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We consider the finite-action classical solutions of Euclidean topologically massive gauge theories

in the presence of external sources. We study the Abelian case for general sources, as well as the

general non-Abelian case for weak sources. We also investigate the solutions within the radial An-

satz, both with the usual source couphng and with coupling to gauge-invariant sources. We show

that all these solutions correspond to saddle points of the action.

I. INTRODUCTION

Gauge theories in three space-time dimensions have
received much attention, not only because they provide
an interesting example of a model with a gauge-invariant
mass term, the so-called Chem-Simons action, but also
because they could be related to the high-temperature
limit of the usual four-dimensional Yang-Mills equa-
tions, in this respect, one is interested in three-
dimensional Euclidean, topologically massive gauge
theories. Three-dimensional gauge theories (without the
Chem-Simons term) have also been studied in connection
with confinement.

The equations for this model are complicated nonlinear
equations whose complete set of solutions is not known.
Although several important classical solutions have been
found, and the quantum-mechanical perturbative treat-
ment has been studied, ' it is still interesting to see how
these equations react to external stimuli, that is, what
solutions can be found in the presence of external
sources. This is done in parallel with similar investiga-
tions in four-dimensional Yang-Mills theories ' (which
yielded a rich variety of solutions with interesting behav-
ior), and in the hope of gaining some insight into more
realistic situations. We will restrict ourselves to classical
solutions which are useful as starting points for semiclas-
sical expansions.

Based on these considerations we will study the solu-
tions to the three-dimensional Euclidean gauge theories
with a Chem-Simons term included. We will consider
both the case of a purely imaginary mass parameter p
and of a purely real p. This last case is of interest in con-
nection with the high-temperature limit of four-
dimensional gauge theories in the presence of a chemical
potential. In the spirit of semiclassical expansions we
will consider only real solutions to the equations of
motion. The restriction to Euclidean space, aside from
being physically motivated by the high-temperature limit,
presents the possibility of mixing spin and isospin indices,
a fact which has produced many interesting results in
other situations. This type of problem, but without the

The corresponding equations of motion are

DabFb + ega g Ja (1.3)

having defined the covariant derivative D and the dual
field strength by

Dp ~p~ab+eabc A p& p 2 pvp vp

If we contract the left-hand side of (1.3) with D'„' we

obtain the well-known consistency condition that the
equations have a solution only if the external sources are
covariantly conserved:

D'"J"=0 .
P P

We mentioned above that the situations of interest to

inclusion of external sources, has been investigated by
D'Hoker and Vinet.

In Euclidean space the global quantity of interest to us

will be the action S, which to a certain extent replaces the
energy in four-dimensional studies. Infinite-action solu-

tions will be rejected as they are not an adequate starting
point for a semiclassical expansion. Since what we have
in mind is the coupling to external sources we will not, in

general, be able to maintain gauge invariance, the cou-

pling being of the form J A. This could be fixed by cou-

pling the sources to gauge-invariant objects, such as a
Wilson loop W. Though this is in general not practical
(because of the nonlinearities contained in W), we were
able to study such a coupling within a restricted Ansatz.
This coupling will be labeled "to gauge-invariant
sources. "

The explicit form of the Lagrangian is'

1
+0 2 pv pv+ 2 pvp(FpvA p+ 3

A pA vA p abc ) &

4g 4g (1.1)
X=To—J„'A„',

where J„' is the external source and the field strength is

given by
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Imp(*F'„)=g ImJ;,
D bFt' +Rep( +F ) =g2/eJ~

(1.6)

When Imp&0 these equations have solutions
r

us will be when p is either purely real or imaginary. We
can however, generalize and consider the equations of
motion for arbitrary complex sources and p, though 3
will be kept real. In this case (1.3) separate into

tion in the case where the sources are weak, so that a per-
turbative expansion is reasonable. Finally, we will study
in detail the solutions within the radial Ansatz both with
the "usual" coupling to sources as in (1.1), and with
sources coupled to Wilson loops.

A. Abelian solution

In this case we take
2

eFa g
Imp

ImJ„', J„'=j„5„, A„'=a„5„.
Then (1.3) becomes

(2.1)

ReJ' =
P

ImJ' — e„&D' ImJ
Imp " Imp (2.2)

Thus the real part of the sources is fixed by the imaginary
part. From the above expressions it follows that (1.5) is
satisfied; moreover the original second-order equations
are replaced by a first-order equation relating the dual
curvature to the imaginary source. If Imp=0 then one
has to deal with the full second-order equations in (1.3).
Finally, for Rep=O, the only consistent solutions are
vanishing sources and pure gauge potentials. This will be
explicitly verified in several particular cases below.

In the following sections we will consider first the case
where p is purely real. Then we will study the simpler
situation where Imp+0.

This is perhaps a good place to comment on the gauge
invariance of (1.1), and on the possibility of coupling the
sources to gauge-invariant objects. Equation (1.5) implies
that, for this type of sources, X in (1.1) is invariant (up to
a total derivative) under infinitesimal gauge transforma-
tions. This statement does not extend to arbitrary gauge
transformations because of the source term: if this piece
of X is to be invariant under arbitrary gauge transforma-
tions, the sources must be covariantly conserved for all A
in the gauge orbit of the original gauge field, this is in
general impossible for nonvanishing J. Later on, when
we consider a solution in the radial Ansatz, we shall cou-
ple the sources to gauge-invariant objects, specifically we
will consider the coupling to Wilson loops. It should also
be pointed out that, even in the case of zero sources,
gauge transformations with appropriate boundary condi-
tions will change the action by a discrete amount propor-
tional to the winding number of the gauge transforma-
tion' , this leads to the quantization of p in the quantum
theory. '

The plan of the paper is as follows: in Sec. II we con-
sider the classical solutions to the equations of motion;
we study the Abelian solutions, the full non-Abelian solu-
tions for weak sources and the radially symmetric solu-
tions with arbitrary sources. In Sec. III we consider the
eftects of smaH perturbations of these solutions. In Sec.
IV we consider the case of arbitrary complex p. Finally
in Sec. V we make some parting remarks, while some
mathematical details are relegated to the Appendix.

II. SOLUTIONS

In this section we will consider several types of solu-
tions to the equations (1.3): we will study the Abelian
solutions, also we will consider the full non-Abelian solu-

which require j to be conserved for consistency.
In terms of a (2.2) imply

s

ola& B&(B—a )=g, jti — ~ti„.dJ, (2.3)a+@2

Writing ati=ati+Btia, Oa=8 a we obtain that the right-
hand side of (2.3) equals C3ati. This provides a complete
solution for the Ansatz (2.1) with a arbitrary.

Substituting (2.3) into the action we get

2

S=— f d xj„5„„+ e„„B 2J~ (2.4)
p

having ignored surface terms. Consider the follow-
ing Ansatz for the sources j„=f(R)(—y, x,0),
R —=+x2+y, then the condition B.j =0 is immediately
satisfied [the more symmetric Ansatz j„=r„f(r)cannot
satisfy (1.5)]. For this cylindrically symmetric source the
potential is given by

(CI+p )a„=g ( yf, xf, pF), ——

F(R)—:—f sf(s)ds .
R

(2.5)

Note that for imaginary p we get a complex potential as
expected, though in this case the action per unit length,

fd xtt j, is real. For real p one must specify a prescrip-
tion for dealing with the pole at Cl= —p . We shall
define the integrals by their principal value, this being the
only case where the potentials are real for a ge-
neric source. As a specific example consider the
case f(R)=Q5(R —Ro), and define R &

—=min(R, RO),
R &

=—max(R, RO) then a =(a„a2,a3) with

Kga, = — QR', J,(pR, )N, (lplR—, ),
2

a2= QRO —Ji(pR. )Ni(lplR ),
2 R

(2.6)

Kga3= — QRO,
I

J„(pR )Ni „(IplR. ),

~here J,N denote the usual Bessel functions and n = 1 for
R & Ro and n =0 for R (Ro. There is a discontinuity in
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a product of the singular nature of j. The action per unit
length equals

results from the radial Ansatz) . This does satisfy
B„J„"=0 and gives rise to

fXd'x = ——g'Q'RP, (pRo)Ni(lplRo) .

B. Non-Abelian solution, perturbative treatment

(2.7} (rG)'

p

A„'= i tr(—cr'U B„U)+Qaz+O(Q ), (2.8)

where o, denote the usual Pauli matrices. Clearly it is
convenient to make a gauge transformation so as to get
rid of the first term in the expansion of A. Denoting the
gauge-transformed quantities by a prime we get

Here we consider the full non-Abelian solution to (1.3}
in the case of weak sources. To be precise, we assume the
source is of order Q and we expand the potentials in
powers of Q. To the lowest order in Q it is clear that
F„'„=0,i.e., the potential is a pure gauge. Therefore we
write

2G
r, r„ +QB„a',

r
(2.14)

where a prime denotes differentiation with res~ect to r.
The functions F,6 are defined through r 5( r —r o )

=(0+p )(9 F), and pr "5(r ro)=O—(CI+p )(9 "G).
Note that, in contrast, a source j„=r„5(r ro —) cannot be
used in the radial Ansatz since it violates (1.5).

The equations defining F and G are equivalent to

2, 26"+—6' ——6=pF,
1I 2

(2.15)

A „"=Qa„"+O(Q'),

J„"= —,'tr(o, U o & U)J„. (2.9}

F"+ F' — F—+p F=5(r ro) . —2

In solving (2.15) it is convenient to define x =pr l2 and

Writing J„"=Qp„'/g the equations of motion become

1
gpy+ &@veda

CI+p
p'„+B„a',:—a „'+B„a', (2.10)

B„J„"+Qe, b, a„'"J„"+O(Q )=0; (2.1 1)

for some functions a'. These functions are further re-
stricted by the consistency condition (1.5). Indeed, ex-
panding in powers of Q, the covariant divergence of J' is

l s1n2x
go = —cos2x

v'p~ 2x

1 . cos2x
sin2x +

2x

Then F and 6 are given by (xo =pro /2—)

2CF go(xo)go(x) if x ~xo,
F= go(x)+

xp o x go(xo)rto(x) if x )xo

(2.16)

(2.17)

to lowest order this implies that J' is conserved; to next
order it requires a„'bJ„"to be symmetric under b~c. This
gives, using the definition of if,

2CG F6= go(x) ———
XP P

X 1f X —Xp

3
3p2 ~ X p

2
1f X)xp,

X

(2.12)
which in particular implies

The above equation determines the isospin components of
a orthogonal to p (in the region where p/0) in terms of
p, a and the curl of an arbitrary isospinor.

The action for the solutions (2.8)—(2.11) equals

2

S=—g fd'xJ„" S„„+ e„„.a.

d(xG)
dx Z =Z0

4Xp

3p
(2.18)

2&x p 2cg
'tio(xo 4(xo) 3 ko(xo)

p p

+ i w(U)+O(Q ) . (2.13)

where w( U) is the winding number of the gauge transfor-
mation U. Note that if the boundary condition
U ~const as r ~ oo is not imposed, w( U) need not be an
integer. In (2.13), a prescription must be specified to
deal with the pole in the case where p is real [unless J' is
of the form ( +p }J"]. The freedom in the choice of U
allows us to consider sources which would be unaccept-
able within the Abelian A nsatz; for example, J„"= ( Q /
2ro)e&,b"r 5(r ro) (where r =x„x—„,r„—:x„/r, and the-
normalization is chosen for ease of comparison with the

The undetermined constants cF G multiply the zero
eigenvectors of the operator +p and for this reason
are arbitrary when p is real. On the other hand, for p
purely imaginary, they should be chosen so that F and G
decrease exponentially as r~ao. This is easily accom-
plished: when p=im, the appropriate replacements are
x ~ix, rto~ i qo, then we—need c~ =n mrogo(imro /
2)/2, co =0. In this case, as can be seen from (2.17},6 is
purely imaginary, so that A is complex. At least for this
choice for J' there is no real solution for the potentials;
this will be generalized in Sec. III for arbitrary source
strength within the radial Ansatz. This agrees with the
general argument made below (1.5).

The condition (2.12}implies, taking a'= v(r)r ',
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yg d(rG)uro=
2ro dr

(2.19) I@(r=0)1=1, IC(r)I
d
dr

=0 (2.25)

which can be satisfied, for example, by either choosing
cG=cF=O and u according to (2.19), or u =0 and cF, cG
so that (2.18) vanishes.

The action (2.13}corresponding to this source is given
by

S= mQ—g F(ro)+ tu(U)+0(Q ),
which suffers from the same ambiguity as F due to the
freedom in dealing with the pole in (2.13) at CI= —p .
This solution will be compared to the radially symmetric
one in Sec. II C.

C. Radially symmetric solutions

As is well known, " the most general radially sym-
metric Ansatz for the potentials can be parametrized as
follows

Moreover, we wi11 need to consider the boundary condi-
tions as r~ Oo. In particular, for JM real, the nonsingular
solutions will oscillate at infinity with constant ampli-
tude. Therefore the action integral will not be absolutely
convergent. To evaluate such integrals we will multiply
the integrand by exp( rir —), perform the integration, and
then let g~0+. It is in this sense that the solutions with

p real will have finite action. The boundary conditions
imposed above are different from the ones used in Ref. 9.

Having specified the boundary conditions we turn to
the various sources that we will consider. First there is
the coupling of the potential in the "usual" manner to
external sources. In the same spirit of radial symmetry
we will consider sources

J„'= j,(r—)e„,pb+ —j2(r)(5„, r„r, )+—J(rF„—r, ,

(2.26)

e„,b"rs+ (5„, r„r, )+ A—r„r, ,r
(2.20) for which the Lagrangian becomes, dropping a total

derivative,

A —+A+ d8
dr

(2.21)

It is convenient to define a complex scalar field 4 and a
covariant derivative D by

where $„$2,and A are functions of r only.
Within this Ansatz the potentials change, under a

radial gauge transformation specified by
U=exp[io"r8(r)/2], to

(P, +i/ )z~exp( i&)(—P, +if'),

J =Lo —4mr J„'A„'

g'(J 4i+J—20z+JA } (2.27)

The equations of motion derived from (2.27) are

D4+ —(—I%I —1)4 i AD@= ,'g —j—1

r

ID@I'+ ( I
@I' —1}'+@[1m(@"D@}—A ]g2 2r

4=/, +i/2, D—=8„+iA . (2.22)
J =J&+&J2 ' (2.28)

In terms of these variables the Lagrangian Xo in (1.1) be-
comes Im(4'D4}+ —,'p(I@I —1)=—,'g J,

4~r'Zo= Lo—
I'

ID@I'+ (I@I2—1)'
g

2 2r 2 J =Imj*4 .
dr

(2.29)

which can also be obtained by direct substitution of the
Ansatze in (1.3). Similarly the consistency equation (1.5)
reads

+p Im(4'D4) —A+—
2 dr

(2.23)

which changes by a total derivative under the transfor-
mation (2.21).

Within this Ansatz the fields are given by

'F„' =—(5,„r, }(rR D4e) + ~et (I bDm@
)—1

r

trW= —2cos(nI@I) . (2.30)

Based on this we will consider another coupling, namely,
one of the form

Another possibility is to couple the sources to gauge-
invariant function(al)s of the fields. In particular one can
consider the Wilson 8' loop corresponding to the circle
r(cos(s},sin(s), 0) in the 1-2 plane. Then the two relevant
invariants are det 8'and tr 8'. We obtain det 8' = 1 and

(2.24}

&P
LG, =Lo+ ~ V(r)le(r)I2,

g
2

(2.31)

We shall be interested only in finite-action solutions.
This requires that

where T is assumed real. As mentioned before, we call
this type of coupling "gauge invariant. "

The equations of motion which follow from (2.31) are
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12.6 a I
I

a I a ~

I
a a ~ ~

I
a I a a

I
a

(2.32)

Note that there is no condition corresponding to (1.5) for
this type of sources since these couple, within the Ansatz,
to gauge-invariant objects. Equations (2.32) are, as ex-
pected, the same as those obtained when coupling the
gauge fields to scalar triplets, which are then assumed
infinitely massive, so that they act as external sources,
(see Ref. 9).

Below we will study the solutions to the equations of
motion (2.28) and (2.32).

1. Gauge-invariant source within the radial Ansatz

10.0

7.5

Q-6.000 000: gelid

Q 5.808413: dNhed

Q 6.500 000: dotd

(a-e.o)

S.O

2.6

0..0 I. . . . I

0 2.5 5 10 12.5

When p is real, (2.32}can be simplified by defining new
variables p, e, by

FIG. 1. Solutions to the equations of motion in the radial
Ansatz for gauge-invariant sources. The dashed curve corre-
sponds to the critical charge for a =6.

4=—p exp i —A ( r')dr' i r +—i 8
0 2

which must satisfy

(2.33) coefFicient functions in 'F are analytic.
Choosing 8(0)=0, the action for solutions to (2.34) is

given by

—p"+ +1 p —1 —x

p
3 x

2
(2.34)

where x =pr/2 and p, 8—, and T are regarded as func-
tions of x. In obtaining (2.34) we used the fact that, sub-
stituting (2.33} in (2.32) the imaginary part of the first
equation is redundant when the second equation is in-
cluded. Note that we can always take 8(0)=0.

The general features of the solutions are studied in the
Appendix, here we only present a short summary of the
results. The solutions have three possible kinds of behav-
ior as x ~~: they can oscillate, which corresponds to
finite-action solutions; they can diverge at a finite value of
x; or they diverge linearly in x when x ~ 00. The solu-
tions never vanish and are analytic for x ~0. In the case
'T=Q5(x —a), for each a there is a critical value of Q,
Q, (a), above which the solutions diverge for finite values
of x, as a~oo, Q, ~Dc also. Some examples of these
solutions are presented in Fig. 1. The graphs of the criti-
cal charge versus a can be found in the Appendix.

For the case where p=in with m real it is easy to see
that there are no interesting solutions. Indeed, from the
second equation in (2.32) it immediately follows that 4
and A must correspond to a pure gauge solution
4=expi8, A =8' and then the first equation implies that
Y=O is the only consistent possibility. The solutions are
pure gauges as expected from the general argument fol-
lowing (1.5).

It is now a simple matter to obtain the field strengths
by substituting in (2.24}. Though the explicit expressions
are not illuminating, it is worth pointing out that as
x ~0, the dominant contribution to 'F comes from the
terms in ReD4 while for large x, 'F behaves as an oscil-
latory function whose amplitude decreases as I/x. All

S = —2p
g 0

1 —p 4A

2x p
(2.35)

Consider (2.28) for the case where p is real and take,
for simplicity,

j=q5(r ro)exp(iy) . —

Now defining new (real) variables g, A, , by [cf. (2.33)]

(2.36)

8(Q) (gauge-inv. Sources)
10.0

7.6

6.0

a

I
~, ~ a

I
I
I
I
l
1
I
I

a ~

I
I
I

I
I
i
I
t

I
I
j

a

I
a

0.0

-2.5

-5.0

a~3.0: gol|d
a 5.0: dapheyl
a 7.0: dotyt

a a I a ~ a a I a a ~ a I a

0 2
Q

FIG. 2. Action for the solutions with gauge-invariant sources
in the radial Ansatz. The curves need not be symmetric under

Q ~—Q since there is no such symmetry in (2.32). We assumed
A =0.

We have evaluated the action as a function of Q for a del-
ta function source and A =0. The results are presented
in Fig. 2.

2. "Usual" sources within the radial Ansatz
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tp:—yexp —i f"A(r')dr' —i (r —ro)
fo

0

+i [a(.(r) —t(.(ro )]+iy (2.37)

125 s s s s

I

s s s s

I

s s a

Q 4.750 000. 1=0.5: solid

10.0 — Q~5.098 BS9, 1=0.5: daley
Q~5.250 000, 1 0.5: doty

~

I
s s

I
s s s

the equations (2.28) reduce to
2

1 2-x-+ 'x+' ', x=j

A,"y+2k'y' =0,
A, y —J+1,

(2.38}

Q=5.098 B89,
7.5

{a=B.O)

5.0

2.5

1=1.0: dot-dash

where a prime denotes di6'erentiation with respect to
x =Izr/2—, and j=(2g /P, }qO(r rc), J—=—(g /P)J.

The second equation in (2.38) can be integrated to yield

0.0
2.5 7.5 10 12.5

A, '(x ) = z, I—:a(, '(0),l

y(x)
(2.39)

where we have used the boundary condition g(0) = 1,
which follows from (2.25). Then the third equation in
(2.38) implies

J+1=l=const (2.40)

so that (1.3) and (1.5) allow the Ansatz (2.20) and (2.26)
only if J is a constant. Finally, using (2.39), the first of
Eqs. (2.38) becomes

FIG. 3. Solutions to the equations of motion in the radial
Ansatz for the usual sources. a =-pro/2 denotes the position of
the source, and Q=g'q/p, its strength. The dashed curve cor-
responds to the critical charge for I =O. 5, a =6.0.

A = —(Qg /ro)(G/r) and N= —1+(Qg /2ro)[rF
i (rG) ] —(a prime denotes difFerentiation with respect to

r here). Making a gauge transformation (2.21) with
H=rr+(Qg /2ro)(rG)', and using (2.15) we obtain

l 2 2 —1 —x 2—g+ + g=j,
g3 x 2

(2.41) +1— —F, A —+p I .Qg' r Qg' r
2 rp 2 rp

(2.44)

where, in terms of x, j= Q5(x —a), a =pro/2,
Q:—g 2q /p. Note that for j=0 we have y = 1, and this
requires I = 1 and X'(x ) =+1.

The qualitative behavior of this equation is studied in
the Appendix and is found to be basically the same as for
(2.34). The only diff'erence is that in this case we allow
1&1. Several examples of these functions are given in
Fig. 3. Ignoring surface terms, the action for solutions to
(2.38) is given by (2.35) under the replacements p~y,
A ~lA. We have evaluated the action as a function of Q
for this case, taking again 3 =0; the results are given in
Fig. 4.

For the case Re(p) =0 and with sources (2.36), it is not
hard to show that there are no nontrivial solutions. This
is in accord with the argument following (1.5), and with
the results obtained in Sec. I for weak sources.

To make contact with the perturbative calculation con-
sider the case y=0, l=1 which corresponds to the
source used at the end of Sec. IIB. Expanding g in
powers of Q we have y = 1+Q5y, which satisfies

T

8(Q) (usual sources)
10.0

5.0

2.5

0.0

s s s

I
/a a

I

'I I
1

I

I
'a .
a l

l
1 ~

l
1 .
I '

I

'I

l
s

l
s

1
\

\

s s i

I

s s s s

I

'I
I

~ I
/

/
/

/
r

[Under this gauge transformation the source merely
changes sign due to (1.5}.] Since this gives precisely the
same result as (2.43) we conclude that, as expected, in the
Q~0 limit the radial Ansatz goes smoothly into the per-
turbative calculation of Sec. I.

%'e would like to stress that most of the features de-
scribed above are independent of the specific form as-

2 g—4+ 5y= 5(x —xo) .
dx x P

(2.42)
a=1.0
a~1.0
a~8.0
a e.o

1=0 0 solid
1~0.5: dot-dash
1~0.5: dagtheg
1=1.0: doty

But from (2.15) it follows that this is essentially the equa-
tion satisfied by rI'. With the appropriate normalization
we have

-5.0 a ~ s I a a s s I a a s ~

0
Q

I a ~ a s

(2.43)

On the other hand, (2.14) corresponds to

FIG. 4. Action for the solutions with usual sources in the ra-
dial Ansatz. The curves are not symmetric under Q ~ —Q [tak-
ing also y~ —y, see (2.41)] because of the boundary conditions
imposed one. We assumed A =0.
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sumed for j, and will remain vaHd as long as j is local-
ized. Note however that in this more general case, (2.39)
and (2.40) will hold only in the region where j =0. More-
over one can no longer dispose of the field A by a change
of variables, a given form for A wiH modify the sources
for g and A, [see (2.37)] and alter the character of the solu-
tion.

We conclude this section with a brief comment on the
behavior of the fields as given by (2.24). In general 'F has
the same behavior as for the gauge-invariant sources,
with two difFerences: first, for 1%1, the coeScient func-
tions are no longer analytic as is clear from (A4) and
(A5). And second, the dominant terms for small x are
those in ReD@ and in ImD4 [so that in general D4
(x =0) is a nonzero complex number].

III. PKRTURSATIONS AROUND
A CLASSICAL SOLUTION

A. Abelian solution

Using the fact that D „' =8„5' —e,3&a„, it follows that
the nonvanishing elements of Y are

Y„"=Y„„=(CI—a a )5„—(B„B„—a„a„)—pe„B
Y„=(05„„—B„B„)—pe„„B
Y„'„=—Y„'„=(8a +2a 5 )5„„+(a„B„+a„B„}

(3.2)

+(B„a„)—2(B~„)—pe„„~
Consider, in particular, the Fourier transform of Y

(which we denote by a tilde):

Y „„(k)= k5„„+k„k„+i—pe„„k (3.3)

In this section we consider small perturbations around
a solution to equations (1.3). We shall label a solution
stable if it is a local minimum of the action. We shall see
that, in fact, none of the solutions studied in Sec. II cor-
respond to local minima; the corresponding destabilizing
modes are described in detail below. We shall only con-
sider the case where p is real.

Given a solution to the classical equations of motion
A „', we will study the action when the potentials are
given by A„'= A „'+5A„', where only terms up to qua-
dratic order in the perturbation will be retained. In ex-
panding the action, the zeroth-order term S is just the ac-
tion for the solution A „', the first-order terms are ignored
as they can be reduced to surface contributions by using
the fact that A „' solves the equations of motion. After a
straightforward computation we obtain

S=S+ d x5A„'Y„'"„5A„+surface terms
1

+O((5A ) ),
3.1

Y&„=(D~D 5„„—D—„D„)'"+2e,i„F„'„pe»+~"—,

where D is the covariant derivative associated with A p
The perturbation analysis therefore reduces to the study
of the eigenvalues of Y. In the following such a problem
will be considered for the solutions obtained in Sec. II.

The solutions of this eigenvalue problem depend on the
explicit form of a and will not be studied further.

Because of the presence of destabilizing modes we con-
clude that the extremum of the action represented by the
solution (2.3) is actually a saddle point. This can be seen
directly from the action: if we consider perturbations
only in the same isospin direction as the source's then the
Lagrangian is of the form (BA) +pABA (since the po-
tentially stabilizing terms in X, behaving as [ A, A ],van-
ish identically}. Therefore we expect the long-wavelength
(i.e., for k (p) modes to be unstable directions for the ac-
tion functional. Other directions will be stable, provided
the F term in X dominates for large fields irrespective of
the wavelength of the mode considered. Unfortunately,
as we will see below, it is diScult to restate this condition
so that one can easily decide whether or not a solution
will be stable.

B. Non-Abelian solution

Working to the same order as in Sec. II 8 we can use
the solutions (2.10}and expand Y in powers of Q. The re-
sult is

+Qe,&, [(B„a'„')—2(B~„") + (Cla')5„„

+2a "Ba5„„—a '„'8„—a „"8„

pe„a~ ]+—O(Q ) . (3.5)

The lowest order in Q can be treated in the same way
as (3.2). We find an instability for modes of momentum
magnitude lower than

~ p ~
and also a zero mode associat-

ed with gauge invariance to this order. In this case the
instability is present because, to lowest order in Q, the
potential is a pure gauge and X behaves as A . If the
amplitude of a destablizing mode becomes of order I/Q,
then the expansion in powers of Q is invalid, and no con-
clusions regarding the behavior of the action are avail-
able.

A new feature of (3.5) [as compared with (3.2)] is the
degeneracy in the isospin indices. Therefore we will

study the next-order corrections to see how this degen-
eracy is broken, and to investigate whether there is any
indication of the higher orders tending to stabilize the
zeroth-order unstable modes.

This matrix has eigenvalues 0, k +
~
p'}/k ~, so that unsta-

ble modes appear for k &p . The three zero modes of
Y are z, (k) =k„f(k ), z2(k) =5( ~k ~

—p}(ei —iez )„,
z3(k)=5(~k~+p)(e, +ie2)„(where ei, e2, k form an or-
dered orthonormal basis); the term in f is clearly related
to gauge transformations. The fact that there is more
than one zero mode for Y implies that its lowest eigenval-
ue is negative, this is explicitly verified for Y: modes of
the form g(k )8(p —k )(e i T ie2 ) correspond to negative
eigenvalues for RIM & 0.

For the rest of the operators Y, it is convenient to
define 9—:Y" i Y—' and v =5 A '+ i5 A; then the
remaining eigenvalues A, are obtained from

(3.4)
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Denote by Y"' the order Q term in (3.5); notice that'f" '= e,b, 4', for an operator 0' whose form will be of no
relevance. Consider the eigenmodes U& of the zeroth-
order term of (3.5) corresponding to eigenvalue A, , and
define i/i =—(vi ~%"~vi ) (with f real) so that the matrix
that determines the degeneracy breaking is i@,b, gi. But
this generically has one positive, one negative, and one
zero eigenvalues; therefore Y"' does break the degenera-
cy present in the zeroth-order approximation to Y; how-
ever only one of the originally unstable modes tends to
get stabilized. We conclude that, at least to this order,
the extremum of the action is also a saddle point. Some
of the comments regarding the Abelian zero modes apply
in this case also: Y has a zero mode due to the gauge
freedom of the model, but it also has other zero modes,
and this forces the lowest eigenvalue to be negative. On
the other hand, we argued above that outside the purely
Abelian situation we should get stable solutions; this does
not occur in our calculations because of the approxima-
tions made: the stability is produced by the commutator
terms in F and these are neglected in the calculations of
this subsection.

C. Radially symmetric solutions

In studying the stability of the solutions to perturba-
tions within the radial Ansatz, we shall concentrate on
the more familiar case of the "usual" coupling to sources;
the coupling to gauge-invariant sources is briefly dealt
with at the end.

Instead of directly substituting (2.20) into Y, it proved
easier to study (2.27) directly, and make the replacements
A ~ A +pa /2, and y~y+(u + iv ), in (2.37). We as-
sume g, I,, and A solve (2.28), and that u, v, and a are
small, real perturbations. Since in general vAO, this re-
placement is the most general variation allowed within
the Ansatz. After use is made of the equations of motion
(2.38), and since u and v vanish at x=0, oo so as to
preserve the boundary conditions, the change in the ac-
tion is given by

KP,
2

bS= — dx u8u+ —v
j 2

g 0 x

perturbations.
The potential V in the Schrodinger operator (3.7)

diverges as 2/x when X~O and becomes negative for
large enough x: V~ —1 for sufficiently large x. Some
examples of V are presented in Fig. 5. The regularity
conditions imposed on the eigenfunctions are that, as
x ~~, they should either vanish or, at worst, oscillate
with a bounded amplitude. As x ~0, the eigenfunctions
vanish as x . Since the potential becomes negative at
infinity, 8 will accept zero modes for specific values of
the charge, 'such eigenfunctions will be denoted by =0.
More importantly, quite generally 8 will have negative
eigenvalues, so that even within the radial Ansatz there
are destabilizing modes present: the solution represents a
saddle point of the action.

Note that the above considerations are still true even
for j =0, i.e., for pure gauge solutions; in this simple case
we can easily obtain the spectrum of 8 exactly. Indeed,
for j =0, y=l =1, and

d' 28= — + —4 (j=0),
GX X

which has the eigenfunctions and eigenvalues

(3.8)

x v'A. +4 (3.9)

V

The eigenfunctions corresponding to A, & —4 increase ex-
ponentially at infinity, while the other solutions to the
Schrodinger-like equation are ill defined at the origin.
Hence (3.9) gives the only acceptable eigenfunctions.
has been used previously in (2.16).

Within the radial Ansatz, a perturbation corresponding
to a gauge transformation is given by u = —ezra/2,
v =Hy, a = —O'. When these expressions are substituted
in (3.6) we obtain AS=0 (having used the equations of
motion and boundary conditions), i.e., gauge transforma-
tions correspond to a zero mode. On the other hand, if 8
has a zero mode "0, then we can choose u= 0 v=0,
a =2:-oA, '/y which, when substituted in (3.6), also give

I

+ ay+ U' ——v+2u A,
'

x

2

(3.6)

2.5

0.0

~ I s I

I

l I f l

where

d2 3~2 1 X2 3I2+
dX X x'
G" +v,

GX
(3.7)

—5.0

-75

which shows that the destabilizing modes are character-
ized by the negative eigenvalues of 8. If these are absent,
then the solutions will be stable against radial perturba-
tions; we shall see, however, that negative eigenvalues do
appear in general so that the solutions will be unstable
even against the restricted class of radially symmetric

—10.0
2.5

I

5 7.5

FIG. 5. Potential for the perturbations within the radial An-
satz.
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AS=0; this second zero mode is unrelated to gauge
transformations, that is, one can check that in this case
5A„cannot be written in the form D„cr for some func-
tions 0..

The reason for the instability is the following. The
terms that are quartic in the gauge potential are of the
form ~4~ A or ~4~ /x; the first quantity can be elim-
inated with a gauge transformation (which sets A =0);
the second quantity is gauge invariant, but can be (and in
fact is) smaller than the quadratic terms for sufficiently
low wavelength modes, because of the factor of 1/x .
This illustrates the previously mentioned fact that even if
the "stabilizing" terms [A, A] in X do not vanish, it
does not follow that the corresponding solution is stable;
thus precluding a simple stability test.

For gauge-invariant sources we obtain the same form
for hS as above; the only difference is that in this case
8~8—7'. Thus, for localized sources, we obtain the
same qualitative behavior of the solutions as for the pre-
vious case.

In the above calculations we considered perturbations
which vanished as ~x~ ~~. This will not be the case if,
for example, we consider gauge transformations U which
do not satisfy U~const for large x. Under this type of
transformations we have

ED~/0+ [ ,'e„„ trU—B„UUd„UU 8 U
2g

+2@„„~B„(trA„BU )] . (3.10}

The second term on the right-hand side gives rise to the
winding number when appropriate boundary conditions
are imposed on U; in this case its integral is (4n p/g )

Xinteger. If no such boundary conditions are imposed
this last term, which can be written as a surface term,
can take arbitrary values. In either case a gauge transfor-
mation can change the action by an arbitrarily large (in
absolute value) quantity without, of course, affecting the
equations of motion. This is true even for pure gauge
solutions.

I. Abelian solutions

Taking the same Ansatz as in (2.1), we find that (1.7)
imply

2'f„= Imj a = — e„+pm—j +8 a,
Imp " " Imp 0

(4.1)

which provides the complete answer in this case. For the
specific example Imj „=f(R)( —y, x,0), R:—}/x2+y we

get

IV. COMPLEX p

When Imp&0 the equations of motion simplify to a set
of consistency conditions on the real part of the sources
and to a first-order differential equation which determines
the curvature, as seen from (1.7). In this case, the action
is complex. We will now study the three types of solu-
tions considered above.

a„—B„a= f sf(s)ds (0,0, 1),
Imp R

R ' = ReP' f(R) — 2+Rf'/f
Imp

' '
Rep

(4.2)

2. Won-Abelian solution, weak sources

As in Sec. II we assume the source is of strength Q, to
zeroth order the potential is a pure gauge and we go to
the gauge where it vanishes. In this new gauge the quan-
tities are denoted by primes. Thus we have A„' =Qa„'
+Q2b„'+, which, upon substituting in (1.7} and

solving, gives
2

a'„=— —e'„@„1mJ&+B„a',I'D"
b„' = e.b. (a a }+OP

j ~ ac v v

where a', P' are arbitrary functions.

(4.3)

3. Radial Ansatz

We will consider only the usual sources. Then, substi-
tuting (2.24) in (1.7), we get, using (2.26),

D4= ipjt, —Zp ImJ=1 —~4~ (4.4)

V. CONCLUSIONS

In the above calculations we obtained a complete char-
acterization of several classes of finite-action solutions to
the classical equations of motion. Since we work in Eu-
clidean space, the general behavior of the solutions at
infinity is oscillatory (as opposed to exponentially
damped, for a Minkowskian metric) and this decreases to
certain degree the diversity of the solutions when com-
pared to the case of the Yang-Mills equations in 3+ 1 di-
mensions.

In the Abelian case we studied sources with cylindrical
symmetry and showed that they give rise to finite-action,
well-behaved solutions; while spherically symmetric
sources cannot satisfy the consistency condition (1.5).
This contrasts with the non-Abelian case where radially
symmetric sources are allowed. In the case of the radial
Ansatz we were able to study the complete set of solu-

where p =g /21mp, , jt —= Imj, +i Imj2. The general
solution to (4.4) is

4(r) =40 ipA(r) f—A(r')'jt(r')dr',
(4.5)

A(r) =—exp i f A (r'—)dr'
0

Note that a general feature is that A, being a gauge ar-
tifact, is completely free. For finite-action solutions we
must have ~4z~ =1 and Im[jt(0)40]=0. In the specific
case where j t =Q5(r r0), we have —4=40 ipQA(r)0(r-

r0)/A—(r0).
This concludes the description of the solutions when p

is not purely real.
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tions both for the usual source couplings as well as for
coupling to gauge-invariant objects. It should be pointed
out that within this Ansatz there is no equivalent of the
type II solutions of Ref. 5; this is due to the boundary
conditions and the Euclidean nature of the equations
which require them to oscillate at infinity with a fixed
amplitude. We showed that the radial solutions reduce to
the perturbative non-Abelian case when the sources are
weak.

A peculiar feature of the solutions studied is that they
all correspond to saddle points of the action, this con-
trasts with the previously studied cases where the classi-
cal solutions are (in general} minima of the energy.
Moreover, stability is recovered when p vanishes. A
qualitative explanation of this result is that the terms pro-
portional to p are odd in A and contain at most one
derivative, so they can dominate provided we look at long
wavelength modes, and if the quartic terms are not dom-
inant. This happens rather trivially in the Abelian case
and perturbative non-Abelian case to lowest order in Q:
the quartic terms vanish identically. A more interesting
situation occurs within the radial Ansatz, where the quar-
tic terms are nonzero but can be subdominant. A more
profound and systematic study of the stability properties
of the action functional along the lines of Ref. 12 is
currently under investigation.

When p is purely imaginary we found that there are no
solutions with real potentials. While for p an arbitrary
complex number the equations become of first order
when the solutions are required to be real; general solu-
tions were obtained in this case also.

Finally, we make some brief remarks concerning the
differences with our approach and the one considered in
Ref. 9. The basic difference lies in the choice of boundary
conditions: while we require finite action, Ref. 9 requires
the solutions to become pure gauges at infinity, and this
radically alters the character of the solutions.

I2
+O(1/y )=Tp=O(y),

Q 2f 3
(A2)

which is impossible. When I =0 the proof fails and the
solutions can vanish. In fact this case (I =0) allows solu-
tions with arbitrarily large source strengths for the first
type of coupling in (A 1}. For if we consider (Al) with
I =0 and 7 =0 the solution satisfying p(0) =1, p'(0) =0
will vanish at a set of values X„. Now if we consider
sources

'7=g Q„5(x —X„)
n

then the same p will solve (Al) for arbitrary Q„. The first
few values of X„are X, =0.876, X2 ——4.555, X3 =7.769,

a ve. Q, (a) (gauge inv -sou. rces)
I I

[
I I 1 ~ ~ 1 I I

80—

15—

10—

l 0.0: &olid

l 0.4: dot-dash

1~0.8: dashed

l 1.0: dotll

I'I
'

I
I

I
I

I

I

I

I
I

I

I

I

I

I

I

/table

0 s s s s 1 i a i s I ~ i i ~ I i s ~

0 8 4 e 10

(Al) when the sources are localized.
The solution p cannot vanish for l&0. Indeed, if

p(xo ) =0, then near xo, p =ay, y =x —xo (if p vanishes as
a higher power of y similar results hold). But then (Al)
reads
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APPENDIX

In this appendix we consider the qualitative behavior
of the radially symmetric solutions for both kinds of cou-
plings. To this end we consider the solutions to the equa-
tion [see (2.34) and (2.38)]

I —1 —x2 2 2—p"+—+ p
p X 0 10

Yp for gauge-invariant sources

j for usual sources

where l =const.
We study the qualitative behavior of p for solutions of

FIG. 6. Graph of the critical charge for a delta function
source as function of a, for various values of 1. The connected
region above the a axis corresponds to stable solutions, the rest
of the a-Q plane corresponds to unstable solutions. (a) Cxauge-
invariant sources; (b) usual sources.
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X4-—10.942, X~ =14.102. Note however that this pecu-
liar situation will not hold for (2.34) since it corresponds
to 1=1. Note that this is relevant only for the gauge-
invariant couplings, for only then we have a factor of p
multiplying the source.

For x ~0 the solutions of (A 1)behave as

for x large and localized 'T, (Al) is equivalent to

—p"+p /x =0 .

If we now replace p(x) =r(lnx ) we obtain

~"—~' —~ =0,

(AS)

(A9)

p= 1+ g [a„+b„lnx +c„(lnx )
n =even ~ 2

+d„(lnx )3+ . ]x",
where the first few values of the constants are

a&. arbitrary,

a4 =—„',(3l —1 —
165a2 )+ —,', az(3a2 —4),

b2 =
—,'(l —1),

b4 = —
—,', (l —1)( 1 ll —1 —15a2 ),

c2=0,
c4= —,', (I —1)

d2=0,

4=0.

(A4)

(A5)

which can be interpreted as a particle moving in a ~—/4
potential with negative friction. Therefore we conclude
that r and hence p will diverge for finite x; i.e., the as-
sumed behavior of p is not allowed.

If p diverges as x ~xo for finite xo, then near xo (Al)
is equivalent to

—p"+ p =0
xo

(A10)

with solution p=i/2xo/(x —xo) for x ~xo —0.
Finally, if lim„„(p/x)=a i & ac, then we can find

an asymptotic solution for (Al) as x ~ ac by expanding p
in powers of 1/x. The result is

1 3 —4I 29—281p=+ x+
8x 16x

+ 3203 —306412 —144l 4

128x

V(l )= , +lP——dV(p) 1 1

dp 2p
(A6)

with the solution

p=[t/E l cos(2x+2v—)+8]'~ (x~ ac ) . (A7)

If lim„„(p/x)=co but p(x)~ & ac for finite x, then

The first nonzero value of the d„ is d6 =(l —1) /270. It
is a general feature of this expansion that the first
nonzero term proportional to (lnx)" behaves as x ".
Note that all terms in powers of lnx disappear when
I = 1: only in this case the solution is analytic for small x.

The value of a2 is fixed so that the solution is well-

behaved as x ~ 00. Because of the nonlinear nature of
(Al) in general az can be found only numerically.

If lim „p/x =0, then (A 1) becomes in the limit

172 239—163 448l —8784l +01 x"
256x'

(Al 1)

The above six points cover the main qualitative behav-
ior of solutions. These either diverge at a finite x, they
grow like x as x ~ ~ or they oscillate at infinity. These
last solutions are the ones that will give rise to a finite ac-
tion.

It follows from the above arguments that for both
types of coupling there will be a critical chage Q, (l,a)
such that for Q )Q, the solutions will diverge at some
finite value of x. Q, can be obtained numerically as a
function of its arguments, we present the plots for delta
sources of the form j, T=Q5(x —a ) in Fig. 6.
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