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The regularized generating functional in Euclidean stochastic quantization of Dirac theory in a
background field is derived in both Markovian and non-Markovian stochastic regularization
schemes to show the existence of the equilibrium limit under the same condition as in the unregular-

ized theory. Contrary to the latter case, however, the equilibrium limit depends on an arbitrary ker-
nel in the fermion Langevin equation, which confirms our previous result on the kernel dependence
of anomalies in an external gauge field. In addition to the known kernels yielding the consistent and
covariant anomalies, a new kernel is proposed, which leads to a consistent form in D =2 dimensions

and a new form in D =4. The relation to Fujikawa s path-integral method is also discussed, where

the kernel introduces, in general, non-Hermitian operators which are treated by the plane-wave fer-

mion measure and the regularized transformations of Bern et al. , now depending on the kernel.

I. INTRODUCTION

In the Parisi-Wu stochastic quantization method of
field theory the regularization is formulated at the
Langevin level. There have been proposed so far two
kinds of stochastic regularizations~ which modify the
original correlation formula of the noise field(s) in either
the coordinate-space or the extra-time directions. We
shall call the former the Markovian stochastic regulariza-
tion (SR) which keeps the white noise of the original for-
malism, and the latter the non-Markovian SR which
makes use of the colored noise.

According to Bern, Chan, and Halpern, the Markovi-
an SR can be carried out in gauge theories coupled to fer-
mions. On the other hand, it has been shown by some au-
thors that the non-Markovian SR does not work con-
sistently in non-Abelian gauge theories with the stochas-
tic gauge fixing. Hence, any serious comparison between
the two SR schemes in the Dirac theory should be made
only if the gauge field is regarded as external. In fact,
both schemes for external-field problems are equivalent 's

to the regularization at the action level, and the authors
in Ref. 5 noted that the regularized equilibrium actions
take similar forms. As one (K.M.) of us has recently
pointed out, they become identical if the two regulariza-
tion functions employed are related to each other via the
Laplace transform.

The purpose of this paper, which is an expanded ver-
sion of Ref. 9, is threefold. First, we will show that the
equilibrium limit of the stochastically regularized Dirac
theory in the external field exists in both SR schemes for
arbitrary kernel of the fermion Langevin equation'
under the same condition as in the unregularized case.
This generalizes the previous result ' on the equivalence
of both SR schemes to the action regularization, and
proves the equilibrium condition implicitly assumed in

Ref. 9. Second, we will take up the much-discussed sub-
ject of the chiral anomalies' in the background gauge
field. As is well known, they depend on the regulariza-
tion methods in the ordinary perturbation theory or on
the fermion measure in Fujikawa s path-integral
method. ' In the stochastic quantization method they
should not depend on the SR schemes since the latter are
equivalent to each other as long as the gauge field is re-
garded as external. Moreover, the stochastic quantiza-
tion method dispenses with the definition of the fermion
measure. We, therefore, claim that the various types' of
anomalies originate from different kernels. This was
pointed out in Ref. 16 using non-Markovian SR, and ex-
tended to Markovian SR, too. We are now able to de-
scribe the kernel dependence of anomalies by the generat-
ing functional method. Third, we will apply Fujikawa s
path-integral method' to the regularized equilibrium fer-
mion action, where the fermion measure is expanded in
terms of the complete set of plane waves. The connection
of the two methods was briefiy studied in Ref. 5 without
mentioning the measure. We will make it more precise in
view of a possibility of different kernels in perturbation
theory.

This paper is organized as follows. In the next section
we derive the regularized generating functional for an
external-field fermion Langevin equation in both SR
schemes and show the existence of the equilibrium limit.
The generating functional method will be applied in Sec.
III to show that the types of anomalies in the background
gauge field are determined at the Langevin level. The
conventional approach' ' to anomalies in the Parisi-Wu
method will be reviewed in Sec. IV where, in addition to
the known kernels leading to the consistent and covariant
anomalies, a new kernel is given, which yields the con-
sistent form in D =2 and a new form in D =4. Section V
gives an application of Fujikawa's path-integral
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method' to the regularized equilibrium fermion action
obtained via the SR schemes. The final section is devoted
to a summary and discussions.

Qt
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II. REGULARIZED GENERATING FUNCTIONAL
FROM STOCHASTIC REGULARIZATIONS

1()(x,r) = K I"g(x, r—)+rj(x, r ), (2a}

g(x, r) = f(x, r)I —K+r)(x, r), (2b)

where the overdot stands for the derivative with respect
to ~, K is an arbitrary kernel not existing at the Lagrang-
ian level, Q =Q ~ & &

for any operator Q (here

Q =K, l ), and r) and rI are the Gaussian, Grassmann
noise fields with ( rj ) = ( r) ) = ( r)ri ) = ( r)ri ) =0, and

(rt(x, r)rl(x', r') ) =2K5 (x x')5(r r') . — —(2c)

It is then possible to show that the generating functional
for equal-v correlation functions

)p[g, g, e[=(exp f [rd[ ex)&b( x, )xe

+P(x, r)g(x )] (3)

where the ri average ( )„is defined by Eqs. (2a) —(2c) and

g and g are external Grassmann sources, satisfies the
functional differential equation

W[g, g, r]= JA W[g, g, r],
where fA—= f d x A(g(x), g(x)) with

(4a)

Let us consider Euclidean Dirac theory with the action

S= Jd x g(x)I )t((x),

where D is the dimensionality of the Euclidean space-
time, and the Dirac operator I is assumed to depend on
the external field(s) only. To quantize the theory one may
use either the canonical or path-integral or stochastic for-
mulations. They are all equivalent in the unregularized
theory, but a question remains open whether or not the
equilibrium limit in the last formulation exists also in the
regularized version except the cases treated in Refs. 5 and
8. To answer the question in the more general cases, we
employ in this paper the Parisi-Wu stochastic quantiza-
tion method. ' Suppose that the D-dimensional, quantum
Euclidean Dirac theory is regarded as the equilibrium
state of the (D+1)-dimensional stochastic field theory
with the random, Grassmann spinor fields g(x, r) and
[)t7(x, r), where r denotes the extra time variable. The ap-
proach to the equilibrium state at ~~ Oo is simulated by
the fermion Langevin equations '

Here L =KI, L = I K, and 5'lg' denotes the Grassmann
derivative 5/5( not acting on g standing just to the right
of it. Equations (4a) and (4b} are obtained by applying
Fukuda and Higurashi's method' to the present model.

By assumption L and K do not depend on r, and Eqs. (4a)
and (4b) are integrated to obtain

W[g, g, r]—:exp f d x g(x)I '(1 —e ')g(x) (5)

where we have chosen the initial conditions
it)(x, 0)=g(x, 0)=0. The equilibrium limit

lim W[g, g, r]:—W[ g, g]

=exp Jd x g(x)I 'g(x) (6)

exists if e goes to zero as ~~00. This condition is
always met in the perturbative sense if L (or, equivalent-
ly, L) are decomposed into a free, positive-definite Herini-
tian operator plus perturbations. In particular, for
K=I, the dagger denoting Hermitian conjugation, L
and L themselves are positive-definite Hermitian opera-
tors so that the limit (6) exists nonperturbatively as
proved in the Fokker-Planck formalism. If the free
operator is not Hermitian, we must require that its eigen-
values have positive real parts as in Ref. 10 for massive
fermions. Equation (6) establishes the equivalence of
the Parisi-Wu stochastic quantization to the conventional
ones.

The equivalence problem has also been studied ' when
the SR schemes are introduced at the Langevin level.
The authors in Ref. 8 proved the existence of the equilib-
rium limit for the non-Markovian SR in the Fokker-
Planck formalism, but failed to generalize the proof for
gauge-invariant fermion Langevin equation' to arbitrary
K. On the other hand, the authors in Ref. 5 assumed the
gauge-invariant fermion Langevin equation' in the Mar-
kovian SR to show that the latter in the background field
becomes in the equilibrium limit equivalent to the action
regularization as verified in Ref. 8 for non-Markovian
SR. In what follows we present a simple proof of the
equivalence for arbitrary K using the functional method
of Ref. 19.

The Markovian ' SR replaces K by RAK in Eq. (2c),
where the regularization function RA is assumed not to
depend on the fields and goes to unity as A~~, while
the non-Markovian ' SR generalizes the delta function
5(r—r') in Eq. (2c) to the stochastic regularization func-
tion a„(r r') with the p—roperties a~(r' r) =aA(r r'), — —
limA „aA(r r')=5(r r'), and—f „—dr'aA(r r')=1. —
Accordingly we introduce the regularized generating
functional W„[g,g, r] through Eq. (3) with the r) aver-

age ( )„defined as above. It also satisfies Eq. (4a) with

A~A"', which amounts to replacing K in Eq. (4b) by
E„,where
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RzK for Markovian SR,K„='f,(L /A )K for non-Markovian SR,

(7a}

(7b)

with

f,(x/A )=2f dr'a~(r')e
0

(7c)

W„[g,g, r]=exp f d x g(x)I 'X,g( x) (8a)

At r~ ~, f, becomes Fujikawa s regularization function

f=f„with f(0)= 1 and f '( oo ) =f"( 00 ) = =0. In-
tegration gives

a(x)
5$(x)=i f(x), (12a)

y'in+ i

—a(x)
5$(x)=i f(x) (12b)

y2n +1

where a=a„T", P=Pz T", A =O, a with T =1,
y2„+,=( i—)"y, yz

. yi„, and a„(x) and P„(x) are as-

sumed to vanish on the boundary of the integration
domain of Eq. (1). We write the variation as

5a„(x)
=i( fT "—I P+g I T "P)(x)

where
i (D—„J„)"(x), (13a)

(1—e ')R~ for Markovian SR,

X =' 2 dr'a (r')(e —e '" ')
A

(8b)

=i(QT "yi„+iI Q+QI T "y „2+pi)( x)

P„(x
for non-Markovian SR . (8c)

In Eq. (Sb) we have assumed R J,
—=K 'R ~K = I R ~1

whence R „=R~(L)and R~ =R~(L ). It is clear that the
r~ ~ limit of Eqs. (8b) and (8c) exists under the same
condition as in the unregularized theory, obtaining

lim W„s[g,g, r]—= W„s[g,g]

=exp f d x g(x)I' 'X„g(x), (9)

where X„=R&(f(L/A )) for Markovian (non-
Markovian) SR. Therefore, both Markovian and non-
Markovian SR schemes in the background field become
at ~~00 equivalent ' to the action regularization de-
pending on the kernel. If we further assume that

i [(D„Js&—)"—2m Jz„+i ](x), (13b)

( 6a~tx))„g
(14a)

where D„J„=B„J„+[A„,J„]and similarly for Js„, with

J„"=fy„T"0, Js„=fy„yt„+,T"g, and Ji"„+,
tyi„2+T "g. For the A =0 component the non-

Abelian parts [A„,J„]and [A„,Js„]are absent. By the
action principle both 5S/5a & and 5S/5P„vanish if the
classical field equations, I Q=lt I =0, are satisfied, lead-
ing to classical "conservation" equations of the vector
and axial-vector currents, J„and J5„, respectively. It is
well known, however, that, upon quantization, the (regu-
larized) vacuum expectation values of them,

Rq=f(L/A ),
R~=K 'R~K=K 'f(L/A )K=f(L/A ),

(10)

both SR schemes in the equilibrium limit are identical to
each other.

(14b)

(15a)

III. ANOMALIES IN THE BACKGROUND
GAUGE FIELD

Using the regularized generating functional (9) for
Green's functions in the theory, we next discuss the
chiral anomalies in the background gauge field for even
D =2n to clarify the role of the kernel.

Put

I =y (8+ A )+m,
where we choose Dirac matrices to be Hermitian and
satisfy [y„,y„]=25„„, p, , v= 1, . . . , 2n, A„= i A„'T'—
denotes the prescribed external non-Abelian gauge field
with T' being the Hermitian generators of the gauge
group taken to be in the fermion representation, and m is
the fermion mass. In this case consider the variation of
the action (1} under the infinitesimal gauge and chiral
transform ations:

= lim (I T y „i++iT yi„+iI )

X W„s[g,g]5((x)
(15b)

H "(x)= lim tr T "(R~
—R ~ )(x,x ),P~ oo

6 "(x)= lim try&„+, T "(R~ +R „)(x,x ),P~ oo

(16a}

(16b)

where we have used the relation R~I =I R~ and tr
means the trace over Dirac and internal symmetry ma-

do not, in general, vanish due to the possible presence of
anomalies.

Given Eq. (9) the functional derivatives in Eqs. (14b)
and (15b) can be evaluated by first splitting the point x
and then taking the same-x limit in the end. The result
for the Markovian SR turns out to be
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trices, while the same result holds also in the non-
Markovian case by the substitution (10). Hence, we con-
clude that both Markovian and non-Mar kovian SR
schemes give the same answer as far as the anomalies in
the background gauge field are concerned, and that the
types of anomalies depend on the kernel K in the
Langevin equations (2a) and (2b) through the operators
L =KI and L =I'K. (Remember that the anomalies do
not depend on the detailed form of the regularization
function as verified by Fujikawa. '

)

IV. STOCHASTIC PERTURBATION THEORY
OF ANOMALIES

where the alternating symbol is fixed by e&2. . . 2n =+1.
Equation (20) has repeatedly been derived in the litera-
ture, and is reduced to Eqs. (18) and (19) for n =1 and
2, respectively. Accordingly, for E=/ ' and /=I the
covariant form' ' of anomalies is reproduced in D =2
and 4 dimensions. We shall see in the next section that
the case K=1 ' also reproduces Eq. (20) in any higher
even dimensions. Another choice E=@0 '" leads' to
the chiral consistent anomaly' for vector plus axial-
vector gauge couplings. For vector coupling under con-
sideration it gives, for D =2 (Ref. 9),

(21a)
The stochastic perturbation theory designed to evalu-

ate anomalies in the background gauge field for given E is
based on either Eqs. (16a) and (16b) or an equivalent for-
mula' valid in the non-Markovian SR:

H "(x)=2 lim J dna~(r}trT "[G(x,x;w, O)
A~oo 0

G(x,—x;O, r)], (17a)

6 "= e„„trT "B„A
2m

while, for D =4 (Ref. 16),

(21b)

6 "(x)=2 lim I dw a~( r)try „2+~T "[G(x,x;r, O)
P —woo 0

H" =
2

tr T "( ,' I d„A „+—r}„A„,A „A„I
—

—,', I 8 A, A
8m

+G(x,x;O, r)],
(17b)

where 6=6(x,x';r, r') and 6=6(x',x;r', r) are
Green's functions of Eqs. (2a) and (2b), respectively, satis-

fying 6 =LG+ 1 and G = GL + 1 with 1—representing
the product of delta functions in x and r Equation. s (17a}
and (17b) are obtained from the stochastic version of Eqs.
(14a) and (15a) using the equilibrium condition 8'„, ~0
at r~ ao. The method of Ref. 16 makes use of Eqs. (17a)
and (17b) assuming the kernel K to be either constant
or linear in the derivative so that E=E0+K &,

Ko = —y 8+m, and K
&

does not contain the derivative.
In the first case' we put K=1 ', where l is a constant
with a dimension of length. Then H"=0, whereas we
find that

+-,'A„B AA„+ ,'D2'r} A —
-—,'[A„,D,F„„]

—2m 8 A+~A 8 A), (22a)

(22b)

where D„=B„+[A„,], [ A, B J
= AB+BA (of course,

[ A, B]= AB BA}, an—d Ir is a divergent constant defined
by Eq. (44) of Ref. 16. It is not difficult to verify that
both Eqs. (21a) and (22a) take the form

6"= e„,tr T"F„„(D=2), (18)

H"=2i trT D„j„' (23)

G "=— e„„ tr T"F„„F (D =4),
16m

(19)

where e„=—e „with e,2= + 1 and F„=B„A—B„A„+[A„,A, ], and'

for appropriately chosen vector current j„'. Therefore,
the subtracted current J„—j„' is anomaly-free. Equations
(21b) and (22b) are called consistent' form of
anomalies.

A new choice

where e„„ is the alternating symbol with e,234=+1
(Ref. 21). In Eqs. (18) and (19) tr refers only to the inter-
nal symmetry matrices. The same remark also applies
to the following equations with tr [ ] when the object [ ]
involves no y matrices.

In the second case we consider two choices E =Ep and
K =I, separately. For K = I we obtain (D =2n )

6"= 2, e„.. .„„trT "(F„.F„„), (20)
(&')"

22n —1 n ) Pl~I '' P„ I n "n

K=( —8 +m )I (24)

for which L =Kl =( —8 +m ~) and L = I K
=I ( —8 +m )I ', requires a perturbative treatment
based on Eqs. (16a) and (16b) rather than Eqs. (17a) and
(17b). For the Pauli-Villars-type regularization function—A'l~la~(v)=(A /2)e ' which has been assumed to obtain
the previous Eqs. (20)—(22b), f(x}=(1+x) ' so that Eq.
(10) gives
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R =[1+(—a +m )/A ] (25a) G "(x)= lim try&„+, T"I [(1—a /A ) ', I '](x,x) .

R =r[l+( —a + )/A ] 'r (25b)

Neglecting m compared with A which would eventual-
ly be made infinite, we get, from Eqs. (16a) and (16b),

(26b)

The commutator is evaluated by expanding I ' into a
perturbation series

I '=(I 0+I i)

H "(x)=—liin trT "I'[(1—a2/A~) ', I' '](x,x),

(26a) and using the formula

(r =—y a+m)

[(I—a'/A') ', $](x,x )= IA '[2(a„iI))a„+a'$](1—a /A ) '+4A [(a„a„i')a +a„a (j)]a„(1—a'/A~)

+8A (a„a a~/)a„a a&(l —a /A ) 4+ I(x,x), (27)

where the ellipsis in the curly brackets stands for terms with more than third derivatives of ((i. Then we carry out the
Dirac algebra to obtain that, for D =2, Eqs. (26a} and (26b} reproduce the consistent anomalies (2la) and (21b), while
for D =4, they lead to new types of anomalies:

H"= 2trT"tvA a A ——', [—a a A+a„A„(a„A„+a„A„)+(aA) +a A„A„
16~

+2a„a ~~„—a ~~' —a„~„(~„~„+~„~„)]], (28a)

and and

(28b)
16~

Equation (28a) can be brought into the form (23), imply-
ing that the vector current is anomaly-free after subtrac-
tion. (Unlike the previous case the current j„' cannot be
given by a variation of the counterterm. ) The anomaly
(28b) is related to the covariant one (19) via the gauge-
Bianchi identity. It is similar to a relation' between co-
variant and consistent anomalies.

Ly„(x)=p,„y(x),

fd'"x ip„(x)ip (x)=5„

g ip„(x)ip„(x')=5'"(x —x'), (29b)

V. RELATION TO FUJIKAWA'S PATH-INTEGRAL
METHOD

The stochastic quantization method introduces non-
Hermitian operators L and L but dispenses with the
definition of the fermion measure, while Fujikawa's
path-integral method' regards the measure as a source
for anomalies using Hermitian operators. In this section
we investigate a connection between the two methods by
generalizing the regularization procedure of Ref. 5.

For Hermitian L and L which are supposed to be
different, there exist the complete sets of eigenfunctions

where A,„and p„denote the eigenvalues. The Green's
functions G and G are then given by

G(x,x', r, r') =8(~ r') g P„(x)P„(x—')e

(30a)

G(x', x;~', r)=8(7 7') g ip„(x')ip„(x—)e

LP„(x)=A,„P„(x),

fd~"x (('i„(x)P (x)=5„~,

g (('i„(x}Pt(x')=5 "(x—x'), (29a)

(30b)

which are substituted into Eqs. (17a) and (17b), giving
()'D+ i =)'2. + i)



558 KATSUSADA MORITA AND HIROMI KASE 41

—A.
2 — 2T

H "(x)=2 lim f dna„(r) g [P„(x)T"e " P„(x) y—„(x)T"e " g„(x)),
&~oo 0

n

(3 la)

—A.
2 ~G "(x)=2 lim f dna„(r) g [p„(x)yD+&T"e " p„(x)+y„(x)7'D+~T "e " p, (x)]

A~co 0
(31b)

If L and L are not Hermitian, no general rule is available to imitate the above derivation. The case K =I is, how-
ever, exceptional. Then we choose P„=g„=u„ to be the eigenfunction of the massless Dirac operator iy (8+ 2 ):—ig:

igu„(x)=e„u„(x), e„real, f d "x u„(x}u (x)=5„, g u„(x)u„(x')=5 "(x—x') . (32)

This gives H "=0as should be the case for E = l ', while

G "(x)=4 lim f dr a„(r)Q u„(x)yD+, T"e " u„(x)A~cc 0
n

=2 lim g u„( x)y D+, T"f
n

l Pn +61
u„(x)=2 lim tryD+&T "f —

2 (x,x) .
A —+ oo A

(33)

In obtaining Eq. (33) we have neglected the mass com-
pared with A, used the anticommutativity of 8 and yD+ &

and assumed f(x)+f( —x)=2f( —x ) as is the case for
f(x)=(1+x) ' (Ref. 28). According to Matsuki Eq.
(33) precisely reproduces the covariant anomaly (20).

On the other hand, Fujikawa's Jacobian factor for the
infinitesimal change 5 (12a) and (12b) of the integration
variables in the fermion path integral for the partition
function Z determines anomalies through

where'

H„"„„(x)= g [P„(x)T"P„(x)—g„(x)T"y„(x)],

(38a)

(38b)

i5J=(i5S) .

Fujikawa expands P and f as

g= g a„P„,

(34)

(35a)

(35b)

These equations correspond to the white noise
a~(r)=5(r) in Eqs. (31a) and (31b).

It should be emphasized that the case E=Ep or Eq.
(24) are not included in the above derivation. This is be-
cause for such E, L and L are not both Hermitian. Thus
the (chiral) consistent anomaly is not derivable from
Fujikawa's equation (34).

With the arbitrary E allowed in perturbation theory,
we consider the regularized partition function Z„with
the measure

where a„and b„are independent Grassmann variables,
and P„and p„are the orthonormalized complete sets
(29a) and (29b) (the case E = I ' should also be included. )

The fermion measure is then defined by

Dg Dg= gdckdck, (39)

DEED&= g«„db„,
n

yielding

a „(x)H„"„„(x),

(36)

(37a)

(37b) 5AS„=5S, (40)

where ck and ck are independent Grassmann variables in
place of a„and b„, which are obtained by replacing P„
and qF„ in Eqs. (35a) and (35b) by the plane-wave solu-
tions gk and gk, respectively. Considering the regular-
ized infinitesimal transformations 5A such that
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lim i5AJ= &i5S &„s .
A~ oo

(41)

For S„s= Jd x p(x)I R A '1 (x) corresponding to (the
Markovian case of) Eq. (9), Eq. (40) is satisfied by taking

for finite A, where 5S is given by Eq. (34), the regularized
Fujikawa's equation reads

we define the measure (39) and consider the regularized
transformations (40), now depending on K, in the manner
of Bern, Chan, and Halpern. In this sense Fujikawa*s
claim' that the measure (39) is useless for path-integral
evaluation of anomalies is not justified. Equation (41)
with Eqs. (43a) and (43b) corresponds to the plane-wave
regularization of Ref. 14.

R Aa
5~/=i (42a) VI. SUMMARY AND DISCUSSIONS

5Af=i f
rD+ BRA

(42b)

HA (x)= g [gk(x)R„T"gk(x) —gk(x)T "R„gk(x)]
k

=trT "(RA —RA )(x,x ),
GA(x) rf ~kk(x)YD+IRAT kk(x)

k

+gt(x)T "y D+R(gA(kx)l

(43a)

=tryD+, T "(RA+RA )(x,x ), (43b)

which are the generalization of the regularized gauge and
chiral transformations introduced by Bern, Chan, and
Halpern. 5 The Jacobian factor i5~J is given by Eqs. (38a)
and (38b) with H„"„„, and G„"„„beingreplaced by

We have presented a proof of the existence of the equi-
librium limit in Euclidean stochastic quantization of
external-field Dirac theory in both SR schemes. The con-
dition for existence is the same as in the unregularized
theory. The proof is made possible using the regularized
generating functional. Its explicit form derived in Sec. II
can also be obtained with the help of Green's functions G
and G.

The generating functional method has been applied to
show that anomalies in the background gauge field de-
pend on the kernel in the fermion Langevin equation.
For instance, covariant and consistent anomalies come
from diff'erent kernels. ' ' A new type of anomaly in
D =4 dimensions has also been derived from a special
choice of the kernel. The reason behind the correspon-
dence remains open.

The relation of the stochastic quantization method to
Fujikawa's path-integral one has also been studied on the
basis of the plane-wave measure and the regularized
transformations of Ref. 5 .

respectively. These equations go over to Eqs. (16a) and
(16b), respectively, in the A~ ~ limit. ' No Hermiticity
requirement on L and L is needed in the present deriva-
tion. Thus, even for such K that L and L are not both
Hermitian, the path-integral method is still applicable if
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