
three leptons. The anomaly for a lepton of mass m„be-
ing a dimensionless quantity, can be expressed in the gen-
eral form

a = At+ A2( 1/m2)+Ax( t/m3)

+ A3(m, /m2, m
& /m3),
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The value of A, has been evaluated to the eighth order.
Clearly, A 2

' = A 3
' = A 3

'=0 since there is no Feynman
diagram that contributes to them.

Before discussing the muon anomaly a„, let us briefly
comment on A2 and A3 of the electron anomaly a, . In
order to obtain the precision needed at present, it is
sufficient to calculate A ~z '(m, /m„) because of smallness
of the ratios m, /m„and m, /m, . This contribution
arises from the diagram obtained by inserting a muon
vacuum-polarization loop in the second-order electron
vertex. The result is known analytically and is given by

'2 P 4
m, m„+0 ln

me
A' '(m, /m„)=

45 m„ mp

=5.198X 10 (1.5)

m

3 m, 36 4 m„

m, m„—4 ln
memp

me +0
3

mp

= 1.094259 6. . . .

mp

(1.6)

The contribution to A z '(m„/m, ) arises from 24
sixth-order Feynman diagrams. These include 18 dia-
grams containing electron vacuum-polarization loops and
six diagrams containing light-by-light scattering subdia-
grams. The contribution of the first group is known
analytically up to terms of order m, /m„and also numeri-
cally while that of the second group is known only by
numerical means. " Unfortunately, these early results
are not accurate enough for our purpose. In any case,
however, a better evaluation of these quantities is needed
in carrying out the calculation of the eighth-order contri-
bution. Thus, we have reevaluated them using the adap-
tive Monte Carlo integration routine vEGAS (Ref. 11).
The new values are'

A z '(m„/m, ;vacuum polarization) =1.9200(14),

A z '(m„/m„'light-by-light) =20.947 1(29) .
(1.7)

The first term consists of several integrals as shown in
(2.36). These integrals, all listed in tables in Sec. II, are
evaluated using up to 40 iterations with up to 4X10

The term A z '(m, /m, ) is (m„/m, ) times smaller than
(1.5) and can be ignored at present. The term
A3 '(m, /m„, m, /m, ) is of order (a/n) (m, /mz) (m, /
m, ), and is negligible, too. Throughout this paper we
use the lepton mass values m, =0.51099906( 15 )

MeV/c, m„= 105.658 39(6) MeV/c, and
m =1784.1(+2.7/ —3.6) MeV/c listed in Ref. 7.

Let us now summarize the results for the muon anoma-
ly a„, which are radically different from that of the elec-
tron anomaly a, because of the large mass ratio m&/m, .

The fourth-order term A ~z '(m„/m, ) is known analyti-
cally and, up to terms of the order (m, /m„), given by

A ~z '(m„/m, ) = 126.92(41) . (1.9)

An outline of this calculation is given in Sec. II. This re-
sult is an order-of-magnitude improvement in precision
over the preliminary value 140(6) reported in Ref. 1. The
apparent disagreement between the two results is due to
an overly optimistic error estimate in the latter caused by
insufrjjcient samplings of integrands.

%'e have also obtained a preliminary value for the
tenth-order term Az' '(m„/m, ) by evaluating numeri-
cally the contribution of the leading 36 diagrams, all of
which contain one light-by-light scattering electron loop
and two second-order electron vacuum-polarization
loops, and making a rough estimate of others:

Az' '(m&/m, )=570(140), (1.10)

where the uncertainty is an estimated upper bound for
the contribution of uncalculated terms. See Sec. III for
details.

As for the tauon-loop contribution, the fourth-order
term A z '(m„/m, ) has the same form as (1.5) with an
appropriate change of variables. We find

A z '(m„/m, ) =7.794(32) X 10 (1.11)

which contributes 421(1)X 10 ' to a„. Higher-order
terms of Az(m„/m, ) are about a/n times smaller than
(1.11) and hence need not be considered at present.

The lowest-order contribution to A3(m„/m„m„/m, )

arises from a sixth-order diagram which is obtained by
inserting an electron vacuum-polarization loop and a tau-
on vacuum-polarization loop in the second-order muon
vertex. On numerical integration we find

A ~3 '(m„/m„m„/m, ) =5.24(1)X 10 (1.12)

This contributes 7 X 10 ' to a„. The only significant
contributions to A 3 '(m„/m„m„/m, ) arise from a
muon vertex which contains an electron light-by-light
scattering subdiagram and a tauon vacuum-polarization
loop and another in which the roles of electron and tauon
are interchanged. We have evaluated the sum of these
contributions numerically:

function calls per iteration. The second term, which was
reported elsewhere, ' is obtained by evaluating the in-
tegrand at 14X10 randomly chosen sampling points
each for the first 10 iterations and 28X10 sampling
points each for subsequent 20 iterations. The latter
confirms and improves our earlier result. ' It agrees with
the direct, although much cruder, evaluation of Samuel
and Chlouber' within their stated errors. However, the
error assigned to the extrapolated value given in Ref. 13
must be multiplied by 7 in order to bring it into agree-
ment with (1.7) (Ref. 14). Using the improved values in
(1.7) we find that the total sixth-order contribution is
given by

A~& '(m„/m, )=22.8671(33) . (1.8)

The contribution to A~z '(m„/m, ) arises from 469
eight-order Feynman diagrams. After more than four
years of extensive numerical work, we have obtained
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A3 '(m„/m„m„/m, ) =0.079(3) . (1.13)

This contribution to a„amounts to 2.3 X 10 ' . Contri-
butions to A3 '(m„/m„m„/m, ) from other diagrams
are at least an order of magnitude smaller than (1.13) and
thus negligible at present.

We are now ready to calculate a„. Using the latest
value of the fine-structure constant determined in terms
of the quantized Hall effect, '

a ' = 137.035 997 9(32),

one finds from the results (1.5)—(1.13) that

a„—A, =6 194 817(45)X 10

(1.14)

(1.15)

where the numeral within the parentheses is an estimate
of theoretical uncertainty generated by the integration
routine. [The uncertainty due to the error in a of (1.14)
is less than 0.3X10 ' and is completely negligible. ]
Adding to this the value of A, obtained from the calcula-
tion of the electron anomaly, which through the eighth
order is'

A, =1159652130(8.4)(28) X 10 ", (1.16)

we find that the pure QED contribution to the muon
anomaly is given by

aO =1 165 846947(46)(28) X 10 (1.17)

The first errors in (1.16) and (1.17) are estimates of
theoretical uncertainties and the second reflect the mea-
surement uncertainty of a in (1.14).

We note that the theoretical uncertainty in (1.17} is
mostly due to that of the a term (1.8). There is no in-
trinsic difficulty in reducing this error further. This will
be attempted in the near future.

In order to compare theory with experiment we must
also include hadronic and electroweak contributions.
The latest estimate of the hadronic effects (vacuum polar-
ization due to hadrons) including the fourth- and sixth-
order contributions, is '

a"' =703(19)X10P (1.18)

The one-loop weak-interaction contribution calculated
within the framework of the Weinberg-Salam model is'

a"""=195(1)X 10P (1.19)

Here the uncertainty comes mostly from the lack of ex-
perimental information on the Higgs-boson mass m&. If
m& is as light as the present lower limit' of 5 GeV/c,
a„"""will be pushed up to 196X10 ", which is at the
upper end of uncertainty in (1.19). For higher masses the
Higgs contribution becomes rapidly insignificant, de-
creasing as m& . The uncertainty in the Weinberg angle
has a relatively minor effect, contributing only
0. 13X10 " to the error in (1.19). Thus the error limits
in (1.19) is strongly asymmetric. Finally we must keep in
mind that the effect of two-loop contributions is unknown
at present.

Summing up the contributions (1.17) through (1.19), we

obtain the overall theoretical prediction for the muon
anomaly,

a '"'"= 116591 920( 191)X 10 (1.20)

II. OUTLINE OF THE METHOD AND RESULTS
OF CALCULATION

For simplicity we omit the factor (u/m. ) throughout
this section.

In the eighth order there are altogether 469 Feynman
diagrams contributing to the term A2(m„/m, ) of (1.3).
They all have subdiagrams of the vacuum-polarization
type and/or light-by-light scattering type and can be
classified into four (gauge-invariant) groups.

Group I. Second-order vertex diagrams containing
vacuum-polarization loops of second, fourth, and sixth
orders. This group consists of 49 diagrams. Typical dia-
grams are shown in Fig. 1(a).

Group II. Fourth-order vertex diagrams containing
vacuum-polarization loops of second and fourth orders.
This group consists of 90 diagrams. Typical diagrams are
shown in Fig. 1(b).

Group III. Sixth-order vertex diagrams containing
vacuum-polarization loop of second order. This group
consists of 150 diagrams. A typical diagram is shown in
Fig. 1(c).

Group IV. Vertex diagrams containing a light-by-light

which is in good agreement with the current experimen-
tal values:

a '"5"= 1 165 937( 12)X 10
(1.21)

a'"P =1165911(11}X10

As a consequence of this work we have reduced the
theoretical QED-type uncertainty in a„ to less than 3%
of the uncertainty in the hadronic term (1.18). The latter
happens to be of the same order of magnitude as the elec-
troweak effect (1.19). Thus, for experimental detection of
the electroweak effect, it is necessary to improve the ac-
curacy of the hadronic contribution (1.18) by a factor of 5
or more. This requires more accurate measurements of
R, the ratio of hadron production cross section and
muon-pair production cross section in e+e collisions.
See Ref. 21 for a discussion of feasibility of such an im-
provement. A new experiment is in progress at the
Brookhaven National Laboratory to measure the a„
about 20 times more accurately than (1.21). Together
with improved measurements of R, this will enable us to
detect the electroweak effect (1.19) within the uncertainty
of 30% or better.

The rest of the paper is organized as follows. In Sec. II
we give an outline of our method for calculating
A~& '(m„/m, ) and present the results. A preliminary
evaluation of the tenth-order contribution A ~z' '(m„/m, )

is described in Sec. III. In the Appendix we compare
some of our numerical results with the corresponding ap-
proximate results obtained using the renormalization-
group technique and evaluate the terms left undeter-
mined by the latter. This may someday become relevant
in the theoretical study of higher-order terms.
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FIG. 3. Six of the diagrams contributing to subgroup I(b}.
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FIG. 1. Typical eighth-order vertex diagrams from the four
groups contributing to a„.

scattering subdiagram with further radiative corrections
of various kinds. This group consists of 180 diagrams.
Typical diagrams are shown in Fig. 1(d).

Group I

These diagrams can be classified further into the fol-
lowing gauge-invariant subgroups.

Subgroup I(a). Diagrams obtained by inserting three
second-order vacuum-polarization loops in a second-
order vertex. Seven diagrams belong to this subgroup.
Three are shown in Fig. 2. The other four are obtained
from diagrams of Figs. 2(b) and 2(c) by permuting elec-
tron and muon loops along the photon line.

Subgroup I(b). Diagrams obtained by inserting one
second-order and one fourth-order vacuum-polarization
loops in a second-order vertex. Eighteen diagrams be-
long to this subgroup. Six are shown in Fig. 3.

Subgroup I(c). Diagrams containing two closed fer-

mion loops one within the other. There are nine dia-
grams that belong to this subgroup. Six of them are
shown in Fig. 4.

Subgroup I(d). Diagrams obtained by insertion of
sixth-order (single electron loop) vacuum-polarization

(a)

I

I

(c)
FIG. 2. Three of the diagrams contributing to subgroup I(a).

(c)

FIG. 4. Six of the diagrams contributing to subgroup I(c).
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subdiagrams in a second-order muon vertex. Fifteen dia-
grams belong to this subgroup. Eight are shown in Fig.
5. Each of A, C, D, E, and F and the time-reversed dia-
gram for E has a charge-conjugated counterpart.

The evaluation of contributions of subgroups I(a) and
I(b) is greatly facilitated by the analytic formulas avail-
able for the second- and fourth-order Kallen-Lehmann
spectral representations of the renormalized photon
propagator.

Following the discussion in Sec. II of Ref. 22, the con-
tribution to a„ from the diagram obtained by sequential
insertion of m kth-order electron and n 1th-order muon
vacuum-polarization loops into a second-order vertex is
given by

a= f dy(1 —y) f ds
0 0

pk(s}

mp
1+ 4 1 —y m,

1 g2 y2

'm

X dr
0 4 1 —

y1+
1 —t y

n

(2.1)

where pk is the kth-order spectral function. Explicit

FIG. 5. Eighth-order vertices obtained by insertion of sixth-
order (single electron loop) vacuum-polarization diagrams in a
second-order muon vertex.

forms of p2 and p4 are given by Eqs. (2.9) and (2.10) of
Ref. 22.

As a special case of (2.1} the contribution of the dia-
gram in Fig. 2(a) can be written as

a[Fig. 2(a)]=f dy(1 —y) f ds
0 0

p2(s)

mp
1+ 4 1 y me

1 s

'2

3

(2.2)

The contributions of the diagrams in Figs. 2(b) and 2(c) are given by similar expressions. Evaluating these integrals nu-

merically using the integration routine RtwIAD (Ref. 23) with 1.6X 10 subcubes and 12 iterations, we have found

a[Fig. 2(a)]=7.2237(13},

a[Fig. 2(b)]=0.4942(2),

a[Fig. 2(c)]=0.0280(1) .

Thus the total contribution of the diagrams of subgroup I(a) is

a' ' =7 7459(13)

The contribution of the diagrams shown in Fig. 3(a) is given by

(2.3)

(2.4)

(2.5)

(2.6)

a[Fig. 3(a)]=2f dy(1 —y) f ds
0 0

p2(s)

m
1+ 4 1 y me

1 —s y

p4(&)
T

1+ 4 1 —y me

1 —t2 y2 m

2 (2.7)

The contributions of Figs. 3(b) and 3(c) are similar. Nu-
merical integration by RIwIAD using 1.6X 10 subcubes
and 10 iterations gives

Summing up the values (2.8)—(2.10), one finds for the sub-
group I(b) the result

a[Fig. 3(a}]=7.1289(23),

a[Fig. 3(b)]=0.1195(1),
a[Fig. 3(c)]=0.3337(1) .

(2.8)

(2.9)

(2.10)

a I(b)
=7.582 1(23 ) . (2.11)

In order to evaluate the contribution to a„coming
from the nine Feynman diagrams of subgroup I(c), we
make use of the parametric integral representation of the
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sixth-order QED vacuum-polarization terms obtained in
Ref. 24. These contributions can be written in the form

(8) (il, l2 )

(zi( (= X ™z,p(p, ,p, &

(1I, l~ )

a [Fig. 4(a) ]= l.441 6(18),
a [Fig. 4(b) ]=0.172 7(2),

a[Fig. 4(c)]=0.0216(1}.

(2.14)

(2.15)

(2.16)

+ residual renormalization terms, (2.12)
Summing up (2.14)—(2.16), we find that the contribution
of the subgroup I(c}to the muon anomaly is

where
(zi( )

= 1 ~ 635 9(19) (2.17)

and

(l(, lz }=(ee), (p, ,e), or (e(M),

( 1I, 12 ) ( I I, 12 ) (I),12 )
~Mz. p(p, , p, ) =™z.p(p,.p, (™zp(p„,p, )

The contribution to a„ from the 15 diagrams of sub-

group I(d) (see Fig. 5) can be written as

(z z p
=b,Mz p + residual renormalization terms,

6i 6i

are finite integrals obtained by the K& renormalization
procedure described in Ref. 22. The suSx P2 stands for
the second-order vacuum-polarization diagram while P4
represents the complete fourth-order vacuum polariza-
tion, which receives contributions from two distinct dia-
grams P4, and P4&. P4 =P4, +P4b. For the meaning of
other notations see Ref. 22. Terms appearing on the
right-hand side of (2.12) are finite, numerically calculable
integrals given by Eqs. (4.2) and (4.6) of Ref. 22, modified
appropriately to account for different arrangements of
electron and muon vacuum-polarization loops.

The result of nuinerical evaluation of (2.13), obtained
by RIwIAD using 10 subcubes and 10 iterations, as well
as the corresponding residual renormalization terms ex-
pressing the difference between the standard and K& re-
normalizations, are listed in Table I. Numerical values of
lower-order Feynman integrals, in terms of which the re-
sidual renormalization terms are expressed, are given in
Table II. From these tables we 6nd

i =A, . . . , H . (2.18)

Divergence-free integrals EMz p are defined by (4.13) of
Ref. 22. They were evaluated numerically by RiwIAD
with typically 3 X 10 subcubes and number of iterations
ranging from 10 to 15, depending on the convergence
rate. Their numerical values (multiplied by appropriate
multiplicity factors g; accounting for the diagrams relat-
ed by time-reversal and charge-conjugation symmetries)
are listed in the third column of Table I. The residual re-
normalization terms are listed in the fourth column of the
same table.

Summing up the contributions of diagrams A -0 of
Fig. 5, we obtain

I(d) X g ~M2,P, ~B2~ FP + (5'Bz fP
i=A

2(EL' '+—hB' ')MP" 255m' 'M—z('"
,p2 ip

2

(2.19)

Figure

TABLE I. Contributions of diagrams of Figs. 4 and 5 (g; is the multiplicity factor).

Residual renormalization terms

4(a)

4(b)

4(c)

5 A

5 B
5 C

5 D

5 F

5 H

1.580 3( 18)

0.231 9(2)
0.021 6(1)
5.411 4(74)

2.900 2(63)

1.365 5(33)

—3.105 2(59)

—0.176 5(99)

—4.037 7(71)

—0.208 4( 86)

2.834 0(43 )

2gB (e, e( M(P, e)
2,P~, P2

—2nB(P "M(z g'
2b B"g'MP'"—

2i 2 yP2

4h'BzMy'p" +2—{b'B ) My'p'

2b'B/My'p' +{6'Bz—) My'p'

2b'B M'"'" +2{6'B ) —M~/'"
2 2, P4~ 2,P2

2b 'B4b M PP
' 2b—, bm 4b M,'"', —

2 7

4h'Lzb M'Pp'( +4—h'Lzh'BzMPp'

2h'B4, M'gg' 265—m ~,M'"'b—
2, P2

4g'L~bMPp' +Sb'L2d—'BpMPp"

45'L M~/ " 4—d 'BzhMPp"—

+4{5'Lz) Mfp" 4A'Lg, MPp"—
—2h'L, Mfp'

4a

+3{5'Lz )'M~gp'( 26'L4(M'Pp'—
2h'L26Mpp"—

4a
2h'L4 M'Pp'(—
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TABLE II. Auxiliary integrals —Group I. Column 3 lists
relevant equations from Ref. 22. Note, however, that the treat-
ment of terms related to the IR subtraction has been changed
from that of Ref. 22 to that of Ref. 27. Thus, for instance,
6Bp 'p in this table corresponds to EB2 'p +AL p 'p of Ref. 22.

Term

M~/'P)

MP'"
, P2

2, r~~

EB2
gB(e, e)

2, P2
, e)

, P2

gg(eg)
2)

b M)P"
, P4

EB4, +26L4, +EL4„
B4b+ 2~L&, +~L4I

65m4,
5,5m4b

Value

0.015 687

1.094 259 6
—0.16109(3)

0.75
0.063 399

1.886 33(8)

9.405 5 X 10

3.135 7(6)
—0.513 8(17)

0.542 4(6)
—0.301 5(10)

2.208 1(4)

Reference

(3.6)

(3.6)

(4.14)

(4.15)
(4.7)

(4.7)

(4.7)

(4.15)

(4.15)
(4.15)
(4.15)
(4.15)

/&I I
I
I
I

~ggl

] I
'I

I

I

/

I
l

FIG. 6. (a) Fourth-order vertex diagrams with crossed pho-
ton lines. (b) Fourth-order vertex diagrams in which photon
lines do not cross.

where

Vl

4

for i =B,G,H,
for i = A, C,D,F,
for i =E,

(2.20}

and

682 =5'82+ 6'Lq = 4,
AMP' =AM/" +25M/',P4 ,p4 ~P4b

b L ' ' =b L4„+25L~, +b L4i+ 2b L4, ,

aa'4'=Sa4. +aa4b,
b,5m' )=b,5m4, +55m46 .

(2.21)

The quantities in (2.21) are defined in Ref. 22. Their
values are given in Table II. From the numerical values
listed in Tables I and II we obtain

ai(d) = —0.7945(202} . (2.22)

ais'=16. 169(21) . (2.23}

Finally, collecting the results (2.6), (2.11), (2.17), and
(2.22), we find the contribution to the muon anomaly
from the 49 diagrams of group I to be

many properties and the corresponding Feynman in-
tegrals can be combined into a single compact integral
with the help of the Ward-Takahashi identity, simplifying
the computation substantially.

Use of the analytic expressions for the second- and
fourth-order spectral functions for the photon propaga-
tor, the Ward-Takahashi identity, and time-reversal sym-
metry cuts down the number of independent integrals to
be evaluated fram 90 to 11.

The contribution to a„arising from the set of vertex
diagrams represented by the self-energy diagram a ( =a
though k") of Fig. 8 can be written in the form

a4 z =)t)),M4 ~ +residual renormalization terms
a a

(2.24)

where AM4 p are finite integrals obtained by trivially

modifying those given by Eqs. (3.11), (3.17), and (3.22) of
Ref. 26. Their numerical values, obtained by VEGAS us-

ing 10 —4X10 subcubes and 30—40 iterations for each
integral, are listed in Table III. The values of auxiliary
integrals needed to calculate the total contribution of
group II diagrams are given in Table IV. They were also
evaluated by VEGAS using up to 10 subcubes and 30-40
iterations.

Summing contributions of diagrams a b", c f—",and-
g-k", respectively, we find

Group II

Diagrams of this group are generated by inserting
second- and fourth-order vacuum-polarization loops in
the photon lines of the fourth-order vertex diagrams in
Figs. 6(a) and 6(b}. Note that the diagrams of Fig. 6 can
also be obtained from the fourth-order muon self-energy
diagrams shown in Fig. 7 by inserting an external vertex
in the open muon lines in all possible ways. Vertex dia-
grams derived from the same self-energy diagram share

I / t a

FIG. 7. Fourth-order muon self-energy diagrams containing
no vacuum-polarization loops.
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TABLE III. Contributions from various diagrams of Fig. 8. (g; = 1 or 2 for symmetric and asymmetric diagrams respectively. )

Diagram

IsMgb, p, + b M gb', p

AM4b p p

4b, Pi, 2, PO

~M~b'I i poi

AM4b p +AM4b p

~M 4(.',)

AM4b P +AM4b P

g, hM4 p

2.062 l(234)
—6.178 1(97)

2.284 0(201)
—8.744 6(93)

0.053 7(47)
—0.285 5(5)
—0.239 2(9)

5.186 9(270)
—11.681 0(51)

0.261 7(4)
—0.993 2(18)

Residual renormalization terms

2I—b.'L ~M Pp" 2I—((.'L ~Pp'Mg

—6'B M(P" I((.—'BP"M +I MP"2 , P4 , P4 2 2 , P4

2h—'L P'"M'P'"
,P2, P2

Ib.'B—f "Mf'"
, P2 , P2

2h'L—PP'M P" 2I(b'L—P"MPg'
2 P2 P2

Ib'B—fg'Mf)"
giB(g, e)M(gg)

—23k'L M"' —2h'L"" M2 2, P22 2, P22 2

—5'8 M"" —di'8"" M +I M""
2 2, P22 2, P22 2 2 2, P

—4h'L M"g' 4I(b'L"—" M2 2, 2:2 2, P2:2 2

2h'B—M"g' 2', 'B "P—"' M +2I M"g'2 2, 2:2 2, 2:2 2 2 2, 2:2

a4 p
——2bMQ p' +bMgb, 'p, , +bMgb, 'p„

I(bB
q M ~/—p' bB ~q"p'M—~, (2.25)

where M pp' is equal to b,M fp' 2I(bB&M p—p' [see

(2.21)], and

4 P2, P2 4a P2, P2 ™4b Pi, .2, PO 2

—hB '"'"M'"'"+26M""'
2, P2 2, P2 4a, P2, P2

+ b,M4('b "p' p + b,Mgb'p p

gB (Py. )M(P, e) gB(~,e)M(P~) (2.26)

e.9-==-
e

I /

(b")

a4 p
= 25M'' p +EMs'b p +EMs'b p

—b,B M"' —hB"' M +46M""'
2 2, P2:2 2, P2:2 2 4a, P, ,

e e

(c)

+2™4'"')
2

—2b,B M "P'' 2I(bB "P'' M—
2 2, 22 2, 22 2 (2.27)

e

(e)

e

I \ I

(g)

'QM;
Term Value Reference

TABLE IV. Auxiliary integrals —Group II. Column 3 lists
relevant equations from Ref. 26. Note, however, that the treat-
ment of terms related to IR subtraction has been changed from
that of Ref. 26 to that of Ref. 27. Thus, equations quoted do not
necessarily correspond exactly to the quantities listed. For in-

stance, EB(pp' in this table is equal to 5'B(pp" +Ib'LzFp'( in the

notation of Ref. 26.

QQ~M N

(j)

.'D M'
I

(k) (k )
FIG. 8. Eighth-order muon self-energy diagrams obtained

from the fourth-order diagrams of Fig. 7 by inserting vacuum-
polarization loops. Seven more diagrams related to a, e, g, i, j,
k', and k" by time reversal are not shown. Shaded circles
represent the sum of all fourth-order vacuum-polarization
loops.

582
~a2( )

gB(g, e(
,P2

gB (Pg (

2
gg(e, e)

'P22
aB'P'2 22

M2

, P4

M(P"
, P2

2
M(e, e)' 2:2
M(eg (

2:2

0.75
2.440 8( 11)

1.886 33(8)

0.063 399

5.331 9(15)
0.236 13(6)

0.5
1.494 3(6)
1.094 259 6

0.015 687

2.720 1(3)
0.050 28( 1)

(2.13)
(3.12)

(3.18)

(3.18)

(3.23)

(3.23)

(2.7)
(3.4)

{3.16)

(3.16)

(3.21)

(3.21)
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a & p
= —2.786 4(45 },

a4 p p
= 4.5586(31)

a4 p
= —9.3571(40) .

(2.28}

(2.29)

(2.30)

Combining these results the contribution to a„ from the
90 diagrams of group II is found to be

Note that the multiplicity factor for each term, which ac-
count for equivalent diagrams obtained by time reversal
and/or interchange of electron and muon vacuum-
polarization loops, is shown explicitly in the above for-
mulas. Thus, entries in Table IV do not include multipli-
city factors.

Substitution of the numerical values listed in Tables III
and IV into (2.25)—(2.27) yields

r -rr]
I I ~ 4 ii

/
I I I 4 ~

E

r~~ ri&
I I ~. I a

FIG. 9. Muon self-energy diagrams of the three-photon-

exchange type. Two mere diagrams related to D and 6 by time
reversal are not shown.

a', &' = —16.702(7) .

Group III

(2.31)
2 for a=D, G,
1 for a = A, B,C,E,F,H, (2.33)

0(8)—
ga 6a, p ~

a=A

where

a 6 p
=EM6 p +residual renormalization terms

and

(2.32)

These diagrams are generated by inserting a second-
order vacuum-polarization loop into photon lines of
muon vertex diagrams of three-photon-exchange type.

Time-reversal invariance, use of the function pz for the
second-order photon spectral function [see (2.2}],summa-
tion over a set of proper vertex amplitudes that differ

only in where the external magnetic field vertex is insert-
ed, and transformation of these sums with the help of the
Ward-Takahashi identity reduce the number of indepen-
dent integrals to be evaluated from 150 to 8. These in-

tegrals have a one-to-one correspondence with the self-

energy diagrams of Fig. 9 and can be written explicitly in
terms of the parametric functions defined for the latter.

Let M6 p be the Ward-Takahashi-summed magnetic
moment projection of the set of 15 vertex diagrams gen-
erated from a self-energy diagram a ( = A through H) of
Fig. 9 by insertion of a second-order electron vacuum-
polarization loop and an external vertex. The renor-
malized contribution to a„due to the diagrams of group
III can then be written as

which takes account of the time-reversed counterparts of
the self-energy diagrams D and 6 of Fig. 9. AM6 p is
the UV- and IR-finite portion of M6 p where all diver-

gences have been projected out by Ez and IG&z opera-
tions. Integrals b,M6 p (a= A through F and H) were
evaluated by the integration routine vEGAS (Ref. 11}with
10 subcubes, the number of iterations ranging between
30 and 40 depending on the convergence rate of the in-

tegral.
The integral EM6G p required a special treatment be-

cause double precision arithmetic was not accurate
enough to deal with the cancellation of UV divergences
arising from a second-order vertex. This problem was
resolved using quadruple precision arithmetic in a small
region surrounding the singularity. 2 This region (1% of
the whole domain} was sampled with 10 points per itera-
tion while the rest was sampled in double precision with
10 points per iteration. The numbers of interactions
were 34 and 37, respectively.

The latest results of a long sequence of numerical eval-
uation of group III integrals are summarized in the
second column of Table V. The residual renormalization
terms are shown in the third column of the same table.
Numerical values of auxiliary integrals needed in the re-
normalization scheme are listed in Table VI.

When summed over all the diagrams of group III, the
UV- and IR-divergent pieces cancel out and the total
contribution to a„can be written as a sum of finite pieces:

+M ), [I](65m/'p'+65m/&'p') M'","(55m—), +65m)b ) —M, (b5mg'z'+55m /&'~)

MPp"[B~c+Bw) 2(~B2)']™z(B~e'p+Bbk"~' 4~B2~BPp') .
I

(2.34)

Plugging in the values listed in Tables V and VI, we ob-
tain

As a byproduct of the calculation described above, one
can also obtain the best numerical value available for the
electron-loop vacuum-polarization contribution to the
sixth-order a„, which can be written as",~»' ——10.793(48) .

a ttt
= g 7/ LLM6+ p 3KBgp (EM4 +EM4b ) 35B2(AM/'p+ kMgg'p )+M& ' [I]p(55m 4 +55m 4b }

a=A
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TABLE V. Contributions of grouped diagrams of Fig. 9. [ri =1 {2)for symmetric (asymmetric) diagrams. ]
Diagram q EM6 p

—12.940 1( 130)

18.797 9{171)

4.000 7(178)

10.494 0(225)

11.000 1(121)

5.651 8( 166)

19.742 4( 172)

—18.361 5(141)

Residual renormalization terms

2—(b, '82lLMgq'p'+ 25'8 ~/A'lkM4(, )+M'Pp" {2I4,+ (5'8, )2—2I25'B~ )

+M, {2Igp'+2k'8, 5,'By'J' 2I—,B'By'p" 2I—y"'5'8 )

+5M4(, (Igp' 5'B—g)")+5M'' p(I, —5,'8, )

+55m4(, (M(P~" [I] M'—"»" )+lk5mg&'p(M « [I] M—~ )
t

+Mt"p (2I4~+2I4( EByy+(It'82) +(I2 } 2k'BpI2)
+M, (2IQ p'+ 2Ifj'p' 5,8g—g p'+25. '825'8 fp"

+2I2I Pp' 2h'8—Pp"I, 2I( '8—,Igp')
+Imp 5M4~+Ip5MQ~'p 2IPp 5M4y 2I25Mgy'p
+65m P'p(M [I] M—)+65m, (M'" "[I] M'""—)

t t

+Mpp"[2I4, +14„—58~, —2(Ip ) +2k'82I2]
+M, (2IQ p'+If'p ABER p'—4I~IP),—"+2k'Bgp'Ip+2h'82Igp")
—5'8 P),"hM~, 6'8 5M—Q' p Igp'b M—

gb I2 hM—gg' p'

+M~pp'([I~, I~, —E—L4, —(I2) +2k'82I~]
+M2 (Ig~' p' Ig'p' —lLL g'p' —2I2IP}'—+2h'8 Pp'I2 +2b 'Bp IQ' ")

5,'8'2I'),"—EM4, 6'826M—Q p+Mgp"(I4, 2I4, 2—ALE, +—2h'B, I, )

+M2 (Ip'p 2IQ'p' —26L g'p'—+2h'8 P}'I2+ 2I((,'8 2 Ifp')
2IPp"b, M~, —2I,b Mg"p—+Mgp"[ 2I4, 2b—L4, +3(I,—)']

+M, ( 2IQ'p' 25L—g'p'+ 6—I2IPp')
Igp"AM—4, I~5M/ p—'+Mgp"[ I~( I4, E—L4—( 5L—~, +(I—~) ]

+ Mp( Igj'p' Ig—'p' hL—gj'p' —hL g~'p'+—2I2I Pp")
+M Pp'( 2I4„2dL—~„)—+ M2( 2IQ"p 26L g—"p)—

a „' '( vacuum polarization )

= hM~+" +dkM~+" —hB M'"'"—b B'""M
4a, P 4b, P 2 2 P 2 P 2

+My'"+2M'g' +M"'
, P4 2 2 2-2

' (2.36}

Substituting the data from Tables IV and VI in (2.36) we
obtain the value given in (1.7).

Group IV

Term

M, ~ [I)a5mgb p+M', &"[I]a5m4,
M ~ [I)55m ~g' p+MP [I]55m4,

M2
M(g, e)

M ~

d!B2
58(g, e(

55m4,
a5mg",
65m4b

AM4,

EM~b
EM(gb p'

Bare
(p, e)

Bare, p

Bbls

B(,f~: p

Value

—15.501 8(16)
0.185 7(25)
0.5
1.094 259 6
1.0
2.350 8( 8)
0.75
1.886 33(8)

—0.301 5(10)
0.472 9( 12)
2.208 1(4)

10.678 6( 12)
0.218 3
1.728 7{10)

—0.187 5
—2.359 8(6)
—0.987 3(26)
—6.195 8(17)

1.482 3(9)
9.009 3(15)

TABLE VI. Auxiliary integrals —Group III.

Diagrams of this group can be divided into four sub-
groups. Each subgroup consists of two equivalent sets of
diagrams related by charge conjugation (reversal of the
direction of momentum flow in the loop of the light-by-
light scattering subdiagram).

Subgroup IV(a). Diagrams obtained by inserting a
second-order vacuum-polarization loop in the sixth-order
light-by-light scattering diagrams. This subgroup is
comprised of 54 diagrams. A typical diagram is shown in
Fig. 10(a). Use of the Ward-Takahashi identity to sum
over external vertex insertions, surnrnation over second-
order vacuum-polarization-loop insertions, and charge-
conjugation symmetry reduce to just three the number of
independent integrals to be evaluated. They are all ap-
propriate modifications of the integral M6LL p defined by
(2.4) of Ref. 29. Denote these integrals by M&LL p where

' (1),l~)

(I&, l2 ) = (e,e), (e,p ), or (p, e). They are generically
represented by the self-energy diagrams shown in Fig. 11.

Subgroup IV(b). Diagrams containing sixth-order
light-by-light scattering subdiagram. Altogether, there
are 60 diagrams of this type. An example is shown in
Fig. 10(b}. Charge-conjugation and time-reversal sym-
metries and summation over external vertex insertions
reduce to four the number of integrals to be evaluated.
These integrals are generically represented by the self-
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(o) (b)

I

I

I I
!

(c) (4)

LLA LLB LLC LLD

FIG. 10. Representative diagrams of each subgroup of group
IV.

LLK LLF LLG

I
I I

LLH

(8) — (8) (8) (8) (8)aiv =a&v(, ) +a&v(b) +a&v«) +a&v(4)

(1),12)
L

X u6LL, P+ g lau8LLa
(1!,12) a= A

(2.37)

where

( II,12 (1!,12a 6LI p M6LL p +renormalization terms

8LLa =M8LLa+renOrmahZatiOn termS,

and

(2.38)

(2.39)

energy diagrams LL A, LLB, LLC, and LLD of Fig. 12.
Subgroup IV(c). Diagrams obtained by attaching a sin-

gle virtual-photon line to the muon line of the sixth-order
vertex containing a fourth-order electron-loop light-by-
light scattering diagram. There are 48 diagrams that be-
long to this subgroup. An example is shown in Fig. 10(c).
Summation over external vertex insertions and use of the
interrelations available due to charge-conjugation and
time-reversal symmetries leave five independent integrals
to be evaluated. They are generically represented by the
self-energy diagrams LLE, LLF, LLG, LLH, and LLI of
Fig. 12.

Subgroup IV(d). Diagrams generated by inserting a
fourth-order light-by-light scattering subdiagram inter-
nally in a fourth-order vertex diagram. An example is
shown in Fig. 10(d). Diagrams of this kind appear for the
first time in the eighth order. Charge-conjugation invari-
ance and summation over the external vertex insertion
with the help of the Ward-Takahashi identity leads us to
three independent integrals. They are represented by the
diagrams LLJ, LLK, and LLL of Fig. 12.

The renormalized contribution to the muon anomaly
arising from group IV diagrams can be written in the
standard renormalization scheme as

LLI LLJ LLK LLL

FIG. 12. Self-energy diagrams representing the external-
vertex-summed integrals of subgroups IV(b), IV(c), and IU(d).

2 for a=B,C,F, G,I,
1 for a = A, D, E,H, J,K,L, (2.40)

which follows from the Ward-Takahashi identity and the
fact that self-energy diagrams to which vertex diagrams
of these subgroups are related vanish by Furry's theorem.
On the other hand, the self-energy diagrams from which
diagrams of subgroup (d) are derived are nonzero and the
UV divergence associated with the light-by-light scatter-
ing subdiagram must be regularized in the manner of
Pauli and Villars. For these diagrams it is necessary to
carry out explicit renormalizations of the light-by-light
subdiagram as well as two sixth-order vertex subdiagrams
which contain it. For details see Ref. 29.

Making use of (2.41) and the second-order photon
(ll, 12 )

spectral function, one finds that integrals M6LL p are all
finite, implying

{II l2 (ll 12 (ll l2a 6LL, P M6LL, P =™6LL, P (2.42)

so that the contribution of subgroup IV(a) is given by

accounts for diagrams related by time reversal. The fac-
tor 2 coming from equivalent diagrams obtained by rev-
ersing the momentum flow in the electron loop is includ-
ed in the definitions (2.38) and (2.39).

For subgroups (a), (b), and (c), the UV divergence aris-
ing from the light-by-light scattering subdiagram
II" ~r(q, k, ,k, k& ) are taken care of by making use of the
identity

II' ~r(q, k, ,k, kI)= q„H"—P~(q, k, k, kI)
a

q„

(2.41)

FIG. 11. Self-energy diagrams representing the external-
vertex-summed integrals of subgroup IV(a).

(8) {1I, 12 )

IV(a) X ™6LL,P
(1, , 12)

(2.43)
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Relating the IR- and UV-divergent M8LL to the finite,
numerically calculable piece EM8LL defined by the pro-
cedure of intermediate renormalization of Ref. 29, one
can write (2.39) in the form

a8L« =AM8LLa+ residual renormalization terms .

(2.44)

Specifically, the contributions of the diagrams of sub-
groups (b) and (c) are given by

D
~ Iv(b) y r) ™8LL(8) (2.45)

and

I
~ IV( ) y ) ~M8LL 2~~2M6LL(8)

a=E
(2.46)

M6LL appearing in (2.45) and (2.46), which is identical
with the second quantity in (1.7), is the contribution to
the muon anomaly from the sixth-order vertex diagrams
containing an electron-loop light-by-light scattering sub-
diagram. On the other hand, the contribution of the sub-
group (d) is written as

L
(8)~ IV(d) ~ ga~ 8LLa (2.47)

—5b,B2M6LL+ g g (28LL
a=J

(2.48)

TABLE VII. Numerical results for various terms in (2.48).
[g = 1 (2) for symmetric (asymmetric} diagrams. ]

Diagram

(e, e)
6LL, P
( e, )IL)
6LL, P

dLL, P

B
C
D

G
0
I
J
K
L

AB2
~6LL

ga™SLLa

116.805 1(609)
2.701 5(44)
4.325 7( 130)

49.882 0( 872)
—74.485 8( 1048)

102.370 1( 1248 )
—37.8106(1024)
—21.547 5(688)
—75.402 5(2031)
—34.942 1( 1374)

54.091 3(1564)
112.662 9(1519)

5.457 5(206)
—7.828 9(340)
—1.067 3(355)

0.75
20.947 1(29)

where a8LL a is obtained by the standard renormalization
instead of the intermediate renormalization (see Ref. 29).

Summing (2.43)—(2.47), we arrive at

(8)— (lg l2 )
I

~ IV 2 ™6LL,P + 2 )ÃM8LL
(1(,12 ) a=A

Numerical integration of all terms in (2.48) has been car-
ried out using vEGAS (Ref. 11). The latest results are list-
ed in Table VII. The number of iterations employed in
achieving the stated results was between 25 and 40, while
the number of function calls per iteration ranged from
4X10 to 12X10. In general, the major difficulty in
dealing with the diagrams of this group arises from the
enormous size of the integrands (up to 5000 terms and
240 kilobytes of FORTRAN source code per integral) and
the large number of integration variables (up to 10). See
Ref. 29 for a discussion of various computational prob-
lems encountered in the numerical integration.

Collecting the results of Table VII, we find the contri-
bution from all 180 diagrams of group IV to be

atv'=116. 660(405} . (2.49)

Finally, combining (2.23) with (2.31), (2.35), and (2.49),
we obtain the complete eighth-order QED contribution
A (2 '(m„/m, ) reported in (1.9).

III. AN ESTIMATE OF THE TENTH-ORDER TERM

(2)v(b) = —7. 175(212), aviv(
)
=3.441(336) . (3.1)

As is seen from Table VII, even the convergent parts of
individual terms of these subgroups, which are not gauge
invariant, may be very large, but their gauge-invariant

In view of the large eighth-order coefficient (1.9), one
may naturally wonder how large the tenth-order
coefficient might be. To answer this question unambigu-
ously, one has to evaluate all tenth-order terms, a formid-
able task indeed. To achieve our goal of determining a„
to a precision of few parts in 10 ", however, it is
sufficient if a rough but fairly reliable estimate is avail-
able.

Fortunately, it is not difficult to obtain such an esti-
mate. It is based on the following empirical facts accu-
mulated while working on the sixth- and eighth-order
terms.

(a) The contribution of a minimal (gauge-invariant) set
of diagrams is of order 1 as far as they have no closed
electron loop. We mean by minimal" a gauge-invariant
set whose subsets (excluding itself) are not gauge invari-
ant.

(b) The contribution of a minimal set of diagrams con-
taining n electron vacuum-polarization loops is of order
[In(m„/m, )]" times the term obtained by omitting these
loops. In addition, it has a multiplicative factor which
depends on the number of ways electron loop insertions
can be made.

(c}The contribution of a minimal set of diagrams con-
taining an electron loop light-by-light scattering subdia-
gram has a ln(m„/m, ) factor with a large numerical
coefficient. If it also contains electron vacuum-
polarization loops, it is multiplied by further ln(m„/m, )

factors.
Summing over a gauge-invariant set is a necessity since

an individual diagram is UV and/or IR divergent in gen-
eral. As examples of minimal sets, let us list the contri-
butions of subgroups IV(b) and IV(c):
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sums are fractions of M6LI in (2.45), or its equivalent in

(1.7).
One may conclude from this that the most important

tenth-order term comes from 36 Feynman diagrams of
the type shown in Figs. 13(a) and 13(b), which contain
one light-by-light electron loop and two second-order
electron vacuum-polarization loops. It is not difficult to
write down a FORTRAN program for the sum of all these
diagrams, adapting Eqs. (3.13} and (3.19) of Ref. 26 to
this case. We evaluated this integral numerically. Our
result, based on 28 iterations with 10 function calls per
iteration, is

A~z' '(m„/m, ; leading term)=569. 33(61) . (3.2)

Of course, direct evaluation of other terms is much
more tedious. Instead, we shall just give a rough estimate
based on the observation that the effect of second-order
electron loop insertion can be estimated as follows.
First note that such an insertion results in a modification
of the photon propagator of the form (A10). Asymptoti-
cally we find

00',
(0)

I I

I
I

I I I

(b) (c)

q adpi', a =1+—[ —,'In(q /m, )——,']+ .
me

q'»m, ' . (3.3)

Since the logarithm is a slowly varying function of q,
one may replace q by an average value r m „,where r is
a constant of order unity. This means that the insertion
of a vacuum-polarization loop can be effectively reduced
to multiplication by a factor

—K =—[—', ln( rm „/m, ) ——,
' ] . (3.4)

In order that the approximation (3.4) makes sense, r
should be less than —1 which means that E should be
less than -3.

Let us now estimate the magnitude of E from the pre-
viously calculated results. For example, for the eighth-
order diagrams M6LL p of Fig. 11 we will have

Mszz'z-3KB ~2 '(m„/m, ; light-by-light) . (3.5)

The factor 3 accounts for the number of photon lines in
which an electron vacuum-polarization loop can be in-
serted. Similarly we may fix the parameter E from the
relation

A2' '(m„/m, ; leading term)

-6E A'z '(m„/m„' light-by-light) . (3.6)

The factor 6 arises because two electron vacuum-
polarization loops can be inserted in three photon lines in
six different ways. Using the data from Table VII, and
Eqs. (1.7) and (3.2), we find K=1.86 and 2.13 from (3.5)
and (3.6}, respectively. Examination of other diagrams
yields E mostly in the range from 2 to 2.5 with the excep-
tion of aI» of (2.35) which gives E-4. For our purpose
it is sufficient to choose

E =2-4 . (3.7)

This shows how poor the approximation (3.4) might actu-
ally be. What is most important, however, is that these
K's are all positive. This means that one can confidently
predict the signs of terms obtained by insertion of
vacuum-polarization loops.

It is not difficult to turn this heuristic argument into a
more rigorous one using the renorrnalization-group tech-
nique discussed in the Appendix. However, it will not be
necessary for our present purpose.

As an application of the admittedly very crude method
described above, let us estimate the magnitude of the
term representing the sum of 2072 Feynman diagrams of
the type shown in Fig. 13(c), which are obtained from 518
electron-loop-free eighth-order diagrams by insertion of
an electron vacuum-polarization loop in all possible
manners. Our estimate for this term is

4XE X( —1.98)= —(16—32), (3.8)

I I

I I

(e)

FIG. 13. Some tenth-order diagrams. (a) and (b) are generat-
ed by inserting two electron vacuum-polarization loops in a
sixth-order diagram containing a light-by-light scattering subdi-
agram. There are 36 diagrams of these types. (c) is generated
by inserting an electron vacuum-polarization loop in an
electron-loop-free eighth-order diagram. There are 2072 dia-
grams belonging to this group. (d) contains a six-point electron
loop. This group appears for the first time in the tenth order
and consists of 120 diagrams. (e) and (f) contain two light-by-
light scattering subdiagrams.

where 4 is the number of virtual photons and the factor—1.98 is from Ref. 16.
Similar estimate can be made for each minimal gauge-

invariant subgroup discussed in Sec. II. In view of the
fact that the results (2.23), (2.31), (2.35), as well as (3.1)
and other gauge-invariant results calculable from Table
VII, are no larger than 17 in magnitude and tend to can-
cel each other, one finds that the contribution of tenth-
order diagrams obtained by insertion of a second-order
vacuum-polarization loop in all eighth-order diagrams,
excluding the result (3.2), is likely to be substantially less
than 100.

Tenth-order diagrams that cannot be estimated by the
method discussed above are of the types shown in Figs.
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13(d)—13(f). Since they have low powers of In(m„/m, ),
however, it seems to be unlikely that they give large con-
tributions. In view of the fact that we do not know why
the sixth-order diagrams containing a light-by-light
scattering subdiagram have such a large value, however,
it might not be prudent to rule out a surprise in the tenth
order. Direct evaluation of contributions of Figs.
13(d)—13(f) might be interesting.

Our conservative estimate, then, is that the tenth-order
term will be found well within the range given by

A q' ' =570( 140) . (3.9)

This amounts to 39(10)X10 ' in the final value (1.17)
for a P
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APPENDIX: COMPARISON
WITH THE RENORMALIZATION-GROUP RESULTS

Because of the large mass ratio, m„/m, =207, the
leading contribution to the muon anomaly arising from
the electron vacuum-polarization insertion is governed by
the short-distance behavior of the photon propagator.
Exploiting the relationship of this fact and the renormal-
ization procedure it is possible to predict the ln(m„/m, )
structure for a large number of diagrams contributing to
a„(Ref. 30). Refining this technique further, Lautrup
and de Rafael ' were able to predict the complete
ln(m„/m, ) structure of a large class of eighth-order dia-
grams contributing to a„. The purpose of this appendix
is to compare the numerical results obtained in Sec. II
with the corresponding formulas derived in Ref. 31 and
determine as much as possible the terms that were left
undetermined by the latter. In order to make this paper
somewhat self-containing, we start with a brief review of
their methods and results.

Let us denote by a(m„/m„a) the contribution to the
muon anomaly from the class of vertex diagrams which

m, +p(a)a8 8
'Bm, Ba

ma„",a =0 .
me

(Al)

The solution to this equation is
' P(a)a(B/ba)

B(a)
m

me me

n
oo

ln
n=O n' me

p(a)a 8
Ba

B(a),

where P(a) is the Callan-Symanzik function and

(A2)

m iB(a)=a„',a
m, p m =m

is the nonlogarithmic part of a . As is seen from Eq.
(A2), knowledge of p(a) and B (a) determines a „com-
pletely. Expanding p(a) and B (a) in powers of a/n as

k 'k

p(a)= g p„
a

k=1
B(a)= g Bk

k=1
J

I

I

p, y only

I

p, y only
I I I I

I

I

pc, , y on I y
1 } fI ]

e/ f

', 'e i'

+ ~ ~ ~

FIG. 14. A class of diagrams generated by inserting electron
vacuum-polarization loops into a muon vertex.

are obtained by replacing all internal photon lines in a
certain set of renormalized muon vertices by dressed re-
normalized photon propagators whose fermion loops are
exclusively of the electron type. (See Fig. 14.) The start-
ing set of muon vertices may contain muon loops to
which any number of photon lines are attached. It may
even include electron loops to which four or more photon
lines are attached. For simplicity, however, let us first
consider the case where the starting set is the largest set
containing all types of muon loops but no electron loop at
all. Actually, for some smaller starting sets, it is possible
to extract more information. Some of them will be con-
sidered later.

According to the procedure of Ref. 31, we define its
asymptotic part, a„(m„/m„a), as follows. In each or-
der of perturbation theory drop terms which vanish as
m„/m, ~ 00, while retaining terms which are constant or
increase logarithmically. It can be shown that a „obeys
the homogeneous Callan-Symanzik equation
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and substituting them into Eq. (A2), we can determine
the terms a'„"', n =2,4, 6, . . . , successively. %e are par-
ticularly interested in the eighth-order contribution
a'„'(m„/m„a) which can be written in the form

I
I

ps, y only

where

m„
,a

me

m„+E ln
m e

(A3)

m„ m8 +Cln "+D ln
me me FIG. 15. A class of diagrams generated by inserting electron

vacuum-polarization loops into a single photon line of an arbi-
trary muon vertex.

C4 =p3B, +2p2B2+ 3p)B3,
D4=2p(p2B(+3pp2, E4 p, B)——.

(A4)

me mp
B4= —2.503(55)+0 ln

mp me
(A9)

The functions p(a) and B(a) are both known up to the
sixth order in perturbation theory. The coefficients pk
(k =1,2, 3) are given by

(A5)

while the values of Bk (k=1,2,3) are' '

B, =—', B2= —1.022923. . ., B3=2.74164(56) . (A6)

Substituting (A4) —(A6) in (A3) one obtains
'4

a'„' ",a = — [B4+17.067 6(60)] . (A7)
me 7T

Of the 469 eighth-order Feynman diagrams that con-
tribute to A '2 '(rn„/m, ), 304 belong to the class
represented schematically by the diagrams shown in Fig.
14. It is the contribution of these diagrams to a „ that is
given by (A7). These 304 diagrams consist of (i) all dia-
grams of group I with the exception of those shown in
Fig. 4(c), (ii) all diagrams of group II, (iii) all diagrams of
group III, (iv) diagrams of group IV which are represent-
ed by the self-energy diagrams of Fig. 11 with
(!„l2 ) = (p, e). Having evaluated the contribution to the
muon anomaly from these 304 diagrams "exactly, " we
are now in a position to extract the value of the previous-
ly undetermined coefficient B4. Summing the results
(2.6), (2.11), (2.14), (2.15), (2.22), (2.31), (2.35), and M'gz'I'z
(third entry in Table VII), we find

r 4
m aa' ' ",a =14.565(55) (A8)
me vj

which, when compared with (A7), means that

pv
Dg"(q) = i d„—

q

q
,a +the q„q term .

m,
(A10)

The asymptotic part of the renormalized photon propa-
gator is defined as follows. In each order of perturbation
theory drop terms that vanish in the limit —q2/m, ~ ao

while keeping divergent and constant terms. The asymp-
totic propagator satisfies the following Callan-Symanzik
equation:

m, +p(a)a a
' Bm, Ba

2

ada" —,a =0 . (Al 1)
m,

The solution of this equation may be expanded in the
form

The method used above was such that, because of
lumping together of all the diagrams at a given order, in-
formation about individual diagrams was lost. Also, for
the eighth-order calculation, it was possible to determine
only the logarithmic mass dependence of a'„'. The mass-
independent term B~ in (A3) could not be determined un-

til direct evaluation (A8) was made. There is, however, a
class of eighth-order diagrams whose contributions to
a'„', including mass-independent terms in some cases, can
be obtained by making use of the asymptotic form of the
vacuum-polarization and lower-order anomalies. Dia-
grams which belong to this class are those that are gen-
erated by inserting an electron vacuum-polarization loop
into a single photon line of an arbitrary muon vertex.
(See Fig. 15.) In order to consider the contributions of
this class of diagrams we start with a brief discussion of
the asymptotic photon propagator.

The general expression for the renormalized photon
propagator is of the form

T 2
2

da" —,a = 1 —(a, +b, L) —+[—(a2+b2L)+(a, +b, L) ]
me

3

+[—(a3+b3L +c3L2)+2(a, +b,L)(a2+b2L) —(a, +b,L ) ] — + (A12)

where

L =ln q

me
(A13)

I

The first few coeScients are known from perturbation
theory: '

(A14)
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The coeScient a3 has not been determined thus far. We
are now ready to evaluate it.

From (A12) one can clearly see which contributions
come from proper vacuum-polarization diagrams, which
come from improper diagrams consisting of two proper
parts, and which come from improper diagrams consist-
ing of three proper diagrams, etc. Having found the
asymptotic form of the photon propagator, we now turn
to the discussion of the contribution to a „ from the dia-
grams that belong to the class represented by the diagram
shown in Fig. 15.

We start by considering the diagrams shown in Fig. 16,
generated by inserting the electron vacuum-polarization
diagram 6 into the lowest-order muon vertex. An exact
expression for the contribution to the muon anomaly
from these diagrams is given by

'

a 2 2
mp

Q(2G) = X 1 X g 1
1 x m (G)

(A15)

Since we are interested in the asymptotic contribution to
I

FIG. 16. Diagrams obtained by inserting electron vacuum-
polarization loops into the second-order muon vertex.

the anomaly, we have

2 2a —x m
a P2. Gi

=— dx(1 —x) dpi'
—1

0 1 —x m,2 (G)

(A16)
Eighth-order diagrams that belong to the class represent-
ed in Fig. 16 are those shown in Figs. 2(a), 3(a), 4(a), and
5. From (A12) —(A14) and (A16) one finds '

a/2. 2.2.2&
=a "[Fig. 2(a)]

8609 25 ~2 2g(3)+( 3j7 + 2 ~2)ln I 251n2 I + 4 ln3 I"
5832 162 9 162 27 m " mme me me

4

=7.1967

4

(A17)

a/2. 2.4i =a "[Fig. 3(a)]

m m—''+ ——"g(3)+[——'+ —'g(3)]ln " +—'ln
me me

'4

=7.1404a a
7r

4

(A18)

Note that (A17) and (A18) have no undetermined constants. On the other hand, numerically integrating the exact ex-
pressions (2.2) and (2.7) we found

a~2. 22.2~ =a[Fig 2(a)]=7.223 7(13)

' 4

(2.3')

a~2.24i=a[Fig 3(a)]=7.1289(23)
4

(2.8')

which are consistent with (A17) and (A18), respectively, within the uncertainty of the order of (m, /m„)ln(m„/m, ).
The complete contribution to a „ from the proper sixth-order vacuum-polarization insertions [eighteen diagrams of

Figs. 4(a) and 5] is given in terms of one unknown parameter a3, the constant term in the asymptotic vacuum polariza-
tion in the sixth order: '

a/2. 6i =a "[Fig. 4(a)+Fig. 5]
2

= (
—

—,'a 3+ 1.167 729) a
4

(A19)
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Comparing this with the exact result obtained in Sec. II:

a(~.6)
=a [Fig. 4(a)+ Fig. 5]

mp
a (44] = a2Ip b2I

&
2b2Ipln

m,

4

(A26)

=0.647 1(203)
4

(A20)
The value of the integral Ip is given by '

we find the unknown coeScient a 3 to be
I =2 —'"+

144

m2
ln2+ 3 g(3) (A27)

m, m
a3 =1.041(41)+0 ln

mp me
(A21)

which is 2 times the fourth-order electron anomaly a,' '.
The value of I& is not known analytically. However, it

can be determined from
We now consider the contribution to a „ from the set

of 42 eighth-order diagrams generated by inserting prop-
er fourth-order electron vacuum-polarization diagrams
into fourth-order muon vertices. The diagrams that be-
long to this set are those shown in Fig. 3(b) and those
represented by the eighth-order muon self-energy dia-
grams in Figs. 8(a), 8(b'), and 8(b").

Let us denote by K' '(t) the anomaly due to fourth-
order muon vertex diagrams with one heavy photon of
mass squared t. Analytic properties of K' '(t} allow one
to write

K' '(t)= dt', —ImK' '(t') .
1 1

m„
a(4.2)

= aiIp b]I& 26]Ipln
m~

a
7T

'3

(A28)

which leads to

where a(4.2i is the sixth-order contribution to the muon
anomaly obtained by inserting a second-order electron
vacuum-polarization loop into the fourth-order muon
vertices. Using the values listed in Table VI we obtain

'i

3

a~~. z)
= —2.2944(12)

II = —0.9729(36) . (A30)
Introducing the notation

1—ImK' '(t)= —k' '

7r

t a
m P

(t (0), (A23)

the contribution to a „ from the class of digrams under
consideration can be written as

'2

a(4.4)
= — k"'(y) dye

a ~d 2
mp

me (4)

(A24)

Inserting the fourth-order contribution to the asymp-
totic propagator and defining the integrals

We note that I, is equal to 3a,' ' within the numerical
precision. (Could this be exact?) Substituting (A27) and
(A30) into (A26), and taking (A14) into account, we find

4

2. 647 4( 9 )
a

a~4. 4i =a[Fig 3(b)+Figs. 8(a), 8(b'), 8(b")]
'4

= —2.666 9(45 ) (A32)

which is consistent with the numerically obtained "ex-
act" result

I =f k' '(y)ln y (N =0, 1},
p y

we may write Eq. (A24) as

(A25)

within an uncertainty of order (m, /m„)ln(m„/m, ).
The results (A31) and (A32) disagree strongly with the

result (5.11}of Ref. 31. The source of disagreement is
traced to an error in formula (5.10) of this reference. Un-
fortunately it has not been fully corrected in the erratum.
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