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We test a proposal by Namiki and collaborators to enforce constraints on Langevin equations and
Parisi's technique to calculate correlation functions via Langevin equations. The numerical study of
the equivalence between the O(3) model and the bound state of the pure CP' model, which can be
demonstrated analytically, is used to measure the performance of these methods. In particular, as
expected, we show that (a) the relations go(3) 2g l and E(3) =2E i+2 for the couplings and en-

ergies hold beyond the classical level and (b) the mass gap as a function of the coupling is the same

for both models. In addition we calculate the mass gap for the CP' model minimally coupled to fer-

mions. All results are compared with those obtained using the multihit Metropolis algorithm.

I. INTRODUCTION

One of the most serious problems which prevents
efficient computer simulations of systems near second-
order phase transitions is the critical slowing down. Lat-
tice configurations, generated by iterative algorithms,
present strong temporal correlations near criticality.
This means that we must generate many configurations
before obtaining one which is statistically independent
from the first configuration. In field theory, on the other
hand, difficulties in the treatment of fermions have al-
ways been a major obstacle to the numerical studies of
more realistic field theories. The Langevin equation'
with Fourier acceleration is a promising approach to
deal efficiently with both problems.

Correlation functions can also be calculated very
efficiently via Langevin equations using a method devised
by Parisi who calculated the two-point correlation func-
tion for the O(N) model. The results for N ~4 were very
good but his method did not work well for the case N =3.
Later, Namiki et a/. modified Parisi's method and suc-
ceeded in calculating the two-point correlation function
for the O(3) model.

All these properties explain the great interest in
Lan gevin simulations. However, its apphcation to
several systems of interest, such as spin models, is not
straightforward. This happens because of the constraint
conditions which have to be obeyed during the simula-
tion. The spin variable usually must remain on the sur-
face of an N-dimensional sphere. In the case of the XX
model, studied by Dagoto and Kogut using a Fourier ac-
celerated algorithm, the problem of enforcing the con-
straint can be avoided by writing the Hamiltonian in

terms of the angle between the spin and one of the coor-
dinate axes. However, for more complicated models the
use of spherical coordinates may introduce too many tri-
gonometric functions in the Hamiltonian. This increases
the simulation time considerably. Namiki et al. ad-
dressed the problem of enforcing constraints on Langevin
equations and proposed several interesting alternatives
having tested them for the O(N) models.

The techniques we mentioned are new and very
promising. Thus we believe that it is important to test
them simulating other models and comparing the results
with those obtained using the Metropolis algorithm. In-
sofar as we know this comparison has not been made. In
addition, it is desirable to have nontrivial models whose
fermionic degrees of freedom can be exactly integrated.
In this case it should be possible to compare the result of
the direct simulation of fermions with the exact result.
The CP' model minimally coupled to ferrnions satisfies
these requirements.

CP" ' models' have several interesting features. "
They are gauge theories which are asymptotically free,
have instanton solutions, dynamical mass generation, and
confinement. Such important results are obtained for
CP" ' models as well. We used the equivalence between
the bound state of the pure CP' model and the O(3) mod-
el, ' which can be demonstrated analytically, to measure
the performance of these new techniques. We have also
studied the CP' model minimally coupled to fermions, '

having calculated its mass gap over a large range of
values of the coupling constant. Different lattice sizes
were used to have an idea about finite-size effects. The
calculations were performed using the techniques devised
by Parisi and Namiki et al. ' ' The results were also
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compared to the ones obtained via the multihit Metropo-
lis algorithm.

This paper is divided as follows: In Sec. II we present
the continuum and lattice versions of CP" ' models; in
Sec. III we give a brief review of Parisi s technique to cal-
culate two point functions; in Sec. IV we describe the
technique by Namiki et al. ' ' to enforce constraints; in
Sec. V we study the equivalence between the CP' and the
O(3) models; in Sec. VI we calculate the mass gap for the
CP' model minimally coupled to fermions; and Sec. VII
contains the conclusions and an outlook. In Appendix A
we write the Langevin equations in detail and present our
notation. In Appendix B we sketch the integration over
the fermions.

—Qz o'ab z
a, b

(2.7)

where a=1,2, 3 and the 0. are the Pauli matrices. Using
the identity

goij ok! 2fiil~jk fiij ~kl (2.8)

their physical properties are remarkably different. In the
case of the pure CP" ' model the z' fields are confined.
The minimal coupling of fermions to this model
deconfines them and it becomes possible to calculate nu-
merically two-point correlation functions.

For the pure CP' model it is possible to map its bound
state into the O(3) model. First we define

II. THE CONTINUUM AND LATTICE VERSIONS
OF CP" ' MODELS

In two-dimensional Euclidean space the Lagrangian
which describes the pure CP" ' models is given by

it is easy to show that

XmV =1 (2.9)

and that iff'=2f then
(2.1)X=+D„z'D„z',

1
&O(3) =

a,p

(2.10)

where a =1, . . . , n;p=1, 2; D„=B„+iA„;A„=i(2f/
n)g, z 'B„z', and f is the coupling constant.

The n-tuple of complex scalar fields z' is subject to the
constraint

is equivalent to (2.6), for n =2. Expressions (2.5) and
(2.6) define the Lagrangian of the O(3) model.

In order to study the CP" ' models numerically, it is
necessary to discretize it. Lattice versions for CP"
models were studied by Di Vecchia et al. ' We chose
the simplest possibility which consists in substituting the
derivatives by finite difference operators [B„z'(x)
~z, +„—z,']. Following this prescription we can write
the lattice version of the expression (2.6) as

n
Z 'Z'=

2
(2.2)

It is possible to introduce fermions in the CP" ' mod-
els, but in general these fermions will be confined. ' In
order to have a physically more interesting situation we
considered the minimal coupling of n fermion fields g' to
the model, Xp= g gz', +„z,

' '.
JM a

(2.1 1)

X~= g Dqz'D„z'+i gg'gg',
a,p a

(2.3)
In an analogous way we find the lattice version of (2.4),

z 'z'=1 . (2.5)

This calculation is sketched in Appendix B.
The pure CP" ' Lagrangian expressed in terms of

fields which obey (2.5) reads

where 8=y„D„,yl=o', and y2=o . The bosonic and
fermionic charges were chosen to be the same. In this
case, the bosonic fields are no longer confined.

In a two-dimensional space-time, the fermionic degrees
of freedom can be integrated exactly' leading to the
effective Lagrangian

g B„z 'B„z'+ g gz B„z, (2.4)
a, p p a

where we have also rescaled the z' fields [z'~(n l2f)z'j
which now satisfy the constraint equation

2f(+f)WW I+@ i

p a

Re gz', +„z,
'

p, a
(2.12)

where Re ( ) stands for the real part.

III. CALCULATION OF CORRELATION FUNCTIONS

In our numerical studies of the CP" ' models we were
mainly interested in calculating mass gaps. Thus we de-
cided to use and test a method devised by Parisi and im-

proved later by Namiki et al. to calculate efficiently
correlation functions.

Before presenting a brief account of their method, it is
convenient to rewrite the z' fields in terms of their real
and imaginary components:

Z =q + lq.J J J (3.1)

ya„z a„z +y 'yz a„z '
2 a, p p a

(2.6)

Although the Lagrangians (2.4) and (2.6) look similar,

The odd superscript corresponds to Re(z') and the even
superscript to Im(z'). Using this notation the constraint
equation (2.5) for the CP" ' models is written as
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F(q)= g q'q' —1=0 .
a=1

(3.2)

Equation (3.2) shows that the real fields q' take values on
the surface of a 2n-dimensional sphere. The actions asso-
ciated with the Lagrangians (2.11) and (2.12) are real and
will be denoted by S~(q') and SF(q'), respectively (see
Appendix A).

Parisi's procedure to calculate two-point connected
correlation functions (q, qo) —(q„)(qo) consists first in
adding a small external source hqo to the action S so that

tion. They also argued that by reinitiating lattice S'"'
several times during a simulation even better results
could be obtained. We test these procedures in detail in
Sec. VI.

IV. LANGEVIN EQUATIONS FOR CONSTRAINED
SYSTEMS

Before using Eqs. (3.3) and (3.5) we have to implement
the constraint equation (3.2). This is done using a
Lagrange multiplier. The associated Langevin equation
1s

J2)q q„e
(q,qo&

—(q„&(qo& =
2)g e

q';=— 5S ~
BI:

5q,
'

Bq,
' (4.1)

=—„((q„)b—(q„))+0(h),1
(3.3a)

where the constraint F is given in (3.2). Calculating the
time derivative of Eq. (3.2}we obtain

where

S'"'=S-hg, . (3.3b)

dF(q ) BF(q )dt, Qq.' q,'=0, (4.2}

The symbols ( ) b and ( ) stands for ensemble averages
using S'"' and S, respectively. As it is usually done in
Monte Carlo simulations, these ensemble averages are
substituted by time averages using configurations gen-
erated by Langevin equations

which together with (4.1) allows us to determine A, .
The resulting Langevin equation is

—5S b
Qb b

b 5q;
(4.3a}

5S(b)
g,'(t}= +g,'(t},

5q,'(t)

g,'(t) = +g ', (t),
5q,'(t)

(3.4a)

(3.4b)

where

dF dF dF

aq,
'

aq,
'

aq,
b gq q

where ri';(t}, rl';(t) are Gaussian white noises such that
(rl';(t)) =(ri', (t)) =0 and

Parisi proposed that by using the same random noises for
both equations, that is g,

'(t)= ri(t), .there would be a
great cancellation of statistical errors on the right-hand
side of (3.3a). The mechanism of this cancellation is dis-
cussed in the appendix of Ref. 5.

In our case we modified this procedure a little. One of
our actions has a source term —hqo as Parisi's. The oth-
er, however, is not sourceless but has a source term hqo.
Thus, instead of (3.3a) we obtain

&q,qo&
—&q„)&qo&= (&q„) —(q„) „)+0(h') .

(3.5)

In Parisi's procedure there are two lattices which
evolve simultaneously according to Langevin equations
with actions S'"' and S. %'e are going to eall them lattice
S'"' and lattice S, respectively. Namiki et aI. proposed
that before reaching the thermal equilibrium only lattice
S should be evolved. After reaching the equilibrium, one
initiates lattice S'"' with the last eonfiguration of lattice
S. Only then the two lattices evolve simultaneously as in
Parisi's procedure. In this way they improved Parisi's re-
sults and were able to obtain the O(3} correlation func-

q,'(k+1) =q,'(k)+bq '(k),

where

(4.4a)

bq,' '(k}=QP,b(k) — +v 2le(, (k) e (4.4b)
S

5g;b(k)

and the Gaussian random variables satisfy the relations

Examining Eqs. (4.4a) and (4.4b) we notice that only in
the limit e~O the field q; will remain on the constraint
surface. Parisi enforces the constraint condition by nor-
malizing the field q,'(k+1} after each update. Namiki
et al. , ' on the hand, prefer to change the constraint
equation. Instead of using Eq. (4.2} they use

dF(q )

dt XF(g,") . — (4.5)

If g is chosen to be any positive function of the q,
' then it

is clear that F(q )~0 as t~ao. In other words, the

(4.3b)

is a projection operator which keeps the q fields on the
constraint surface.

In order to simulate the Langevin equation on a com-
puter, it is necessary to discretize the fictitious time vari-
able. If we call e the time step we obtain
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constraint is satisfied asymptotically.
Using Eq. (4.5) instead of (4.2) to calculate the

Lagrange multiplier we obtain an additional term in the
Langevin equation. After discretizing the time we obtain

where 5 is an infinitesimal positive constant which makes
the product yF, which appears in Eq. (4.5), well defined
[see Eq. (3.2}j. Notice also that ((((,q,.

'( '~O when

Iq;I

q (k + 1)=q (k)+ hq,"( )(k)+bq ( '(k),

where

bq.'N)(k) = 1 —
q,'(k)e .

gq (k)q (k)

(4.6a)

(4.6b)

V. THE EQUIVALENCE BETWEEN THE CP'
AND THE O(3) MODELS

The lattice action for the O(3) model can be obtained
from the expression (2.6) by substituting the derivatives
for finite-diff'erence operators, as we did for the CP"
models,

~q,.(1)~'=—gq, '(1)q,'(1)=1, (4.7)

then we can write the Langevin equation in two steps

This additional term represents a normal force which
pulls the q,

' back to the constraint surface whenever its
norm is difFerent from 1. If y is a constant the constraint
condition cannot be satisfied exactly and the field
configurations fluctuate about the constraint surface. But
y does not have to be a constant. It can be chosen so that
it is possible to satisfy exactly the constraint condition
every two updates. Assuming that the norm of the first
configuration is equal to 1, that is,

(5.1)

Using Eqs. (2.7) and (2.8) it is simple to show that

fr g ql P+qI fl 2 2 1+3( I fri,p, a i@', a

(5.2)

where Vis the lattice volume.
The relation between the lattice actions of the O(3) and

the CP' models is the same as between the corresponding
continuum actions. In particular, the CP' coupling con-
stant is half the O(3) coupling constant,

q,'(2k)q (2k+1)=

q (2k)=q, '(2k —1)+hq '(2k —1),

Iq, (2k) I'

+b," '(2k),

(4.8a)

(4.8b)

fo(3)
=2fcp( (5.3)

Eo[3)=2E l +2 (5.4)

Multiplying (5.2) by f'/V, we find the relation between
the energies per site

X 1— 1 —
~

((((,q ( k ) ~ (4.9}

where hq;" ' was defined in the expression (4.4b). The
configurations q (2k +1), whose norm is clearly equal to
one, are used to calculate the averages. We arrived at
Eqs. (4.8a) and (4.8b) by choosing

—1+5

We have tested the relations above using the Langevin
equation and the Monte Carlo method with the standard
Metropolis algorithm. Our results are summarized in
Table I.

Even using a small number of iterations, it is possible
to see that the relations (5.3) and (5.4) are valid beyond
the classical level. A small discrepancy between the
Langevin and the Monte Carlo methods is expected. If
we use Langevin dynamics, the asymptotic probability of
obtaining a configuration q is not proportional to the
Boltzmann factor exp[ —S(q)] as in Monte Carlo

TABLE I. Energies of the O(3) and CP models using the Langevin and Metropolis method. We did
1500 iterations and we used the last 1000 to calculate the averages. This procedure was repeated five

times to calculate the errors. The errors are indicated between parentheses, for instance,
0.208(4) = =0.208+0.004.

12 0.3
0.4
0.5
0.75
1.0

( EO(3) )L

0.208(4)
0.278(4)
0.351(3)
0.543(4)
0.762(5)

( ~O(3 ( )MC

0.202(2)
0.273(1)
0.345(1)
0.542(l }
0.759(4)

0.6
0.8
1.0
1.5
2.0

1.099(1)
1.134(1)
1.170(2)
1.265(4)
1.373(3)

(&MC

1.101(1)
1.136(1)
1.173(1)
1.271{1)
1.382(2)

16 0.3
0.4
0.5
0.75
1.0

0.196(5)
0.268(5)
0.341(5)
0.541(5)
0.761(4)

0.203(1}
0.271(1)
0.348(1)
0.540(1)
0.761(2)

0.6
0.8
1.0
1.5
2.0

1.101(1)
1.135(1)
1.171(1)
1.266(1)
1.374(3)

1.101(1)
1.136(1)
1.173(1)
1.270(1)
1.381(2)
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methods. There are order-e corrections to S(q) (Ref. 3).
In our case the time step @=0.01 and the discrepancy is
very small. The statistical errors were estimated by re-
peating the calculation five times, starting from different
initial configurations. Within our precision finite-size
effects were not important.

The equivalence between the bound state of the CP'
and the O(3) model also holds at the correlation function
level. We have

( a ag ~—a a b' '~-c a d'
fi %j ~conn ~Z i abZi ~Z J' cdZj

a, b c,d conn
(5.5)

where ( &„„„stands for the connected part and the cou-
pling constant on the left-hand side is twice the coupling
on the right.

It is convenient to define the sums

(5.6)

~l 3/L XXx (l. )+ b~(l, )

r a, b

(5.7)

which project onto zero momentum in the direction per-
pendicular to the direction along which we measure the
exponential decay I labels the lines and r labels the
columns. Instead of (5.5) we verified whether

(5.8)

q'„,„=(q',)d+g'5)/C,

C =g(qo)d+ pb)

(5.9a)

(5.9b)

where P is a random number satisfying —1 g 1 and
the parameter 5 is chosen in such a way as to keep the
acceptance ratio (number of accepted configurations di-
vided by the total number of generated configurations)
close to 0.5. We also applied the MHM to the O(3) mod-
el.

Since we intend to compare the results given by
different methods it is necessary to describe how the mea-
surernents are being performed in each case. As we ex-
plained before, we do not use the value of a field at a sin-
gle site but we sum over columns as in the expression

where m is the mass gap measured in lattice units.
The calculations were performed using three diff'erent

methods: (a) the method of Namiki et al. ' to enforce
constraints on Langevin equations (LANG1); (b) the
technique of Namiki et aI. ' ' combined with Parisi's
method which uses two lattices evolving simultaneously
according to Langevin equations with the same random
noise (LANG2); and (c) the multihit Metropolis algo-
rithm (MHM).

Let us describe briefiy method (c). Since the CP" ' ac-
tion is quartic it is not practical to implement a heat-bath
algorithm. ' We used instead the rnultihit Metropolis al-
gorithm. In this method we generate new configurations
and apply the Metropolis algorithm several times to
each lattice site before moving to a new site. As we ex-
plained in Sec. III we may consider z' as a 2n-
dimensional vector q'. Following Binder and Rauch' we
generate a new vector q'„,„according to the rule

(5.6) which defines p, . On a LXL square lattice with
periodic boundary conditions there are L —r independent
pairs p;, pl. such that ~i

—j ~

=r which can be used to cal-
culate G(r)=(p;p, &. If we sum over rows instead of
over columns we obtain other L —r independent pairs.
In principle we should use all 2(L r—) pairs to extract as
much information as possible from a certain lattice field
configuration. However, in Parisi's method we can only
use two pairs. If we substitute q„,qo for p, ,p in the ex-
pressions (3.3a) and (3.3b) we obtain

&p, p, &,.„„=(&p,&„—&p;& )/h, (5.10)

where as before ( &„ is the average calculated with the
action S+It p and ( &0 is the average calculated with S
only. In the moment we add to S the term hp it be-
comes part of the action and we fix the element p of the
pair p, ,p, . Since we cannot mix sums over rows with
sums over columns we are left with only two values of i
which satisfy )i —j)=r Pu. tting j =1, for definiteness,
one value is r+1 and the other L —r+1. In order to
make clearer the comparison with Parisi's method which
uses two pairs for all values of r, we are going to take
only 2 L/2 pairs for all values of r when we use the
MHM or the I.ANG1 method (2 L/2 is the maximum
number of pairs separated by the distance L/2 which is
the largest distance on the x or y direction). Our not us-

ing MHM and LANG1 in the most efFicient way will not
invalidate our conclusions about the efBciency of the
three algorithms. Only for sma11 values of r the difference
between L rand L/2 is s—ignificant. However, G (r) for
small R is reasonably large and our accuracy in this case
1s good.

Before presenting our results it is convenient to define
some quantities. We call NRUN the number of indepen-
dent runs, starting from different initial configurations,
which we use to estimate the errors; NEQ is the number
of configurations which are used to reach equilibrium;
NCONF is the total number of configurations generated
in each run; INTERV is the number of configurations be-
tween two reinitiations of one of the lattices in Parisi's
method (see the last paragraph of Sec. III); NHIT is the
number of times we apply the Metropolis algorithm to
each site in the multihit method and NCORR is the num-
ber of configurati. ons effectively used to calculate the
correlation function.

In Table II we present the values of the CP' bound
state correlation function G(r) on a 16X 16 lattice, using
the three methods we mentioned above. For P=0.6 and
P=1.6, NRUN=8, NEQ=1000, NCONF=4000, IN-
TERV=1000, the time step a=0.01, h =0.001, and
NCORR=SX 1500. This means that we make eight in-
dependent runs to calculate the errors, generating 4000
lattice configurations in each run for each of the two lat-
tices. During the generation of the last 3000 con-
figurations in each run one of the lattices is reinitiated
every 1000 configurations. Since the configurations are
on the constraint surface only half of the time (see Sec.
IV) we can use 8X1500 configurations of each lattice to
calculate the correlations. Examining the first column of
Table II we see the cancellation of the statistical errors
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TABLE II. Values of the connected two-point correlation function G (r) for the CP' bound state on a 16X 16 lattice. For LANG2,
for P=0.6 (1.6), NRUN=8, NEQ=1000, NCONF=4000, INTERV=1000 (1500), @=0.01, and NCORR=12000 (24000). For
LANG1, for P=0.6 and 1.6, NRUN = 16, NEQ= 1000, NCONF =4000, @=0.01, and NCORR =24000. For MHM, for P=0.6 and
1.6, NRUN =4, NEQ = 1000, NCONF =4000, NHIT=4, and NCORR= 12000.

LANG2

m (0.6)=2.10(2)
m (1.6)=0.8(3)

LANG1

m (0.6)=2. 12(4)
m (1.6)=0.85(2)

MHM

m (0.6)=2.09(1)
m (1.6)=0.83(1)

0.6 1.176+1.9 x 10-'
1.42x10 '+6.3x 10-'
1.68 X 10 +1.3 X 10
2.28 X 10 +3.2X 10
3.04x 10 +6.3 x 10
3.40x10-'+1.8 x 10-'
7.42 x10-'+6.4x 10-'
4.64x10-'+4.0x10-'
5.74 X 10 k2. 9 X 10

1.210+5.0 x 10-'
1.40x10-'+5.7 x10-'
3.01x 10-'+6.7 x 10-'
1.30x10-'a5. 5 x10-'
9.42 x10-'+5.8 x10-'
9.57 x 10 +7.6x 10
2.83 X 10 +7.3 X 10
3.48 x10-'+5.5 x10-'
6.73 X 10 +6.3 X 10

1.225+5. 5 x 10-'
1.51x 10-'+2.0x10-'
2.09 x 10-'+1.4x10-'
1.39x 10-'+2.3x10-'

—1.77 x 10-'+2.9x 10-'
9.11 X 10 +2.0X 10

—2.71 x 10 +3.0x 10
2.77 X 10 +2.9X 10
3.09 x 10-'+3.1x10-'

1.6 1.58+4.4x 10-'
0.73+2.7 X 10
0.33+1.4X 10
0.96x 10-'+1.4x10- '

—0.11+2.4 x 10-'
0.83 x10-'+1.3x10-'
0.17+1.6x 10-'
0.22+1.3 X 10
0.98 x10-'a4. 8 x 10-'

1.844+2. 2 x 10-~
0.778+2. 1 X 10
0.339+1.9 X 10
0.146+1.6 x 10-'
6.45 x 10-'+1.4x10-'
3.58 x 10 +1.6x 10
2.06 x 10-'+2. 1x 10-'
2.83 X 10 +1.9X 10
3.60x 10 +1.8x 10

1.892+8.3 X 10
0.808+7.3 x 10-'
0.346+7.7 X 10
0.160+4.6 X 10
7.45 x 10-'+4.1x10-'
4.33 X 10 +3.3 X 10
1.79x 10 +3.7x 10

—2.48X10 '+7.3x10
—1.06X 10 +1.3X 10

predicted by Parisi. The values of G(r) and the errors
decrease several orders of magnitude as r increases. This
striking feature of Parisi s method is in contrast with oth-
er methods. Examining the second and third columns we
see that the errors in the case of LANG1 and MHM are
approximately constant for all values of r (see also Table
4 in the paper by Berg, Meyer, and Montvay'9). Howev-
er, LANG2 is not efficient in the weak-coupling region.
Indeed for P=1.6 we made several attempts to stabilize
the algorithm reducing e and h. The algorithm is more
sensitive to changes in e than in h; but even reducing e by
half and doubling NRUN we will still have large fluctua-
tions. In principle one might reduce INTERV to stabi-
lize the simulation, but this has to be done very carefully.
We are going to discuss the dependence on INTERV in
Sec. VI. To avoid this trouble one may initialize the
second lattice only once after the first lattice reaches
equilibrium. By choosing e very small it is possible to
stabilize the algorithm. However, for LANG2, for
@=2 0, l..=12, NRUN=12, NEQ =1000,
NCONF =4000, h =0.001, @=0.0005 one obtains
m =0.82+0.003 which is much larger than the Monte
Carlo value (0.52+0.01). This seems to indicate that the
lattices did not have enough time to decouple. If in order
to compensate for this one increases the size of the runs,
e.g. , NCONF=8000 the simulation becomes unstable
even for this small value of e. The performance of the
MHM which uses a smaller number of configurations
than LANG1 and LANG2 is good and in the weak-

O(3)
LANG2 MHM

CP' bound state
P, LANG2 MHM

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

2.19(3)
2.18(3)
1.85(4)
1.75{3)
1.60(3)
1.55(5)
1.36(5)
1.38(3)
1.0(1)
1.16(7)
0.94(6)
1.01(4)
0.80(6)
0.85(3)
0.75(3)
0.74(2)

2.06(2)
2.13(3)
1.70(2)
1.73(2}
1.43(2)
1.46(4)
1.25(3)
1.22(2)
1.11(3)
1.03(2)
0.89(1)
0.86(2)
0.72(2)
0.70(2)
0.53(2)
0.49(2)

0.6

0.8

1.0

1.2

1.4

1.8

2.0

2.17(3)
2.10{3)
1.86(8)
1.75(2)
1.46(4)
1.44(4)
1.39(7)
1.26(6)
1.0(3)
1.0(2)

2.15(2)
2.09(1)
1.76(1)
1.74(2)
1.48(1)
1.45(1)
1.23(1)
1.27(1)
1.06(2)
1.03(1)
0.86(2)
0.82(1)
0.66{1)
0.68(1)
0.52(1)
0.54(1)

TABLE III. Mass gaps for the O(3) model and the corre-
sponding ones for the bound state for the CP' model. For each
value of P, the upper figure corresponds to a 12X 12 lattice and
the lower figure to a 16X 16 lattice. For LANG2 [O(3) and CP'
bound state], for L =12 and 16, NRUN=8, NEQ=1000,
NCONF =4000, INTERV = 1000, @=0.01, h =0.001, and
NCORR=12000. For MHM [O(3) and CP' bound state], for
L =12 and 16, NRUN=4, NEQ= 1000, NCONF =4000,
NHIT =3 [O(3)], NHIT =4 (CP' bound state), and
NCORR = 12000.
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coupling regime it gives the best results.
The values of the mass gaps for the O(3) model and

corresponding mass gaps for the bound state of the CP'
model are shown in Table III. To have an estimate of
finite-size errors we used a 12X12 and a 16X16 lattice.
Within our precision it is difticult to see any systematic
finite-size trend in our data. The mass gaps were ob-
tained using the least-squares method to fit a straight line

through the points [lnG(r), r]. Points whose error bars
were larger than fifty percent of their values were neglect-
ed. The errors for the mass gaps are the errors which are
returned by the fitting routines. The equivalence between
the O(3) model and the bound state of the CP' model can
be seen through the MHM method. This equivalence is
not so clear if one uses LANG2. Examining the first
column of LANG2 one sees that the errors increase with

P up to P=0.7, as P increases further the errors start to
decrease but the mass gaps obtained are much larger than
those given by the MHM. We checked this point careful-

ly using ordered and random initial configurations, in all
cases we obtained analogous results. The dashes in Table
III mean that we could not stabilize satisfactorily the al-
gorithm for those values of P. We tried other values for
INTERV but we could not improve the results
significantly.

G(r)=&z„„Z,&,.„„,
where

L
Z„=v 2/L g z('„| .

j=1

It is not diScult to show that

&z„„& -&z„„&
Zr+1Z1 conn 2H

(6.1)

(6.2)

(6.3)

where H =h +ih, h is real and the source terms we have
to add to the action are given by

k(HZi+Hzi) . (6.4)

We compare the three methods again in Table IV,
where we calculate G (r) on a 20 X20 lattice.

Table IV is very similar to Table II. Here again
LANG2 gives good results in the strong-coupling regime
and poorer results in the weak-coupling region. For

VI. MASS GAPS FOR THE CP' MODEL MINIMALLY
COUPLED TO FERMIONS

For the CP' model minimally coupled to fermions we
want to calculate

TABLE IV. Values of the connected two-point correlations function G(r) for the CP model minimally coupled to fermions on a

20X20 lattice. For LANG2, for B =0.4, and p=1.4, NRUN=12, NEQ=1000, NCONF=5000, INTERV=1000, @=0.01,
h =0.001, and NCORR=24000. For LANG1, for P=0.4 and P=1.4, NRUN=12, NEQ=1000, NCONF=4000, &=0.01, and

NCORR=18000. For MHM, for P=0.4 and P 1.4, NRUN=4, NEQ=1000, NCONF=4000, NHIT=6, and NCORR=16000.

LANG1

0.4 0
1

2
3
4
5

6
7
8
9

10

m (0.4)=2.23(1)
m (1.4)=1.60{9)

G(r)

1.163+1.6x 10-'
1.27x 10-'a1.8 x 10-'
1.31x10-'k2. 5 x10-'
1.39x 10-'+4.7x 10-'
1.37 X 10 k9.2 X 10
1.50X10-'+9.7x 10-'
1.85 x 10-'+1.5 x 10-'
2.12x 10 +1.3 x 10
1.79X 10 %8.6X 10
1.76X10-'+5.3 x 10-"
4.90X10 ' +1.0X10

m (0.4)=2.18(5)
m (1.4)=1.54(3)

G(r)

1.208x9.0x 10-'
1.34X10-'+6.6x 10-'
1.38x10-'+7.6x 10-'
3.47 x10-'+7.7 x 10-'
6.68 x 10-'a7.7 x 10-'
6.65 X 10 +8.7 X 10
4.16X 10 k6. 3 X 10

—2.92x 10-'+6.0x 10-'
—2.10X 10 +4.8X 10
—S.44X 10 k4. 8 X 10
—5.94X 10 +5.8 X 10

m (0.4) =2.20(2)
m {1.4)=1.56{1)

G(r)

1.206a2. 5 x10-'
1.34X10 '+2.4X10
1.59x 10-'+2 Ox 10-'
4.73 x 10-'+1.2x 10-'
5.15x 10-'a3.7x 10-'
4.35x 10-'+8.4X 10-'

—2.04x 10-'+1.7 x 10-'
—8.76x 10-'*2.5x 10-'
—4.48 x10-'+9.6x 10-'
—1.67 x10-'+5.53 x 10-'
—8.84 X 10 +2.9 X 10

1.4 0
1

3
4
5

6
7
8
9

10

1.273+4.2 X 10
0.261+2.8 x10-'
5.16x 10-2+1.3 x
5.64X 10 +1.1 X

—1.85 x 10-'+8.5 x
—7.8Qx 10-'+4.2x

2.12x 10-'+1.5 x
4.08 X 10 k6. 8 X
1.95 X 10 k2. 7 X

—1.41x10-'a2.9 x
—1.25 x 10-'+1.2 x

10
10
10
10
10
10-4
10-4
10-4
10

1.392+1.1 X 10
3.00x 10-'+9.0x
6.44X 10-'+1.2X
1.73 x10-'a1.2 x
1.30x10-'+1.1x
1.74x 10-'a1.2 x
3.47 x 10-'+9.4x

—7.17X 10 %8.6X
—4.78X 10 +6.5X
—1.48 x 10-2+7.3 x
—1.53 x 10-'a9.3x

10
10
10
1Q 2

10
10
10
10
10
10

1.392+4.7 x 10-'
3.01x 10-'+2.9x 10-'
5.75 x 10-'+1.1x10-'
3.83 x 10-'+1.4x10-'

—3.9S X 10 +7.4X 10
—3.81 X 10 +2.4X 10
—4.75 x 10-'+4.0x 10-'
—4.22X 10 +2.9X 10
—5.16x 10-'+4.2x 10-'
—2.50X 10 +4.2X 10
—7.41x 10-'+5.4x 10-'
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3- 0
0

TABLE UI. Mass gap for the CP' minimally coupled to fer-
mions. NRUN=9, e=0.01, h =0.001. For P=0.4 and 0.6,
NEQ = 1000, NCONF =4000. For @=0.8, 1.0, and 1.2,
NEQ = 1500, NCONF =4500.

m (P)
Cb

g 2

o ()
0.4
0.6
0.8
1.0
1.2

2.22(2)
1.97(2)
1.84(2)
1.72(7)
1.60(9)

0'
0

l

)QN
i nterv

FIG. 1. Mass gap dependence on INTERV, NRUN=8,
NCONF =4500 (INTERV = 100, 500, 700), NCONF =4600
(INTERV =300, 900, 1200), NCONF =5500 (INTERU = 1500),
h =0.001. The circle corresponds to P=0.4, L =12, e=0.01;
the triangle to P=0.4, L =12, e=0.005; and the square to
P=1.1, L =16, and e=0 005.

P=0.4, the result is very impressive; however, there is a
small discrepancy with the MHM method. For weak
couplings, as in Table II, MHM has the best perfor-
mance.

When we use LANG2 we have to choose the number
of configurations between successive reinitiations of one
of the lattices (INTERV) very carefully. If INTERV is
very large the simulations may become unstable; on the
other hand, if INTERV is small the lattices will not have
time to decorrelate sufficiently, and as a consequence the
difference (ql )), —(q&) „will be too small leading to a
larger mass gap. In Fig. 1 we show the effect of INTERV
in the calculation of m (P). We also show that by reduc-
ing e we have to increase INTERV to obtain the same

mass gap. This is easy to understand, the smaller the
time step e the longer it takes to decorrelate. This is

compensated by increasing INTER V. As more
configurations are taken into account the weight of those
configurations which are characteristic of equilibrium de-
creases and the results improve. INTERV does not seem
to be very sensitive to h. If we reduce h by half the re-
sults cannot be distinguished in the graph from those for
h =0.001. There is no strong dependence on the lattice
size either.

In Table V we present the mass gaps for the CP' model
minimally coupled to fermions using LANG2 and MHM.
Examining the data we see that for the chosen range of P
the finite-size effects are not large. Analogously to what
happened before we could not stabilize Parisi's algorithm
in the weak-coupling region. Comparing LANG2 and
MHM it is possible to detect a systematic trend in the
data. LANG2 gives values which are slightly larger than
ours given by MHM. This might be indicating that
INTERV was not large enough. Thus, we decided to use
INTERV=3000. The results are shown in Table VI.
The figures are smaller as expected, but the most striking
feature is the increase in the statistical errors which make
the instabilities to occur for smaller values of P.

LANG2
L = 16 I. —20

MHM
I.=16 I. =20

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

2.24(1)
2.00(1)
1.85(2)
1.77(3)
1.63{4)
1.44(7)

2.24(1)
2.03(1)
1.84(1)
1.73(2)
1.64(2)
1.59(8)

2.17(4)
1.95(1)
1.83(2)
1.69(2)
1.60(2)
1.53(1)
1.40(1)
1.37{1)
1.31(1)
1.26{2)
1.21{3)
1.13(2)

2.18(2)
1.96(1)
1.83(1)
1.70(1)
1.62(1)
1.57(1)
1.45(1)
1.40(1)
1.32(1}
1.27(1)
1.18(1)
0.99(2)

TABLE V. Mass gaps for the CP' model coupled minimally
to fermions. For LANG2, for I. =16 (20), NRUN=8 (12),
NEQ=1000, NCONF=4000 (5000), INTERV= 1000, e=0.01,
h =0.001, and NCORR= 12000 (32000). For MHM, for L = 16
(20), NRUN=4, NEQ=1000, NCONF=4000, NHIT=4 (6),
NCORR = 12000.

VII. SUMMARY AND CONCLUSIONS

We have calculated mass gaps using three different
methods: (a) the method of Namiki et al. ' ' to enforce
constraints on Langevin equations; (b) the technique of
Namiki et al. ' combined with Parisi's method which
uses two lattices evolving simultaneously according to
Langevin equations with the same random noise; and (c)
the multihit Metropolis algorithm.

Parisi s algorithm is very efficient for large and inter-
mediate values of coupling constant but it cannot be easi-
ly stabilized for small couplings. The stability is im-
proved by reinitiating the parallel lattice several times as
suggested by Namiki et al. ; ' ' however, in this case we
have to adjust several parameters: e, h, and INTERV.
The method is very sensitive to the values of e and IN-
TERV and it is advisable to use a smaller lattice to esti-
mate these effects quantitatively, as we did in Sec. V. It is
safer to reinitiate the parallel lattice only once during
each run and using runs as long as possible. In this way
we minimize the risk of overestimating the mass gap.
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However, this also increases the statistical fluctuations.
One drawback in Parisi's method is the impossibility to
use all information contained in the generated
configurations (see Sec. V). This is compensated by the
errors cancellation in the strong- and intermediate-
coupling regime. Insofar as the computing time for simu-
lating the CP' model is concerned the MHM was 1.5
times faster than method (a) and 2 times faster than
method (b). The MHM method cannot be applied
eSciently because the CP' action is quartic, preventing us
from isolating a lattice point from its neighborhood.

Finally, we expect that the points we emphasized in
our discussions will be useful for Langevin simulations of
other models.

Our computer simulations were performed on the
CDC 170/730 of the University of SKo Paulo and on the
CDC 170/750 of the Instituto de Estudos Avanqados
CTA.

4

SF= —p, g&(q;+„,q; }—P2+ g q(+)%'
i,p, a=1

where

(A4)

(A5}

q (2k)=q('(2k —1)+bq,"( '(2k —1), (A6a)

q (2k+1)=
1 —iraq;" '(2k)i

q (2k)
iq, (2k)i2

+b q' '(2k), (A6b)

p, = f 1+—,P2= P) .=2

As explained in Sec. IV the Langevin equation is divid-

ed into two steps

ACKNOWLEDGMENTS

The authors are grateful to B. Berg, H. Fleming, A. Di
Giacomo, M. C. Gomes, H. J. Herrrnann, C. B. Lang,
and R. H. Swendsen for comments and useful discus-
sions. This work was partially supported by Conselho
Nacional de Desenvolvimento Cientifico (E.A. ,
M.C.B.A. , N.A.A. , C.E.I.C.) and Tecnologico FundaqKo
de Amparo e Pesquisa do Estado de SKo Paulo (N.A.A.).

APPENDIX A

Using the convention

where

~q""(k)=y. S.,—
b

q (k)q;(k)

Iq, (k}l'

X — +&2/eg;(k) e . (A7)
S

5q; (k)

S in the expression above stands for SQ(3) Sp, or SF. The
sum over b ranges from 1 to 3 if S =SQ(3) and from 1 to 4
if S =S or SF.

In terms of the q fields, the source term for the bound
state of the pure CP' model reads

&a q2a —1+iq2a
J j J

and defining

(Al) L—hQ, = 2h(/3/L g—(qI(,)q(»)+q~), )q~(, ) )

j=1
(A8)

4 2

R(q;+„,q;)—:g a +„q
a=1

Finally, the source term for the CP' minimally coupled to

fermions, used in Sec. VI, can be written as

2

y (q2a
—lq2a 2a 2a —) }

a=1
(A2)

L

HZ(+HZ, =2&2/L gh(q(', )+q() )),

we can write the action for the pure CP' model as where the complex number H =h + ih.

S=—Pg gz', „z = —Pgg(q, . „,q,.},
t, p a

(A3}

APPENDIX B

where P= 1/f.
For the CP' model minimally coupled to ferrnions we

have

For the CP" ' model minimally coupled to fermions,
the generating functional of the Euclidean Green's func-
tion is

T

Z[(J J]=N ' f2)z2)zSA„2)$2)$2)$2)$5(z'z' —1)exp —S —
Ss&

—S„p+f d x(J'z'+J'z') (8 la)
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with

S=f j~x D„z'D„z'+i f d x P'DQ',

D„=B„+tA„,

Sf= d2xoA 2
gf

d2X

(2m }

(Blb)

which leads to the effective action

+fd'x(O„A„)' . (B3)

It is possible to cancel the nonlocal term by choosing

1L (p )=, y =n/n .. (B4)

ae
S, =fd xD„z'D„z'+ fd x A„5„„—" A„2' P P~ g2

Notice that if L (p) = 1 then O„A„=B„A„and we recov-
er the usual Landau gauge. In our case the gauge group
is Abelian and the gauge-fixing condition is linear. Thus,
the ghost fields contained in the Faddeev-Popov term

f2) (B(exp( Spp } do not couple to the physical fields

and can be neglected.
Integrating over the n fermion fields we obtain' the

factor

In this way we obtain

S,r= f1 x D„z'D„z'+ f d x A„A„. (B5)

Since the action is quartic in the A „field it can be exactly
integrated leading to

[det( is) —A ) ]"=exp 2' r)

(B2)

SF=fd'x B„z'B„z'+
n +m

( Qg IZ)2 (B6)

which after rescaling of the z' fields (z'~&nl2fz')
gives the expression (2.4).

'Present address: Instituto de Fisica, Universidade de S5o Pau-

lo, S'Ko Paulo, Brazil.
G. Parisi and Wu Yongshi, Sci. Sin. 24, 483 (1981).
I. T. Drummond, S. Duane, and R. R. Horgan, Nucl. Phys.

B220 [FS8], 119 (1983).
G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P. Lepage, B.

Svetitsky, and K. G. Wilson, Phys. Rev. D 32, 2736 (1985).
4G. Parisi, Nucl. Phys. B1$0 [FS2], 378 (1981);B205 [FS5], 337

(1982).
M. Namiki, I. Ohba, K. Okano, M. Rikihisa, and S. Tanaka,

Prog. Theor. Phys. 76, 501 (1986).
E. Dagotto and J. B. Kogut, Phys. Rev. Lett. 58, 299 (1987).

7M. Namiki, I. Ohba, and K. Okano, Prog. Theor. Phys. 72, 350
(1984).

M. Namiki, I. Ohba, K. Okano, M. Rikihisa, and S. Tanaka,
Prog. Theor. Phys. 73, 186 (1985).

Monte Carlo Methods in Statistical Physics, edited by K.
Binder (Springer, New York, 1979).

' H. Eichenherr, Nucl. Phys. B146, 215 (1978); V. Golo and A.
M. Perelemov, Phys. Lett. 79B, 112 (1978); E. Cremmer and
J. Scherk, ibid. 65B, 341 (1978).

'A. D'Adda, M. Luscher, and P. Di Vecchia, Nucl. Phys.

B146, 63 (1978).
' M. C. B. Abdalla and A. L. Santos, Acta Phys. Pol. B15, 813

(1984).
' A. D'Adda, M. Luscher, and P. Di Vecchia, Nucl. Phys.

B152, 125 (1979).
'4J. Schwinger, Phys. Rev. 128, 2425 (1962). For a review, see

R. Jackiw, in Relativity, Groups and Topology II, proceedings
of Les Houches Summer School, Les Houches, France, 1983,
edited by B. S. DeWitt and R. Stora (Les Houches Summer
School Proceedings, Vol. 40) (North-Holland, Amsterdam,
1984).

P. Di Vecchia, R. Musto, F. Nicodemi, R. Pettorino, and P.
Rossi, Nucl. Phys. B235 [FS11],478 (1984).

' G. Fox, R. Gupta, O. Martin, and O. Otto, Nucl. Phys. B205,
145 (1982).

7J. B. Kogut, Rev. Mod. Phys. 55, 775 (1983).
' K. Binder and H. Rauch, Z. Phys. 219, 201 (1969).
'sB. Berg, S. Meyer, and I. Montvay, Nucl. Phys. B235 [FS11],

149 (1984).
E. Abdalla, M. Forger, and A. Lima Santos, Nucl. Phys.
B256, 145 (1985).


